On the Isometry Groups of Invariant Lorentzian Metrics on the Heisenberg Group

V. del Barco, G. P. Ovando, and F. Vittone

Abstract

This work concerns the invariant Lorentzian metrics on the Heisenberg Lie group of dimension three $\mathrm{H}_{3}(\mathbb{R})$ and the bi-invariant metrics on the solvable Lie groups of dimension four. We start with the indecomposable Lie groups of dimension four admitting bi-invariant metrics and which act on $H_{3}(\mathbb{R})$ by isometries and we study some geometrical features on these spaces. On $\mathrm{H}_{3}(\mathbb{R})$, we prove that the property of the metric being proper naturally reductive is equivalent to the property of the center being non-degenerate. These metrics are Lorentzian algebraic Ricci solitons.

Mathematics Subject Classification (2010). 53C50, 53C30, 22E25, 57 S25.
Keywords. Pseudo-Riemannian spaces, naturally reductive, Lie groups, Heisenberg group.

1. Introduction

Homogeneous manifolds constitute the goal of several modern researches in pseudo-Riemannian geometry, for instance Lorentzian spaces for which all null geodesics are homogeneous became relevant in physics $[14,19]$. This fact motivated several studies on g.o. spaces in the last years, see for instance [7$9,12]$ and their references. Symmetric pseudo-Riemannian spaces and threedimensional Lie groups equipped with a left-invariant Lorentzian metric include all the possible connected, simply connected, complete homogeneous Lorentzian manifolds [7].

In the case of the Heisenberg Lie group of dimension three $\mathrm{H}_{3}(\mathbb{R})$, it was proved in [25] that there are three classes of left-invariant Lorentzian metrics, and only one of them is flat (see also [20]), which is characterized by the property of the center being degenerate.

[^0]In this work, we concentrate the attention to the non-flat metrics on $\mathrm{H}_{3}(\mathbb{R})$ and their isometry groups. According to [23] any left-invariant metric on a Heisenberg Lie group, for which the center is non-degenerate, is naturally reductive, so these spaces are geodesically complete and non-flat. Here, we prove a partial converse to that result: Any naturally reductive Lorentzian metric on $\mathrm{H}_{3}(\mathbb{R})$ admitting an action by isometric isomorphisms of a onedimensional group, restricts to a metric on the center.

Thus, for any left-invariant Lorentzian metric on $\mathrm{H}_{3}(\mathbb{R})$, the following statements are equivalent:
(i) non-flat metric,
(ii) non-degenerate center,
(iii) proper naturally reductive metric,
where proper means non-symmetric. The first equivalence (i) \Leftrightarrow (ii) follows from Theorem 1 in [16]. On the other hand, $\mathrm{H}_{3}(\mathbb{R})$ equipped with the leftinvariant metric which is flat is a space form hence isometric to \mathbb{R}_{1}^{3} [21]. The statement above does not hold in higher dimensions: a non-flat left-invariant Lorentzian metric with degenerate center on $\mathbb{R} \times \mathrm{H}_{3}(\mathbb{R})$ is proved to be naturally reductive in [24]. Properties of flat or Ricci-flat Lorentzian metrics were investigated for instance in $[1,2,16]$ and references therein. Here, we also compute the corresponding isometry groups following results on naturally reductive metrics in [23] (comparing with [6]) and we see that the non-flat metrics are algebraic Ricci solitons (see Ricci solitons on Lorentzian Lie groups of dimension three in [5]).

The study of these naturally reductive non-flat metrics on $\mathrm{H}_{3}(\mathbb{R})$ is motivated by the results on [22], which state that a naturally reductive pseudoRiemannian space admits a transitive action by isometries of a Lie group equipped with a bi-invariant metric. Hence, we start with the classification of all Lie algebras up to dimension four admitting an ad-invariant metric. It is important to remark that the method used here is constructive and independent of the classification of low-dimensional Lie algebras.

So a naturally reductive Lorentzian metric on $\mathrm{H}_{3}(\mathbb{R})$ admits an action by isometries of a Lie group G with a bi-invariant metric. If G has dimension four, it corresponds to one of the Lie algebras obtained before. This is a key point in the proof of the equivalence stated above.

Finally, we complete the work by investigating the geometry of the biinvariant metrics of the solvable Lie groups G_{0} and G_{1}, which are associated to the non-flat metrics on $\mathrm{H}_{3}(\mathbb{R})$. We compute the isometry groups $\boldsymbol{I}\left(G_{0}\right)$ and $\mathrm{I}\left(G_{1}\right)$ in the aim of establishing a relationship between them and G_{0} and G_{1} as isometry groups of $\mathrm{H}_{3}(\mathbb{R})$. Also geodesics are described.

2. Lie algebras with ad-invariant metrics up to dimension four

In this section, we revisit the Lie algebras of dimension $d \leq 4$ that can be furnished with an ad-invariant metric. The proofs given here are constructive and they do not make use of the double extension procedure $[4,13,18]$.

Let \mathfrak{g} be a real Lie algebra. A symmetric bilinear form \langle,$\rangle on \mathfrak{g}$ is called ad-invariant if the following condition holds:

$$
\left\langle\operatorname{ad}_{X} Y, Z\right\rangle+\left\langle Y, \operatorname{ad}_{X} Z\right\rangle=0 \quad \text { for all } X, Y, Z \in \mathfrak{g}
$$

Whenever \langle,$\rangle is non-degenerate, the symmetric bilinear form is just called$ a metric.

Example 2.1. The Killing form is an ad-invariant symmetric bilinear form on any Lie algebra \mathfrak{g}, which is non-degenerate if \mathfrak{g} is semisimple. Moreover, if \mathfrak{g} is simple any ad-invariant metric on \mathfrak{g} is a non-zero multiple of the Killing form.

Recall that the central descending series $\left\{C^{r}(\mathfrak{g})\right\}$ and central ascending series $\left\{C_{r}(\mathfrak{g})\right\}$ of a Lie algebra \mathfrak{g}, are for $r \geq 0$, respectively, given by the ideals

$$
\begin{array}{ll}
C^{0}(\mathfrak{g})=\mathfrak{g} & \\
C_{0}^{r}(\mathfrak{g})=\left[\mathfrak{g}, C^{r-1}(\mathfrak{g})\right] & \\
C_{r}(\mathfrak{g})=\left\{X \in \mathfrak{g}:[X, \mathfrak{g}] \subseteq C_{r-1}(\mathfrak{g})\right\} .
\end{array}
$$

Fixing a subspace \mathfrak{m} of \mathfrak{g}, its orthogonal subspace is defined as usual by

$$
\mathfrak{m}^{\perp}=\{X \in \mathfrak{g}:\langle X, Y\rangle=0, \forall Y \in \mathfrak{m}\}
$$

The next result follows by applying the definitions above and an inductive procedure.
Lemma 2.2. Let $(\mathfrak{g},\langle\rangle$,$) denote a Lie algebra endowed with an ad-invariant$ metric.

1. If \mathfrak{h} is an ideal in \mathfrak{g} then \mathfrak{h}^{\perp} is also an ideal of \mathfrak{g}.
2. $C^{r}(\mathfrak{g})=\left(C_{r}(\mathfrak{g})\right)^{\perp}$ for all $r \geq 0$.

Notice that if the metric is indefinite, for any subspace \mathfrak{m} the decomposition $\mathfrak{m}+\mathfrak{m}^{\perp}$ is not necessarily a direct sum. Nevertheless, the next formula holds

$$
\begin{equation*}
\operatorname{dim} \mathfrak{g}=\operatorname{dim} C^{r}(\mathfrak{g})+\operatorname{dim} C_{r}(\mathfrak{g}) \quad \forall r \geq 0 \tag{1}
\end{equation*}
$$

and, in particular,

$$
\begin{equation*}
\operatorname{dim} \mathfrak{g}=\operatorname{dim} C^{1}(\mathfrak{g})+\operatorname{dim} \mathfrak{z}(\mathfrak{g}) \tag{2}
\end{equation*}
$$

where $\mathfrak{z}(\mathfrak{g})$ denotes the center of \mathfrak{g}. Moreover,

- if $\mathfrak{m} \subseteq C^{1}(\mathfrak{g})$ is a vector subspace such that $C^{1}(\mathfrak{g})=\left(\mathfrak{z}(\mathfrak{g}) \cap C^{1}(\mathfrak{g})\right) \oplus \mathfrak{m}$, then \mathfrak{m} is non-degenerate;
- if $\mathfrak{m}^{\prime} \subseteq \mathfrak{z}(\mathfrak{g})$ is a vector subspace such that $\mathfrak{z}(\mathfrak{g})=\left(\mathfrak{z}(\mathfrak{g}) \cap C^{1}(\mathfrak{g})\right) \oplus \mathfrak{m}^{\prime}$, then \mathfrak{m}^{\prime} is non-degenerate.

Remark 1. Suppose \mathfrak{g} admits an ad-invariant metric and $\mathfrak{z}(\mathfrak{g}) \neq 0$. Then as said above any complementary space $\tilde{\mathfrak{z}}$ such that $\mathfrak{z}(\mathfrak{g})=\tilde{\mathfrak{z}} \oplus\left(\mathfrak{z}(\mathfrak{g}) \cap C^{1}(\mathfrak{g})\right)$ is non-degenerate. It follows that $\mathfrak{g}=\tilde{\mathfrak{z}} \oplus \tilde{\mathfrak{g}}$ is a direct sum of non-degenerate ideals where $\tilde{\mathfrak{g}}=\tilde{\mathfrak{z}}^{\perp}$ each of them having ad-invariant metrics. In addition $\mathfrak{z}(\tilde{\mathfrak{g}})=\mathfrak{z}(\mathfrak{g}) \cap C^{1}(\mathfrak{g})$.

Now suppose \mathfrak{g} is solvable. Then by (2) it has non-trivial center. If moreover \mathfrak{g} is non-abelian then both $C^{1}(\mathfrak{g})$ and $\mathfrak{z}(\mathfrak{g})$ are non-trivial and $C^{1}(\mathfrak{g}) \cap \mathfrak{z}(\mathfrak{g}) \neq 0$. In fact, using the decomposition described above $\mathfrak{g}=\tilde{\mathfrak{z}} \oplus \tilde{\mathfrak{g}}$
where $\tilde{\mathfrak{g}}$ turns to be a solvable Lie algebra with an ad-invariant metric. Then its center $\mathfrak{z}(\tilde{\mathfrak{g}})=\mathfrak{z}(\mathfrak{g}) \cap C^{1}(\mathfrak{g})$ is not trivial.

Proposition 2.3. Let \mathfrak{g} denote a real Lie algebra of dimension two or three. If it can be endowed with an ad-invariant metric, then

- in dimension two \mathfrak{g} is abelian and
- in dimension three \mathfrak{g} is abelian or simple.

Proof. Assume first that \mathfrak{g} has dimension two. Then it is either abelian or isomorphic to the solvable Lie algebra spanned by the vectors X, Y with $[X, Y]=Y$. Since the center of this solvable Lie algebra is trivial, it cannot be equipped with an ad-invariant metric.

Assume now that \mathfrak{g} has dimension 3. It is well known that it must be either solvable or simple. If it is abelian or simple, it admits an ad-invariant metric (see Example 2.1).

Suppose now \mathfrak{g} is a non-abelian solvable Lie algebra equipped with an ad-invariant bilinear form \langle,$\rangle . Since \mathfrak{z}(\mathfrak{g}) \cap C^{1}(\mathfrak{g})$ is non-trivial (see Remark 1), there exist $X, Y \in \mathfrak{g}$ such that $[X, Y]=Z \in C^{1}(\mathfrak{g}) \cap \mathfrak{z}(\mathfrak{g})$. It is not difficult to see that the vectors X, Y, Z form a basis of \mathfrak{g}. Since $Z \in C^{1}(\mathfrak{g}) \cap\left(C^{1}(\mathfrak{g})\right)^{\perp}$ then $\langle Z, Z\rangle=0$. Furthermore,

$$
\langle Z, X\rangle=\langle[X, Y], X\rangle=-\langle Y,[X, X]\rangle=0
$$

and in the same way one gets $\langle Z, Y\rangle=0$. Thus, any ad-invariant bilinear form on \mathfrak{g} must be degenerate.

A Lie algebra $(\mathfrak{g},\langle\rangle$,$) is called indecomposable if it has no non-degenerate$ ideals.

Observe that if a Lie algebra \mathfrak{g} with an ad-invariant metric admits a nondegenerate ideal \mathfrak{j}, then \mathfrak{j}^{\perp} is also a non-degenerate ideal and so $\mathfrak{g}=\mathfrak{j} \oplus \mathfrak{j}^{\perp}$.

Remark 2. By Remark 1 if $(\mathfrak{g},\langle\rangle$,$) is indecomposable and with non-trivial$ center, then the center is contained in the commutator $\mathfrak{z}(\mathfrak{g}) \subseteq C^{1}(\mathfrak{g})$.

Lemma 2.4. Let \mathfrak{g} denote a Lie algebra of dimension four furnished with an ad-invariant metric. If it is non-solvable then it is decomposable.

Proof. Let $\mathfrak{g}=\mathfrak{r} \oplus \mathfrak{s}$ be a Levi decomposition of \mathfrak{g}, where \mathfrak{r} denotes the radical. Since \mathfrak{g} is not solvable $\operatorname{dim} \mathfrak{r}<4$. Moreover, since there are no simple Lie algebras of dimension one or two, it holds $\operatorname{dim} \mathfrak{r}=1$ and \mathfrak{s} is either $\mathfrak{s l}(2)$ or $\mathfrak{s o}(3)$. In every case, the action $\mathfrak{s} \rightarrow \operatorname{Der}(\mathfrak{r})$ is trivial. In fact, let $\mathfrak{r}=\mathbb{R} e_{0}$ and $\mathfrak{s}=\operatorname{span}\left\{e_{1}, e_{2}, e_{3}\right\}$.

Assume $\left[e_{i}, e_{0}\right]=\lambda_{i} e_{0}$. For all $i, j=1,2,3$ there exist $\xi_{i j} \in \mathbb{R}-\{0\}$ such that $\left[e_{i}, e_{j}\right]=\xi_{i j} e_{k}$ for some $k=1,2,3$ (see the Lie brackets in $\mathfrak{s l}(2)$ or $\mathfrak{s o}(3)$) and where $\xi_{i j} \neq 0$ for all i, j. Since $[\mathfrak{s}, \mathfrak{s}]=\mathfrak{s}$ from $\operatorname{ad}\left(\left[e_{i}, e_{j}\right]\right) e_{0}=\xi_{i j} \operatorname{ad}\left(e_{k}\right) e_{0}$ one gets $\lambda_{k}=0$ for all k.

Let \langle,$\rangle denote an ad-invariant metric on \mathfrak{g}$ and denote $\mu_{k}=\left\langle e_{0}, e_{k}\right\rangle$. So

$$
\xi_{i j} \mu_{k}=\xi_{i j}\left\langle e_{0}, e_{k}\right\rangle=\left\langle e_{0},\left[e_{i}, e_{j}\right]\right\rangle=\left\langle\left[e_{j}, e_{0}\right], e_{i}\right\rangle=0
$$

and since $\xi_{i j} \neq 0$ it must hold $\mu_{k}=0$ for all k. Since \langle,$\rangle is non-degenerate,$ it then follows $\left\langle e_{0}, e_{0}\right\rangle \neq 0$, so that \mathfrak{r} is a non-degenerate ideal and the proof is finished.

To complete the description of all the Lie algebras of dimension four admitting ad-invariant metrics, we have the following result.
Proposition 2.5. Let \mathfrak{g} denote a real Lie algebra of dimension four which can be endowed with an ad-invariant metric. Then $\mathfrak{g}=\operatorname{span}\left\{e_{0}, e_{1}, e_{2}, e_{3}\right\}$ is isomorphic to one of the following Lie algebras:

- \mathbb{R}^{4}
- $\mathbb{R} \oplus \mathfrak{s l}(2, \mathbb{R})$
- $\mathbb{R} \oplus \mathfrak{s o}(3, \mathbb{R})$
- the oscillator Lie algebra $\mathfrak{g}_{0}=\operatorname{span}\left\{e_{0}, \cdots e_{3}\right\}$ with the non-zero Lie brackets:

$$
\begin{equation*}
\left[e_{0}, e_{1}\right]=e_{2} \quad\left[e_{0}, e_{2}\right]=-e_{1} \quad\left[e_{1}, e_{2}\right]=e_{3} \tag{3}
\end{equation*}
$$

- $\mathfrak{g}_{1}=\operatorname{span}\left\{e_{0}, \cdots, e_{3}\right\}$ with the non-zero Lie brackets:

$$
\begin{equation*}
\left[e_{0}, e_{1}\right]=e_{1} \quad\left[e_{0}, e_{2}\right]=-e_{2} \quad\left[e_{1}, e_{2}\right]=e_{3} \tag{4}
\end{equation*}
$$

Proof. Let \mathfrak{g} be a Lie algebra equipped with an ad-invariant metric \langle,$\rangle . If \mathfrak{g}$ is decomposable then \mathfrak{g} corresponds to one of the following Lie algebras: \mathbb{R}^{4}, $\mathfrak{g}=\mathbb{R} \oplus \mathfrak{s l}(2, \mathbb{R}), \mathfrak{g}=\mathbb{R} \oplus \mathfrak{s o}(3, \mathbb{R})$ (by Proposition 2.3).

Assume now \mathfrak{g} is indecomposable. From Lemma 2.4, the Lie algebra \mathfrak{g} is solvable and hence $C^{1}(\mathfrak{g}) \neq \mathfrak{g}$. By Remark $2, \mathfrak{z}(\mathfrak{g}) \subseteq C^{1}(\mathfrak{g})$ and $4=$ $\operatorname{dim} \mathfrak{z}(\mathfrak{g})+\operatorname{dim} C^{1}(\mathfrak{g}) \leq 2 \operatorname{dim} C^{1}(\mathfrak{g})$. It follows that $\operatorname{dim} \mathfrak{z}(\mathfrak{g})=1$ or $\operatorname{dim} \mathfrak{z}(\mathfrak{g})=$ 2. But since we cannot have $\mathfrak{z}(\mathfrak{g})=C^{1}(\mathfrak{g})$ (in dimension four), it should be $\operatorname{dim} \mathfrak{z}(\mathfrak{g})=1$ and $\operatorname{dim} C^{1}(\mathfrak{g})=3$.

Let e_{3} be a generator of $\mathfrak{z}(\mathfrak{g})$ and let $e_{0} \in \mathfrak{g}-C^{1}(\mathfrak{g})$ such that $\left\langle e_{0}, e_{3}\right\rangle=1$. Denote by $\mathfrak{m}=\operatorname{span}\left\{e_{0}, e_{3}\right\}^{\perp}$. Then $\mathfrak{m} \subseteq \mathfrak{z}(\mathfrak{g})^{\perp}=C^{1}(\mathfrak{g}), \mathfrak{m}$ is non-degenerate and it is not difficult to see that $C^{1}(\mathfrak{g})=\mathfrak{z}(\mathfrak{g}) \oplus \mathfrak{m}$. Then there exists a basis $\left\{e_{1}, e_{2}\right\}$ of \mathfrak{m} such that the matrix of the metric in this basis takes one of the following forms

$$
B^{0}=\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right) \quad B^{1,1}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right) \quad-B^{0}=\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right)
$$

Thus, $C^{1}(\mathfrak{g})=\operatorname{span}\left\{e_{1}, e_{2}, e_{3}\right\}$ and e_{0} acts on $C^{1}(\mathfrak{g})$ by the adjoint action. Due to the ad-invariance property of \langle,$\rangle it follows that \operatorname{ad}\left(e_{0}\right) \mathfrak{m} \subseteq \mathfrak{m}$.

Assume that \mathfrak{m} has the metric given by B^{0}, hence $\operatorname{ad}\left(e_{0}\right) \in \mathfrak{s o}(2)$ for B^{0}, implying that

$$
\operatorname{ad}\left(e_{0}\right)=\left(\begin{array}{cc}
0 & -\lambda \tag{5}\\
\lambda & 0
\end{array}\right)
$$

for some $\lambda \neq 0$. In the case that the metric is given by $-B^{0}$ the same matrix is obtained for $\operatorname{ad}\left(e_{0}\right)$. Similarly $\operatorname{ad}\left(e_{0}\right) \in \mathfrak{s o}(1,1)$ for $B^{1,1}$, implying that

$$
\operatorname{ad}\left(e_{0}\right)=\left(\begin{array}{cc}
\lambda & 0 \tag{6}\\
0 & -\lambda
\end{array}\right)
$$

for some $\lambda \neq 0$.

In either case, since $\left\langle\left[e_{0}, e_{1}\right], e_{2}\right\rangle=\left\langle e_{0},\left[e_{1}, e_{2}\right]\right\rangle$ one gets that $\left[e_{1}, e_{2}\right]=$ λe_{3}.

In the basis $\left\{\frac{1}{\lambda} e_{0}, e_{1}, e_{2}, \lambda e_{3}\right\}$, the action of $\operatorname{ad}\left(\frac{1}{\lambda} e_{0}\right)$ on \mathfrak{m} is as in (5) taking $\lambda=1$ while the metric obeys the rules

$$
\begin{equation*}
1=\left\langle\frac{1}{\lambda} e_{0}, \lambda e_{3}\right\rangle=\left\langle e_{1}, e_{1}\right\rangle=\left\langle e_{2}, e_{2}\right\rangle \quad\left\langle e_{0}, e_{0}\right\rangle=\mu \in \mathbb{R} \tag{7}
\end{equation*}
$$

and this is for \mathfrak{g}_{0}. In fact, in this basis the relations of (3) are verified.
In the other case, a similar reasoning gives the results of the statement, that is, one gets the basis $\left\{e_{1}, e_{2}, e_{3}\right\}$ for the action (6) and proceeding as above one gets the Lie algebra \mathfrak{g}_{1} together with the ad-invariant metric given by:

$$
\begin{equation*}
1=\left\langle\frac{1}{\lambda} e_{0}, \lambda e_{3}\right\rangle=\left\langle e_{1}, e_{2}\right\rangle \quad\left\langle e_{0}, e_{0}\right\rangle=\mu \in \mathbb{R} \tag{8}
\end{equation*}
$$

Remark 3. The ad-invariant metric on the Lie algebra \mathfrak{g}_{0} (resp. \mathfrak{g}_{1}) can be taken with $\mu=0$. In fact, it suffices to change e_{0} by $\sqrt{\frac{2}{\mu}} e_{0}-e_{3}$ whenever $\mu>0$ and by $\sqrt{\frac{2}{-\mu}} e_{0}+e_{3}$ if $\mu<0$. This gives the following matrices for the ad-invariant metrics

$$
\mathfrak{g}_{0}:\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \tag{9}\\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right) \quad \mathfrak{g}_{1}:\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)
$$

which will be used from now on.

3. Naturally reductive metrics on the Heisenberg Lie group

Let G denote a Lie group with Lie algebra \mathfrak{g} and let $H<G$ be a closed Lie subgroup of G whose Lie algebra is denoted by \mathfrak{h}. A homogeneous pseudoRiemannian manifold ($M=G / H,\langle$,$\rangle) is said to be naturally reductive if it$ is reductive, i.e. there is a reductive decomposition

$$
\mathfrak{g}=\mathfrak{h} \oplus \mathfrak{m} \quad \text { with } \quad \operatorname{Ad}(H) \mathfrak{m} \subseteq \mathfrak{m}
$$

and

$$
\left\langle[x, y]_{\mathfrak{m}}, z\right\rangle+\left\langle y,[x, z]_{\mathfrak{m}}\right\rangle=0 \quad \text { for all } \quad x, y, z \in \mathfrak{m} .
$$

We shall say that a metric on M is naturally reductive if the conditions above are satisfied for some pair (G, H). If M is naturally reductive, the geodesics passing through the point $o \in M$ are

$$
\gamma(t)=\exp t x \cdot o \quad \text { for some } x \in \mathfrak{m}
$$

which implies that these spaces are geodesically complete. For the Heisenberg Lie group of dimension $2 n+1, \mathrm{H}_{2 n+1}(\mathbb{R})$, one has the next result.

Theorem [23]. If $\mathrm{H}_{2 n+1}(\mathbb{R})$ is endowed with a left-invariant pseudoRiemannian metric for which the center is non-degenerate, then this metric is naturally reductive.

Our aim here is to characterize the Lorentzian naturally reductive metrics on the Heisenberg Lie group of dimension three. We shall prove a converse of the result above.

Theorem 3.1. If $\mathrm{H}_{3}(\mathbb{R})$ is endowed with a naturally reductive pseudo-Riemannian left-invariant metric with pair (G, \mathbb{R}) where G has dimension four and $\mathbb{R}<G$ acts by isometric automorphisms on $\mathrm{H}_{3}(\mathbb{R})$, then the center of $\mathrm{H}_{3}(\mathbb{R})$ is non-degenerate.

Thus, the property of the center being non-degenerate characterizes the naturally reductive metrics on $\mathrm{H}_{3}(\mathbb{R})$ whenever the isometries fixing a point act by isometric isomorphisms.

As known there is a one-to-one correspondence between left-invariant pseudo-Riemannian metrics on $\mathrm{H}_{3}(\mathbb{R})$ and metrics on the corresponding Lie algebra \mathfrak{h}_{3}, which is generated by e_{1}, e_{2}, e_{3} obeying the non-trivial Lie bracket relation $\left[e_{1}, e_{2}\right]=e_{3}$. To prove the theorem above we start with the next result, which does not make use of any metric.

Lemma 3.2. Let $\mathfrak{g}=\mathbb{R} e_{0} \oplus \mathfrak{h}_{3}$ where the commutator $C^{1}(\mathfrak{g}) \subseteq \mathfrak{h}_{3}$ and the restriction of $\operatorname{ad}\left(e_{0}\right)$ to $\mathfrak{v}=\operatorname{span}\left\{e_{1}, e_{2}\right\}$ is non-singular. If $\mathfrak{m} \subset \mathfrak{g}$ is a Lie subalgebra of \mathfrak{g} which is isomorphic to \mathfrak{h}_{3} then $\mathfrak{m}=\mathfrak{h}_{3}=\operatorname{span}\left\{e_{1}, e_{2}, e_{3}\right\}$.

Proof. Let \mathfrak{m} denote a subalgebra of \mathfrak{g} such that $\mathfrak{m}=\operatorname{span}\left\{v_{1}, v_{2}, v_{3}\right\}$ with $\left[v_{1}, v_{2}\right]=v_{3}$ and $\left[v_{i}, v_{3}\right]=0$ for $i=1,2$. Take
$v_{1}=a_{0} e_{0}+w_{1}+a_{3} e_{3} \quad v_{2}=b_{0} e_{0}+w_{2}+b_{3} e_{3} \quad v_{3}=c_{0} e_{0}+w_{3}+c_{3} e_{3}$
where $w_{i} \in \operatorname{span}\left\{e_{1}, e_{2}\right\}$ for all $i=1,2,3$. Since $C^{1}(\mathfrak{g}) \subseteq \operatorname{span}\left\{e_{1}, e_{2}, e_{3}\right\}$ it follows that $c_{0}=0$. Let A denote the restriction of $\operatorname{ad}\left(e_{0}\right)$ to \mathfrak{v}, thus, we have the following equations

$$
\begin{aligned}
& v_{3}=\left[v_{1}, v_{2}\right]=A\left(a_{0} w_{2}-b_{0} w_{1}\right)+\omega\left(w_{1}, w_{2}\right) e_{3} \\
& 0=\left[v_{1}, v_{3}\right]=a_{0} A w_{3}+\omega\left(w_{1}, w_{3}\right) e_{3} \\
& 0=b_{0} A w_{3}+\omega\left(w_{2}, w_{3}\right) e_{3} .
\end{aligned}
$$

If either a_{0} or b_{0} is different from zero, then $w_{3}=0$ and so $v_{3}=c_{3} e_{3}$. Therefore $a_{0} w_{2}-b_{0} w_{1}=0$ and so we can write w_{2} in terms of w_{1} or w_{1} in terms of w_{2} depending on whether $a_{0} \neq 0$ or $b_{0} \neq 0$, respectively. It is not hard to see that putting these conditions in v_{1}, v_{2}, v_{3} then one gets that the set v_{1}, v_{2}, v_{3} is linearly dependent which is a contradiction. So $a_{0}=b_{0}=0$ and $\mathfrak{m}=\operatorname{span}\left\{e_{1}, e_{2}, e_{3}\right\}$.

Let $\mathrm{H}_{3}(\mathbb{R})$ denote the Heisenberg Lie group equipped with a left-invariant Lorentzian metric with non-degenerate center. Now if G is a Lie group acting by isometries on $\mathrm{H}_{3}(\mathbb{R})$ which is naturally reductive with pair (G, \mathbb{R}), then G is a semidirect extension of $\mathrm{H}_{3}(\mathbb{R})$ and $\mathbb{R}[10,11]$ and G admits a bi-invariant metric (according to Theorem 2.2 in [22]). Hence, the Lie algebra of G should be a solvable Lie algebra of dimension four admitting an ad-invariant metric,
therefore either \mathfrak{g}_{0} or \mathfrak{g}_{1} of the previous section. Thus, Theorem 3.1 follows from the next result and the previous lemma.

Lemma 3.3. Let \mathfrak{h}_{3} denote the Heisenberg Lie algebra of dimension three equipped with a naturally reductive metric with pair $\left(\mathfrak{g}_{i}, \mathbb{R}\right) i=0,1$ where $\mathbb{R} \simeq$ $\mathfrak{g}_{i} / \mathfrak{h}_{3}$ acts by skew adjoint derivations on \mathfrak{h}_{3}. Then the center of \mathfrak{h}_{3} is nondegenerate.

Proof. Let $v \in \mathfrak{g}_{i}$ be an element which is not in $\operatorname{span}\left\{e_{1}, e_{2}, e_{3}\right\}$. Thus, $\mathfrak{g}_{i}=$ $\mathbb{R} v \oplus \mathfrak{h}_{3}$ and we may assume $v=e_{0}+\alpha e_{1}+\beta e_{2}+\gamma e_{3}$ and $\left[v, \mathfrak{h}_{3}\right] \subseteq \mathfrak{h}_{3}$.

For \mathfrak{g}_{0} the action of $\operatorname{ad}(v)$ is given by

$$
\operatorname{ad}(v) e_{1}=e_{2}-\beta e_{3} \quad \operatorname{ad}(v) e_{2}=-e_{1}+\alpha e_{3} \quad \operatorname{ad}(v) e_{3}=0
$$

Let Q denote a metric on \mathfrak{h}_{3} such that $b_{i j}=Q\left(e_{i}, e_{j}\right)$ and for which $\operatorname{ad}(v)$ is skew adjoint. The condition $Q(\operatorname{ad}(v) x, y)=-Q(x, \operatorname{ad}(v) y)$ for all $x, y \in \mathfrak{h}_{3}$ gives rise to a system of equations on the coefficients $b_{i j}$:

$$
\begin{array}{lll}
b_{12}-\beta b_{13}=0 & b_{22}-\beta b_{13}=b_{11}-\alpha b_{13} & b_{23}-\beta b_{33}=0 \\
b_{12}-\alpha b_{23}=0 & b_{13}-\alpha b_{33}=0
\end{array}
$$

It is not hard to see that if we write $B=\left(b_{i j}\right)$ then $\operatorname{det} B \neq 0$ implies $b_{33} \neq 0$, that is Q non-degenerate implies the center of \mathfrak{h}_{3} non-degenerate.

This also applies for \mathfrak{g}_{1}. One writes down the action of $\operatorname{ad}(v)$ and from $Q(\operatorname{ad}(v) x, y)=-Q(x, \operatorname{ad}(v) y)$ the equations follow

$$
\begin{array}{lll}
b_{11}-\beta b_{13}=0 & b_{12}-\beta b_{23}=b_{12}-\alpha b_{13} & b_{13}-\beta b_{33}=0 \\
b_{22}-\alpha b_{23}=0 & b_{23}-\alpha b_{33}=0 .
\end{array}
$$

In this case also $b_{33} \neq 0$ says that the center of \mathfrak{h}_{3} must be non-degenerate.
The simply connected Lie group $\mathrm{H}_{3}(\mathbb{R})$ with Lie algebra \mathfrak{h}_{3} can be realized on the usual differentiable structure of \mathbb{R}^{3} together with the next multiplication

$$
(v, z) \cdot\left(v^{\prime}, z^{\prime}\right)=\left(v+v^{\prime}, z+z^{\prime}+\frac{1}{2} v^{T} J v^{\prime}\right)
$$

where $v, v^{\prime} \in \mathbb{R}^{2}, v^{T}$ denotes the transpose matrix of the 2×1 matrix v, and J denotes the matrix given by

$$
J=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) .
$$

A basis of left-invariant vector fields at every point $(x, y, z) \in \mathbb{R}^{3}$ satisfying the non-trivial Lie bracket relation $\left[X_{1}, X_{2}\right]=X_{3}$ is given by

$$
\begin{aligned}
X_{1} & =\partial_{x}-\frac{y}{2} \partial_{z} \\
X_{2} & =\partial_{y}+\frac{x}{2} \partial_{z} \\
X_{3} & =\partial_{z} .
\end{aligned}
$$

Two non-isometric Lorentzian metrics on $\mathrm{H}_{3}(\mathbb{R})$ can be taken by defining

$$
\begin{gather*}
1=\left\langle X_{1}, X_{1}\right\rangle=\left\langle X_{2}, X_{2}\right\rangle=-\left\langle X_{3}, X_{3}\right\rangle \tag{10}\\
1=\left\langle X_{1}, X_{2}\right\rangle=\left\langle X_{3}, X_{3}\right\rangle \tag{11}
\end{gather*}
$$

and the other relations are zero. Each of them is a naturally reductive pseudoRiemannian metric on $\mathrm{H}_{3}(\mathbb{R})$ with the following expression in the usual coordinates of \mathbb{R}^{3} :

$$
\begin{aligned}
& h_{1}=\left(1-\frac{y^{2}}{4}\right) d x^{2}+\left(1-\frac{x^{2}}{4}\right) d y^{2}-d z^{2}+\frac{1}{4} x y d x d y-\frac{y}{2} d x d z+\frac{x}{2} d y d z \\
& h_{2}=\frac{y^{2}}{4} d x^{2}+\frac{x^{2}}{4} d y^{2}+d z^{2}+\frac{1}{4} x y d x d y+\frac{y}{2} d x d z-\frac{x}{2} d y d z
\end{aligned}
$$

Making use of this information one can compute several geometrical features on $\mathrm{H}_{3}(\mathbb{R})$ [23]. Recall that an algebraic Ricci soliton on $\mathrm{H}_{3}(\mathbb{R})$ is a left-invariant pseudo-Riemannian metric such that its Ricci operator Rc satisfies the equality

$$
\operatorname{Rc}(g)=c \mathrm{Id}+D \quad \text { where } c \in \mathbb{R} \text { and } D \text { is a derivation of } \mathfrak{h}_{3},
$$

that is $D: \mathfrak{h}_{3} \rightarrow \mathfrak{h}_{3}$ is a linear map which satisfies $D[x, y]=[D x, y]+[x, D y]$ for all $x, y \in \mathfrak{h}_{3}$.

A pseudo-Riemannian manifold is called locally symmetric if $\nabla R \equiv 0$, where ∇ denotes the covariant derivative with respect to the Levi-Civita connection and R denotes the curvature tensor. The Ambrose-Hicks-Cartan theorem (see for example [21, Thm. 17, Ch. 8]) states that given a complete locally symmetric pseudo-Riemannian manifold M, a linear isomorphism A : $T_{p} M \rightarrow T_{p} M$ is the differential of some isometry of M that fixes the point $p \in M$ if and only if it preserves the symmetric bilinear form that the metric induces into the tangent space and if for every $u, v, w \in T_{p} M$ the following equation holds:

$$
\begin{equation*}
R(A u, A v) A w=A R(u, v) w \tag{12}
\end{equation*}
$$

While in the Riemannian case, the isometry group of a left-invariant metric on a two-step nilpotent Lie group N is the semidirect product of N and the group of isometric automorphism, the question in the pseudoRiemannian situation is still open in the general case (see [11]). However, for a pseudo-Riemannian left-invariant metric on $\mathrm{H}_{3}(\mathbb{R})$ with non-degenerate center, the isometry group is the semidirect product $I\left(H_{3}(\mathbb{R})\right)=H_{3}(\mathbb{R}) \rtimes$ $F\left(\mathrm{H}_{3}(\mathbb{R})\right)$, where $F\left(\mathrm{H}_{3}(\mathbb{R})\right)$ denotes the isotropy subgroup at the identity, which corresponds to the isometric automorphisms, see [11].

Moreover,

- if h_{0} is a flat metric on $\mathrm{H}_{3}(\mathbb{R})$ then $\left(\mathrm{H}_{3}(\mathbb{R}), h_{0}\right)$ is a space form and hence it is isometric to \mathbb{R}_{1}^{3} [21].
- for the non-flat metrics, the action of the isotropy subgroup (of the full isometry group) at the identity element is given by isometric automorphisms [11] so that $\mathrm{I}\left(\mathrm{H}_{3}(\mathbb{R}), h_{i}\right)=\mathrm{H}_{3}(\mathbb{R}) \rtimes K_{i}, i=1,2$, where K_{i} denotes the group of $\left(h_{i}\right)$ isometric automorphisms. In [23], this group is described.

Proposition 3.4. The isometry groups for the Lorentzian left-invariant metrics on $\mathrm{H}_{3}(\mathbb{R})$ are given by

- $\mathrm{I}\left(\mathrm{H}_{3}(\mathbb{R}), h_{0}\right)=\mathbb{R}^{3} \rtimes \mathrm{O}(2,1)$,
- $\mathrm{I}\left(\mathrm{H}_{3}(\mathbb{R}), h_{1}\right)=\mathrm{H}_{3}(\mathbb{R}) \rtimes \mathrm{O}(2)$,
- $\mathrm{I}\left(\mathrm{H}_{3}(\mathbb{R}), h_{2}\right)=\mathrm{H}_{3}(\mathbb{R}) \rtimes \mathrm{O}(1,1)$.

Moreover, both Lorentzian left-invariant non-flat metrics are algebraic Ricci solitons.

Proof. The description of the isometry group for a two-step nilpotent Lie group equipped with a left-invariant metric obtained in [23] and the observations above give the proofs of the isometry groups. Notice that the connected component of the identity are G_{0} and G_{1} for h_{1} and h_{2}, respectively, (see the description of G_{0} and G_{1} in the next section).

By computing the Ricci tensor in the case of the naturally reductive metrics h_{1} and h_{2}, one verifies that the corresponding Ricci operators satisfy

$$
\begin{equation*}
\operatorname{Rc}\left(h_{1}\right)=\operatorname{Rc}\left(h_{2}\right)=\frac{3}{2} \mathrm{ld}-D \tag{13}
\end{equation*}
$$

where D is the derivation of \mathfrak{h}_{3} given by

$$
D\left(X_{1}\right)=-X_{1} \quad D\left(X_{2}\right)=-X_{2} \quad D\left(X_{3}\right)=-2 X_{3}
$$

showing that both h_{1} and h_{2} are algebraic Ricci solitons. See also [5].
Remark 4. A left-invariant Lorentzian metric on $\mathrm{H}_{3}(\mathbb{R})$ is flat if and only if the center is degenerate [16]. In [24], a non-flat Lorentzian metric with degenerate center on $\mathbb{R} \times \mathrm{H}_{3}(\mathbb{R})$ is proved to be naturally reductive and it admits an action by isometries of the free three-step nilpotent Lie group in two generators.

Left-invariant pseudo-Riemannian metrics on two-step nilpotent Lie groups are geodesically complete $[10,15]$.

Remark 5. Natural reductiveness of the Lorentzian metrics on $\mathrm{H}_{3}(\mathbb{R})$ also follows from results in $[7,8]$.

Relative to the algebraic structure of the isometry group of $\left(\mathrm{H}_{3}(\mathbb{R}), h_{0}\right)$ usual computations show that \mathfrak{h}_{3} is not an ideal of the Lie algebra of $\mathrm{I}\left(\mathrm{H}_{3}(\mathbb{R})\right.$, $\left.h_{0}\right)$, but $\mathrm{I}\left(\mathrm{H}_{3}(\mathbb{R}), h_{0}\right)=\mathrm{H}_{3}(\mathbb{R}) \mathrm{O}(2,1)$.

The results of [10] are more specific for left-invariant metrics with nondegenerate center; they were improved in [11]. These observations modify the list given in [6] to obtain the present list in Proposition 3.4.

Therefore our study here revisit previous results in [6-9] giving alternative and improved proofs.

4. Simply connected solvable Lie groups with a bi-invariant metric in dimension four

Our aim now is to describe geometrical features of the simply connected solvable Lie groups of dimension four provided with a bi-invariant metric, more precisely those corresponding to the Lie algebras \mathfrak{g}_{0} and \mathfrak{g}_{1} described in Proposition 2.5.

Recall that if G is a connected real Lie group, its Lie algebra \mathfrak{g} is identified with the Lie algebra of left-invariant vector fields on G. Assume G
is endowed with a left-invariant pseudo-Riemannian metric \langle,$\rangle . Then the$ following statements are equivalent (see [21, Ch. 11]):

1. \langle,$\rangle is right-invariant, hence bi-invariant;$
2. \langle,$\rangle is \operatorname{Ad}(G)$-invariant;
3. the inversion map $g \rightarrow g^{-1}$ is an isometry of G;
4. $\langle[X, Y], Z\rangle+\langle Y,[X, Z]\rangle=0$ for all $X, Y, Z \in \mathfrak{g}$;
5. $\nabla_{X} Y=\frac{1}{2}[X, Y]$ for all $X, Y \in \mathfrak{g}$, where ∇ denotes the Levi Civita connection;
6. the geodesics of G starting at the identity element e are the one parameter subgroups of G.

By (3), the pair $(G,\langle\rangle$,$) is a pseudo-Riemannian symmetric space. Fur-$ thermore, by computing the curvature tensor one has

$$
\begin{equation*}
R(X, Y)=-\frac{1}{4} \operatorname{ad}([X, Y]) \quad \text { for } X, Y \in \mathfrak{g} \tag{14}
\end{equation*}
$$

4.1. Structure of the Lie Groups

The action of e_{0} on \mathfrak{h}_{3} on both Lie algebras \mathfrak{g}_{0} and \mathfrak{g}_{1}, lifts to a Lie group homomorphism $\rho: \mathbb{R} \rightarrow \operatorname{Aut}\left(\mathrm{H}_{3}(\mathbb{R})\right)$ which on $(v, z) \in \mathbb{R}^{2} \oplus \mathbb{R}$ has a matrix of the form

$$
\rho(t)=\left(\begin{array}{cc}
R_{i}(t) & 0 \tag{15}\\
0 & 1
\end{array}\right) \quad i=0,1
$$

where

$$
R_{0}(t)=\left(\begin{array}{cc}
\cos t & -\sin t \tag{16}\\
\sin t & \cos t
\end{array}\right) \quad \text { for } \mathfrak{g}_{0}, \quad R_{1}(t)=\left(\begin{array}{cc}
e^{t} & 0 \\
0 & e^{-t}
\end{array}\right) \quad \text { for } \mathfrak{g}_{1}
$$

Let G_{0} and G_{1} denote the simply connected Lie groups with respective Lie algebras \mathfrak{g}_{0} and \mathfrak{g}_{1}. Then G_{0} and G_{1} are modeled on the smooth manifold \mathbb{R}^{4}, where the algebraic structure is the resulting from the semidirect product of \mathbb{R} and $\mathrm{H}_{3}(\mathbb{R})$, via ρ. Thus, on G_{i} for $i=0,1$, the multiplication is given by

$$
\begin{equation*}
(t, v, z) \cdot\left(t^{\prime}, v^{\prime}, z^{\prime}\right)=\left(t+t^{\prime}, v+R_{i}(t) v^{\prime}, z+z^{\prime}+\frac{1}{2} v^{T} J R_{i}(t) v^{\prime}\right) \tag{17}
\end{equation*}
$$

This information is useful to find a basis of the left-invariant vector fields. For G_{0} such a basis at every point $(t, x, y, z) \in \mathbb{R}^{4}$ is given by the following vector fields, each of them evaluated at (t, x, y, z) :

$$
\begin{aligned}
& X_{0}=\partial_{t} \\
& X_{1}=\cos t \partial_{x}+\sin t \partial_{y}+\frac{1}{2}(x \sin t-y \cos t) \partial_{z} \\
& X_{2}=-\sin t \partial_{x}+\cos t \partial_{y}+\frac{1}{2}(x \cos t+y \sin t) \partial_{z} \\
& X_{3}=\partial_{z}
\end{aligned}
$$

and for G_{1} it is given by

$$
\begin{aligned}
& X_{0}=\partial_{t} \\
& X_{1}=e^{t} \partial_{x}-\frac{1}{2} y e^{t} \partial_{z} \\
& X_{2}=e^{-t} \partial_{y}+\frac{1}{2} x e^{-t} \partial_{z} \\
& X_{3}=\partial_{z}
\end{aligned}
$$

These vector fields verify the relations given in (3) and (4), respectively. For every $i=0,1$ the bi-invariant metric on G_{i} induced by the adinvariant metric on \mathfrak{g}_{i} described in (9) induces on \mathbb{R}^{4} the next pseudoRiemannian metric (in the usual coordinates):

$$
\begin{array}{ll}
g_{0}=d z d t+d x^{2}+d y^{2}+\frac{1}{2}(y d x d t-x d y d t) & \text { for } G_{0} \\
g_{1}=d z d t+d x d y+\frac{1}{2}(y d x d t-x d y d t) & \text { for } G_{1}
\end{array}
$$

4.2. Geodesics

Computing the Christoffel symbols of the Levi-Civita connection for the metrics g_{0}, g_{1} (cf. [21]), a curve $\alpha(s)=(t(s), x(s), y(s), z(s))$ is a geodesic in G_{i} if its components satisfy the second-order system of differential equations:

- for G_{0}

$$
\left\{\begin{array}{l}
t^{\prime \prime}(s)=0 \\
x^{\prime \prime}(s)=-t^{\prime}(s) y^{\prime}(s) \\
y^{\prime \prime}(s)=t^{\prime}(s) x^{\prime}(s) \\
z^{\prime \prime}(s)=\frac{1}{2} t^{\prime}(s)\left(x(s) x^{\prime}(s)+y(s) y^{\prime}(s)\right)
\end{array}\right.
$$

- for G_{1}

$$
\left\{\begin{array}{l}
t^{\prime \prime}(s)=0 \\
x^{\prime \prime}(s)=t^{\prime}(s) x^{\prime}(s) \\
y^{\prime \prime}(s)=-t^{\prime}(s) y^{\prime}(s) \\
z^{\prime \prime}(s)=-\frac{1}{2} t^{\prime}(s)\left(x(s) y^{\prime}(s)+y(s) x^{\prime}(s)\right)
\end{array}\right.
$$

On the other hand, if $X_{e}=\sum_{i=0}^{3} a_{i} X_{i}(e) \in T_{e} G$, then the geodesic α through e with initial condition $\alpha^{\prime}(0)=X_{e}$ is the integral curve of the leftinvariant vector field $X=\sum_{i=0}^{3} a_{i} X_{i}$. Suppose $\alpha(s)=(t(s), x(s), y(s), z(s))$ is the curve satisfying $\alpha^{\prime}(s)=X_{\alpha(s)}$, then its coordinates are as below.

- On G_{0}, for $a_{0} \neq 0$:

$$
\begin{aligned}
t(s) & =a_{0} s, \\
x(s) & =\frac{a_{1}}{a_{0}} \sin a_{0} s+\frac{a_{2}}{a_{0}} \cos a_{0} s-\frac{a_{2}}{a_{0}} \\
y(s) & =-\frac{a_{1}}{a_{0}} \cos a_{0} s+\frac{a_{2}}{a_{0}} \sin a_{0} s+\frac{a_{1}}{a_{0}} \\
z(s) & =\frac{1}{2}\left[\left(\frac{a_{1}^{2}}{a_{0}}+\frac{a_{2}^{2}}{a_{0}}+2 a_{3}\right) s-\left(\frac{a_{2}^{2}}{a_{0}^{2}}+\frac{a_{1}^{2}}{a_{0}^{2}}\right) \sin a_{0} s\right] .
\end{aligned}
$$

If $a_{0}=0$, it is easy to see that $\alpha(s)=\left(0, a_{1} s, a_{2} s, a_{3} s\right)$ is the corresponding geodesic.

- On G_{1} for $a_{0} \neq 0$:

$$
\begin{aligned}
& t(s)=a_{0} s \\
& x(s)=\frac{a_{1}}{a_{0}} e^{a_{0} s}-\frac{a_{1}}{a_{0}}, \\
& y(s)=-\frac{a_{2}}{a_{0}} e^{-a_{0} s}+\frac{a_{2}}{a_{0}} \\
& z(s)=\left(\frac{a_{1} a_{2}}{a_{0}}+a_{3}\right) s-\frac{a_{1} a_{2}}{a_{0}^{2}} \sinh \left(a_{0} s\right) .
\end{aligned}
$$

If $a_{0}=0$ again $\alpha(s)=\left(0, a_{1} s, a_{2} s, a_{3} s\right)$ is the corresponding geodesic.
As a consequence if $X=\sum_{i=0}^{3} a_{i} X_{i}(e)$, the exponential map is

- On G_{0}, if $a_{0} \neq 0$,
$\exp (X)=\left(a_{0}, \frac{1}{a_{0}}\left(R_{0}\left(a_{0}\right) J-J\right)\left(a_{1}, a_{2}\right)^{t}, a_{3}+\frac{1}{2}\left(\frac{a_{1}^{2}}{a_{0}}+\frac{a_{2}^{2}}{a_{0}}\right)\left(1-\frac{\sin a_{0}}{a_{0}}\right)\right)$ if $a_{0}=0$,

$$
\exp (X)=\left(0, a_{1}, a_{2}, a_{3}\right)
$$

- On G_{1}, if $a_{0} \neq 0$

$$
\exp (X)=\left(a_{0}, \frac{a_{1}}{a_{0}}\left(e^{a_{0}}-1\right), \frac{a_{2}}{a_{0}}\left(1-e^{-a_{0}}\right), \frac{a_{1} a_{2}}{a_{0}}+a_{3}-\frac{a_{1} a_{2}}{a_{0}^{2}} \sinh \left(a_{0}\right)\right)
$$

if $a_{0}=0$,

$$
\exp (X)=\left(0, a_{1}, a_{2}, a_{3}\right)
$$

In both cases the geodesic passing through the point $g \in G_{i}, i=0,1$ and with derivative the left-invariant vector field X, is the translation on the left of the one-parameter group at e, that is $\gamma(s)=g \exp (s X)$ for $\exp (s X)$ given above.

4.3. Isometries

Let G be a connected Lie group with a bi-invariant metric, and let $\mathrm{I}(G)$ denote the isometry group of G. This is a Lie group when endowed with the compact-open topology. Let φ be an isometry such that $\varphi(e)=x$, for $x \neq e$. Then $L_{x^{-1}} \circ \varphi$ is an isometry which fixes the element $e \in G$. Therefore $\varphi=L_{x} \circ f$ where f is an isometry such that $f(e)=e$. Let $F(G)$ denote the isotropy subgroup of the identity e of G and let $L(G):=\left\{L_{g}: g \in G\right\}$, where L_{g} is the translation on the left by $g \in G$. Then $F(G)$ is a closed subgroup of $\mathrm{I}(G)$ and the explanation above says

$$
\begin{equation*}
\mathrm{I}(G)=L(G) F(G)=\left\{L_{g} \circ f: f \in F(G), g \in G\right\} \tag{18}
\end{equation*}
$$

Thus, $\mathrm{I}(G)$ is essentially determined by $F(G)$.
The following lemma is proved by applying Relation (12) in the Ambrose-Hicks-Cartan Theorem to the Lie group G equipped with a bi-invariant metric and whose curvature formula was given in (14). In this way, one gets a geometric proof of the next result (see [17]).

Lemma 4.1. Let G be a simply connected Lie group with a bi-invariant pseudoRiemannian metric. Then a linear isomorphism $A: \mathfrak{g} \rightarrow \mathfrak{g}$ is the differential of some isometry in $F(G)$ if and only if for all $X, Y, Z \in \mathfrak{g}$, the linear map A satisfies the following two conditions:
(i) $\langle A X, A Y\rangle=\langle X, Y\rangle$;
(ii) $A[[X, Y], Z]=[[A X, A Y], A Z]$.

Notice that if G is simply connected, every local isometry of G extends to a unique global one. Therefore the full group of isometries of G fixing the identity is isomorphic to the group of linear isometries of \mathfrak{g} that satisfy condition (ii) of Lemma 4.1. By applying this to our case, one gets the next result.

Theorem 4.2. Let G be a non-abelian, simply connected solvable Lie group of dimension four endowed with a bi-invariant metric. Then the group of isometries fixing the identity element $F(G)$ is isomorphic to:

- $(\{1,-1\} \times \mathrm{O}(2)) \ltimes \mathbb{R}^{2}$ for G_{0},
- $(\{1,-1\} \times \mathrm{O}(1,1)) \ltimes \mathbb{R}^{2}$ for G_{1}.

In particular, the connected component of the identity of $F(G)$ coincides with the group of inner automorphisms $\left\{I_{g}: G_{i} \rightarrow G_{i}, I_{g}(x)=g x g^{-1}\right\}_{g \in G_{i}}$, for $i=0,1$.

Proof. We proceed with \mathfrak{g}_{0}, the case of \mathfrak{g}_{1} follows with the same procedure.
Let $A: \mathfrak{g}_{0} \rightarrow \mathfrak{g}_{0}$ be a linear isometry that satisfies the conditions of Lemma 4.1.

Since $C^{1}\left(\mathfrak{g}_{0}\right)$ coincides with $C^{2}\left(\mathfrak{g}_{0}\right)$ it follows that $A C^{1}\left(\mathfrak{g}_{0}\right) \subseteq C^{1}\left(\mathfrak{g}_{0}\right)$. We also have $\left[C^{1}\left(\mathfrak{g}_{0}\right), C^{1}\left(\mathfrak{g}_{0}\right)\right]=\operatorname{span}\left\{e_{3}\right\}$ and from the relation $-A e_{3}=$ $\left[A e_{1},\left[A e_{1}, A e_{0}\right]\right]$ one has $A e_{3}=a_{33} e_{3}$. Thus, we may assume that in the basis $\left\{e_{0}, e_{1}, e_{2}, e_{3}\right\}$ the map A has a matrix of the form

$$
\left(\begin{array}{cccc}
a_{00} & 0 & 0 & 0 \\
a_{10} & a_{11} & a_{12} & 0 \\
a_{20} & a_{21} & a_{22} & 0 \\
a_{30} & a_{31} & a_{32} & a_{33}
\end{array}\right) .
$$

From $\left\langle A e_{0}, A e_{3}\right\rangle=1$ it follows that

$$
\begin{equation*}
a_{00} a_{33}=1 \tag{19}
\end{equation*}
$$

From $\left\langle A e_{i}, A e_{j}\right\rangle=\delta_{i j}$, for $i, j=1,2$ one gets that

$$
\tilde{A}:=\left(\begin{array}{ll}
a_{11} & a_{12} \tag{20}\\
a_{21} & a_{22}
\end{array}\right) \in \mathrm{O}(2)
$$

Now $A\left[e_{0},\left[e_{1}, e_{0}\right]\right]=\left[A e_{0},\left[A e_{1}, A e_{0}\right]\right]=A e_{0}$ implies

$$
\begin{equation*}
a_{00}^{2} a_{11}=a_{11}, \quad a_{00}^{2} a_{21}=a_{21} \tag{21}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{31}=-a_{00}\left(a_{10} a_{11}+a_{20} a_{21}\right) \tag{22}
\end{equation*}
$$

Equations (19), (20) and (21) assert

$$
\begin{equation*}
a_{00}=a_{33}= \pm 1 \tag{23}
\end{equation*}
$$

Now from $A\left[e_{0},\left[e_{2}, e_{0}\right]\right]=\left[A e_{0},\left[A e_{2}, A e_{0}\right]\right]=A e_{2}$ one has

$$
\begin{equation*}
a_{32}=-a_{00}\left(a_{10} a_{12}+a_{22} a_{20}\right) . \tag{24}
\end{equation*}
$$

Set $w=\left(a_{10}, a_{20}\right)^{T}$, from (22) and (24) it follows that $\left(a_{31}, a_{32}\right)=\mp w^{T} \widetilde{A}$.
Finally, the relation $\left\langle A e_{0}, A e_{0}\right\rangle=0$ implies $a_{30}=\mp \frac{1}{2}\|w\|^{2}$. Therefore

$$
A=\left(\begin{array}{ccc}
\pm 1 & 0 & 0 \tag{25}\\
w & \tilde{A} & 0 \\
\mp \frac{1}{2}\|w\|^{2} & \mp w^{T} \tilde{A} & \pm 1
\end{array}\right)
$$

where $w \in \mathbb{R}^{2}$ and $\tilde{A} \in \mathrm{O}(2)$. Moreover, any matrix of the form (25) verifies (i) and (ii) of Lemma 4.1. This gives a group isomorphic to $(\{1,-1\} \times \mathrm{O}(2)) \ltimes \mathbb{R}^{2}$ for which the identity component corresponds to those matrices of the form (25) with $a_{00}=a_{33}=1$ and $\widetilde{A} \in \mathrm{SO}(2)=\left\{R_{0}(t): t \in \mathbb{R}\right\}$.

On the other hand, the set of isometric automorphisms of \mathfrak{g}_{0} coincides with the set $\operatorname{Ad}\left(G_{0}\right)$, that is, the matrices of the form

$$
\operatorname{Ad}(t, v)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
J v & R_{0}(t) & 0 \\
-\frac{1}{2}\|v\|^{2} & -(J v)^{T} R_{0}(t) & 1
\end{array}\right), \quad v \in \mathbb{R}^{2}
$$

being $A(t, v)=\operatorname{Ad}(t, v, z)$ for $v=(x, y)$. By dimension and since $\operatorname{Ad}\left(G_{0}\right)$ is connected, it must coincide with the identity component.

The procedure for \mathfrak{g}_{1} is the same. In this case we obtain that in the basis $\left\{e_{0}, \cdots, e_{3}\right\}$, the matrix of a linear isometry of \mathfrak{g}_{1} that satisfies the conditions of Lemma 4.1 is of the form

$$
A=\left(\begin{array}{ccc}
\pm 1 & 0 & 0 \tag{26}\\
w & \tilde{A} & 0 \\
\mp \frac{1}{2}\|w\|^{2} & \mp w^{T} \tilde{J} \tilde{A} & \pm 1
\end{array}\right)
$$

with $w=(x, y)^{T} \in \mathbb{R}^{2},\|w\|^{2}=2 x y, \tilde{A} \in \mathrm{O}(1,1)$ and $\tilde{J}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$.
The matrix $A(t, v)$ of $\operatorname{Ad}(t, v, z)$ with $v=(x, y)$ is of the form (26) with $a_{00}=1, w=(-x, y)$ and $\tilde{A}=R_{1}(t)$.

Remark 6. For G_{0} compare with [3]. In [11], one can see that at the connected component of the identity one has $\mathrm{I}_{0}\left(G_{0}\right)=G_{0} \rtimes \operatorname{Inn}\left(G_{0}\right)$ while the semidirect structure is no longer true for the full isometry group $\mathrm{I}\left(G_{0}\right)=G_{0} F\left(G_{0}\right)$ as in (18).

Acknowledgments

The authors specially thank the referee for the suggestions to get an improved version of the original work.

References

[1] Aitbenhaddou, M., Boucetta, M., Lebzioui H.: Left-invariant Lorentzian flat metrics on Lie groups. J. Lie Theory 22(1), 269-289 (2012) (arXiv:1103.0650v1 (2011))
[2] Boucetta, M.: Ricci flat left invariant Lorentzian metrics on 2-step nilpotent Lie groups. arXiv:0910.2563 (2009)
[3] Bourseau, F.: Die Isometrien der Oszillatorgruppe und einige Ergebnisse über Prämorphismen Liescher Algebren. Diplomarbeit, Fak. der Math., Univ. Bielefeld (1989)
[4] Baum, H., Kath, I.: Doubly extended Lie groups - curvature, holonomy and parallel spinors. Differ. Geom. Appl. 19(3), 253-280 (2003)
[5] Batat, W.; Onda, K.: Algebraic Ricci Solitons of three-dimensional Lorentzian Lie groups. arxiv 1112.2455v2 (2012)
[6] Batat, W., Rahmani, S.: Isometries, Geodesics and Jacobi Fields of Lorentzian Heisenberg Group. Mediterr. J. Math. 8, 411-430 (2011)
[7] Calvaruso, G.: Homogeneous structures on three dimensional Lorentzian Lie manifolds. J. Geom. Phys. 57, 1279-1291 (2007)
[8] Calvaruso, G., Marinosci, R.A.: Homogeneous geodesics of three dimensional unimodular Lorentzian Lie groups. Mediterr. J. Math. 3, 467-481 (2006)
[9] Calvaruso, G., Marinosci, R.A.: Homogeneous geodesics of non unimodular Lorentzian Lie groups and naturally Lorentzian spaces in dimension three. Adv. Geom. 8, 473-489 (2008)
[10] Cordero, L., Parker, P.: Isometry groups of pseudoriemannian 2-step nilpotent Lie groups. Houston J. Math. 35(1), 49-72 (2009)
[11] del Barco, V., Ovando, G.: Isometric actions on pseudo-Riemannian nilmanifolds. Ann. Global Geom. Anal. arXiv:1303.4450 (2013, to appear)
[12] Dusek, Z.: Survey on homogeneous geodesics. Note Mat. 1(suppl. no. 1), 147168 (2008)
[13] Favre, G., Santharoubane, L.: Symmetric, invariant, non-degenerate bilinear form on a Lie algebra. J. of Algebra 105, 451-464 (1987)
[14] Figueroa O'Farrill, J., Meessen, P., Philip, S.: Supersymmetry and homogeneity of M-theory backgrounds. Class. Quant. Grav. 22(1), 207-226 (2005)
[15] Guediri, M.: Sur la complétude des pseudo-métriques invariantes à gauche sur les groupes de Lie nilpotents. Rend. Sem. Mat. Univ. Pol. Torino 52, 371376 (1994)
[16] Guediri, M.: On the nonexistence of closed timelike geodesics in flat Lorentz 2-step nilmanifolds. Trans. AMS 355(2), 775-786 (2003)
[17] Müller, D.: Isometries of bi-invariant pseudo-Riemannian metrics on Lie groups. Geom. Dedicata 29(1), 65-96 (1989)
[18] Medina, A., Revoy, P.: Algèbres de Lie et produit scalaire invariant (French) [Lie algebras and invariant scalar products]. Ann. Sci. École Norm. Sup. (4) 18(3), 553-561 (1985)
[19] Meessen, P.: Homogeneous Lorentzian spaces whose null-geodesics are canonically homogeneous. Lett. Math. Phys. 75, 209-212 (2006)
[20] Nomizu, K.: Left-invariant Lorentz metrics on Lie groups. Osaka J. Math 16(1), 143-150 (1979)

On the Isometry Groups of Lorentzian Metrics

[21] O'Neill, B.: Semi-Riemannian geometry with applications to relativity. Academic Press (1983)
[22] Ovando, G.: Naturally reductive pseudo-Riemannian spaces. J. Geom. Phys. 61, 157-171 (2011)
[23] Ovando, G.: Naturally reductive pseudo Riemannian 2-step nilpotent Lie groups. Houston J. Math. 39(1), 147-167 (2013)
[24] Ovando, G.: Examples of naturally reductive pseudo-Riemannian Lie groups. AIP Conference Proc. 1360, 157-163 (2011)
[25] Rahmani, S.: Métriques de Lorentz sur les groupes de Lie unimodulaires de dimension 3. J. Geom. Phys. 9, 295-302 (1992)
[26] Rahmani, N., Rahmani, S.: Lorentzian Geometry of the Heisenberg Group. Geom. Dedicata 118, 133-140 (2006)
V. del Barco, G. P. Ovando, and F. Vittone

Depto de Matemática
ECEN-FCEIA, Universidad Nacional de Rosario
Pellegrini 250
2000 Rosario, Santa Fe, Argentina
e-mail: gabriela@fceia.unr.edu.ar
V. del Barco
e-mail: delbarc@fceia.unr.edu.ar
F. Vittone
e-mail: vittone@fceia.unr.edu.ar
Received: November 14, 2012.
Accepted: May 16, 2013.

[^0]: V. del Barco and F. Vittone: Universidad Nacional de Rosario, with CONICET fellowship. G. Ovando: CONICET and Universidad Nacional de Rosario.

 Work partially supported by SCyT-U. N. Rosario, ANPCyT, CONICET.

