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On the Isometry Groups of Invariant
Lorentzian Metrics on the Heisenberg
Group
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Abstract. This work concerns the invariant Lorentzian metrics on the
Heisenberg Lie group of dimension three H3(R) and the bi-invariant
metrics on the solvable Lie groups of dimension four. We start with
the indecomposable Lie groups of dimension four admitting bi-invariant
metrics and which act on H3(R) by isometries and we study some geo-
metrical features on these spaces. On H3(R), we prove that the property
of the metric being proper naturally reductive is equivalent to the prop-
erty of the center being non-degenerate. These metrics are Lorentzian
algebraic Ricci solitons.
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1. Introduction

Homogeneous manifolds constitute the goal of several modern researches in
pseudo-Riemannian geometry, for instance Lorentzian spaces for which all
null geodesics are homogeneous became relevant in physics [14,19]. This fact
motivated several studies on g.o. spaces in the last years, see for instance [7–
9,12] and their references. Symmetric pseudo-Riemannian spaces and three-
dimensional Lie groups equipped with a left-invariant Lorentzian metric in-
clude all the possible connected, simply connected, complete homogeneous
Lorentzian manifolds [7].

In the case of the Heisenberg Lie group of dimension three H3(R), it
was proved in [25] that there are three classes of left-invariant Lorentzian
metrics, and only one of them is flat (see also [20]), which is characterized by
the property of the center being degenerate.
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In this work, we concentrate the attention to the non-flat metrics on
H3(R) and their isometry groups. According to [23] any left-invariant metric
on a Heisenberg Lie group, for which the center is non-degenerate, is naturally
reductive, so these spaces are geodesically complete and non-flat. Here, we
prove a partial converse to that result: Any naturally reductive Lorentzian
metric on H3(R) admitting an action by isometric isomorphisms of a one-
dimensional group, restricts to a metric on the center.

Thus, for any left-invariant Lorentzian metric on H3(R), the following
statements are equivalent:

(i) non-flat metric,
(ii) non-degenerate center,
(iii) proper naturally reductive metric,

where proper means non-symmetric. The first equivalence (i) ⇔ (ii) follows
from Theorem 1 in [16]. On the other hand, H3(R) equipped with the left-
invariant metric which is flat is a space form hence isometric to R

3
1 [21]. The

statement above does not hold in higher dimensions: a non-flat left-invariant
Lorentzian metric with degenerate center on R × H3(R) is proved to be nat-
urally reductive in [24]. Properties of flat or Ricci-flat Lorentzian metrics
were investigated for instance in [1,2,16] and references therein. Here, we
also compute the corresponding isometry groups following results on nat-
urally reductive metrics in [23] (comparing with [6]) and we see that the
non-flat metrics are algebraic Ricci solitons (see Ricci solitons on Lorentzian
Lie groups of dimension three in [5]).

The study of these naturally reductive non-flat metrics on H3(R) is mo-
tivated by the results on [22], which state that a naturally reductive pseudo-
Riemannian space admits a transitive action by isometries of a Lie group
equipped with a bi-invariant metric. Hence, we start with the classification
of all Lie algebras up to dimension four admitting an ad-invariant metric.
It is important to remark that the method used here is constructive and
independent of the classification of low-dimensional Lie algebras.

So a naturally reductive Lorentzian metric on H3(R) admits an action
by isometries of a Lie group G with a bi-invariant metric. If G has dimension
four, it corresponds to one of the Lie algebras obtained before. This is a key
point in the proof of the equivalence stated above.

Finally, we complete the work by investigating the geometry of the bi-
invariant metrics of the solvable Lie groups G0 and G1, which are associated
to the non-flat metrics on H3(R). We compute the isometry groups I(G0) and
I(G1) in the aim of establishing a relationship between them and G0 and G1

as isometry groups of H3(R). Also geodesics are described.

2. Lie algebras with ad-invariant metrics up to dimension four

In this section, we revisit the Lie algebras of dimension d ≤ 4 that can be
furnished with an ad-invariant metric. The proofs given here are constructive
and they do not make use of the double extension procedure [4,13,18].
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Let g be a real Lie algebra. A symmetric bilinear form 〈 , 〉 on g is called
ad-invariant if the following condition holds:

〈adX Y,Z〉 + 〈Y, adX Z〉 = 0 for all X,Y,Z ∈ g.

Whenever 〈 , 〉 is non-degenerate, the symmetric bilinear form is just called
a metric.

Example 2.1. The Killing form is an ad-invariant symmetric bilinear form on
any Lie algebra g, which is non-degenerate if g is semisimple. Moreover, if g
is simple any ad-invariant metric on g is a non-zero multiple of the Killing
form.

Recall that the central descending series {Cr(g)} and central ascending
series {Cr(g)} of a Lie algebra g, are for r ≥ 0, respectively, given by the
ideals

C0(g) = g C0(g) = 0
Cr(g) = [g, Cr−1(g)] Cr(g) = {X ∈ g : [X, g] ⊆ Cr−1(g)}.

Fixing a subspace m of g, its orthogonal subspace is defined as usual by

m⊥ = {X ∈ g : 〈X,Y 〉 = 0, ∀ Y ∈ m}.

The next result follows by applying the definitions above and an induc-
tive procedure.

Lemma 2.2. Let (g, 〈 , 〉) denote a Lie algebra endowed with an ad-invariant
metric.
1. If h is an ideal in g then h⊥ is also an ideal of g.
2. Cr(g) = (Cr(g))⊥ for all r ≥ 0.

Notice that if the metric is indefinite, for any subspace m the decompo-
sition m + m⊥ is not necessarily a direct sum. Nevertheless, the next formula
holds

dim g = dim Cr(g) + dimCr(g) ∀r ≥ 0 (1)

and, in particular,

dim g = dim C1(g) + dim z(g) (2)

where z(g) denotes the center of g. Moreover,
• if m ⊆ C1(g) is a vector subspace such that C1(g) = (z(g)∩C1(g))⊕m,

then m is non-degenerate;
• if m′ ⊆ z(g) is a vector subspace such that z(g) = (z(g) ∩ C1(g)) ⊕ m′,

then m′ is non-degenerate.

Remark 1. Suppose g admits an ad-invariant metric and z(g) �= 0. Then as
said above any complementary space z̃ such that z(g) = z̃ ⊕ (

z(g) ∩ C1(g)
)

is
non-degenerate. It follows that g = z̃ ⊕ g̃ is a direct sum of non-degenerate
ideals where g̃ = z̃⊥ each of them having ad-invariant metrics. In addition
z(g̃) = z(g) ∩ C1(g).

Now suppose g is solvable. Then by (2) it has non-trivial center. If
moreover g is non-abelian then both C1(g) and z(g) are non-trivial and
C1(g) ∩ z(g) �= 0. In fact, using the decomposition described above g = z̃ ⊕ g̃
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where g̃ turns to be a solvable Lie algebra with an ad-invariant metric. Then
its center z(g̃) = z(g) ∩ C1(g) is not trivial.

Proposition 2.3. Let g denote a real Lie algebra of dimension two or three. If
it can be endowed with an ad-invariant metric, then

• in dimension two g is abelian and
• in dimension three g is abelian or simple.

Proof. Assume first that g has dimension two. Then it is either abelian or
isomorphic to the solvable Lie algebra spanned by the vectors X,Y with
[X,Y ] = Y . Since the center of this solvable Lie algebra is trivial, it cannot
be equipped with an ad-invariant metric.

Assume now that g has dimension 3. It is well known that it must be
either solvable or simple. If it is abelian or simple, it admits an ad-invariant
metric (see Example 2.1).

Suppose now g is a non-abelian solvable Lie algebra equipped with an
ad-invariant bilinear form 〈 , 〉. Since z(g) ∩ C1(g) is non-trivial (see Remark
1), there exist X,Y ∈ g such that [X,Y ] = Z ∈ C1(g)∩z(g). It is not difficult
to see that the vectors X,Y,Z form a basis of g. Since Z ∈ C1(g)∩ (

C1(g)
)⊥

then 〈Z,Z〉 = 0. Furthermore,

〈Z,X〉 = 〈[X,Y ],X〉 = −〈Y, [X,X]〉 = 0

and in the same way one gets 〈Z, Y 〉 = 0. Thus, any ad-invariant bilinear
form on g must be degenerate. �

A Lie algebra (g, 〈 , 〉) is called indecomposable if it has no non-degenerate
ideals.

Observe that if a Lie algebra g with an ad-invariant metric admits a non-
degenerate ideal j, then j⊥ is also a non-degenerate ideal and so g = j ⊕ j⊥.

Remark 2. By Remark 1 if (g, 〈 , 〉) is indecomposable and with non-trivial
center, then the center is contained in the commutator z(g) ⊆ C1(g).

Lemma 2.4. Let g denote a Lie algebra of dimension four furnished with an
ad-invariant metric. If it is non-solvable then it is decomposable.

Proof. Let g = r ⊕ s be a Levi decomposition of g, where r denotes the
radical. Since g is not solvable dim r < 4. Moreover, since there are no simple
Lie algebras of dimension one or two, it holds dim r = 1 and s is either sl(2)
or so(3). In every case, the action s → Der(r) is trivial. In fact, let r = Re0

and s = span{e1, e2, e3}.
Assume [ei, e0] = λie0. For all i, j = 1, 2, 3 there exist ξij ∈ R−{0} such

that [ei, ej ] = ξijek for some k = 1, 2, 3 (see the Lie brackets in sl(2) or so(3))
and where ξij �= 0 for all i, j. Since [s, s] = s from ad([ei, ej ])e0 = ξij ad(ek)e0

one gets λk = 0 for all k.
Let 〈 , 〉 denote an ad-invariant metric on g and denote μk = 〈e0, ek〉.

So

ξijμk = ξij〈e0, ek〉 = 〈e0, [ei, ej ]〉 = 〈[ej , e0], ei〉 = 0
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and since ξij �= 0 it must hold μk = 0 for all k. Since 〈 , 〉 is non-degenerate,
it then follows 〈e0, e0〉 �= 0, so that r is a non-degenerate ideal and the proof
is finished. �

To complete the description of all the Lie algebras of dimension four
admitting ad-invariant metrics, we have the following result.

Proposition 2.5. Let g denote a real Lie algebra of dimension four which
can be endowed with an ad-invariant metric. Then g = span{e0, e1, e2, e3} is
isomorphic to one of the following Lie algebras:

• R
4

• R ⊕ sl(2, R)
• R ⊕ so(3, R)
• the oscillator Lie algebra g0 = span{e0, · · · e3} with the non-zero Lie

brackets:

[e0, e1] = e2 [e0, e2] = −e1 [e1, e2] = e3 (3)

• g1 = span{e0, · · · , e3} with the non-zero Lie brackets:

[e0, e1] = e1 [e0, e2] = −e2 [e1, e2] = e3. (4)

Proof. Let g be a Lie algebra equipped with an ad-invariant metric 〈 , 〉. If g
is decomposable then g corresponds to one of the following Lie algebras: R

4,
g = R ⊕ sl(2, R), g = R ⊕ so(3, R) (by Proposition 2.3).

Assume now g is indecomposable. From Lemma 2.4, the Lie algebra
g is solvable and hence C1(g) �= g. By Remark 2, z(g) ⊆ C1(g) and 4 =
dim z(g)+dim C1(g) ≤ 2 dim C1(g). It follows that dim z(g) = 1 or dim z(g) =
2. But since we cannot have z(g) = C1(g) (in dimension four), it should be
dim z(g) = 1 and dimC1(g) = 3.

Let e3 be a generator of z(g) and let e0 ∈ g−C1(g) such that 〈e0, e3〉 = 1.
Denote by m = span{e0, e3}⊥. Then m ⊆ z(g)⊥ = C1(g), m is non-degenerate
and it is not difficult to see that C1(g) = z(g) ⊕ m. Then there exists a basis
{e1, e2} of m such that the matrix of the metric in this basis takes one of the
following forms

B0 =
(

1 0
0 1

)
B1,1 =

(
0 1
1 0

)
− B0 =

(−1 0
0 −1

)
.

Thus, C1(g) = span{e1, e2, e3} and e0 acts on C1(g) by the adjoint action.
Due to the ad-invariance property of 〈 , 〉 it follows that ad(e0)m ⊆ m.

Assume that m has the metric given by B0, hence ad(e0) ∈ so(2) for
B0, implying that

ad(e0) =
(

0 −λ
λ 0

)
(5)

for some λ �= 0. In the case that the metric is given by −B0 the same matrix
is obtained for ad(e0). Similarly ad(e0) ∈ so(1, 1) for B1,1, implying that

ad(e0) =
(

λ 0
0 −λ

)
(6)

for some λ �= 0.
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In either case, since 〈[e0, e1], e2〉 = 〈e0, [e1, e2]〉 one gets that [e1, e2] =
λe3.

In the basis { 1
λe0, e1, e2, λe3}, the action of ad( 1

λe0) on m is as in (5)
taking λ = 1 while the metric obeys the rules

1 =
〈

1
λ

e0, λe3

〉
= 〈e1, e1〉 = 〈e2, e2〉 〈e0, e0〉 = μ ∈ R (7)

and this is for g0. In fact, in this basis the relations of (3) are verified.
In the other case, a similar reasoning gives the results of the statement,

that is, one gets the basis {e1, e2, e3} for the action (6) and proceeding as
above one gets the Lie algebra g1 together with the ad-invariant metric given
by:

1 =
〈

1
λ

e0, λe3

〉
= 〈e1, e2〉 〈e0, e0〉 = μ ∈ R. (8)

�

Remark 3. The ad-invariant metric on the Lie algebra g0 (resp. g1) can be
taken with μ = 0. In fact, it suffices to change e0 by

√
2
μe0 − e3 whenever

μ > 0 and by
√

2
−μe0 + e3 if μ < 0. This gives the following matrices for the

ad-invariant metrics

g0 :

⎛

⎜
⎜
⎝

0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

⎞

⎟
⎟
⎠ g1 :

⎛

⎜
⎜
⎝

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞

⎟
⎟
⎠ (9)

which will be used from now on.

3. Naturally reductive metrics on the Heisenberg Lie group

Let G denote a Lie group with Lie algebra g and let H < G be a closed Lie
subgroup of G whose Lie algebra is denoted by h. A homogeneous pseudo-
Riemannian manifold (M = G/H, 〈 , 〉) is said to be naturally reductive if it
is reductive, i.e. there is a reductive decomposition

g = h ⊕ m with Ad(H)m ⊆ m

and

〈[x, y]m, z〉 + 〈y, [x, z]m〉 = 0 for all x, y, z ∈ m.

We shall say that a metric on M is naturally reductive if the conditions
above are satisfied for some pair (G,H). If M is naturally reductive, the
geodesics passing through the point o ∈ M are

γ(t) = exp tx · o for some x ∈ m,

which implies that these spaces are geodesically complete. For the Heisenberg
Lie group of dimension 2n + 1,H2n+1(R), one has the next result.
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Theorem [23]. If H2n+1(R) is endowed with a left-invariant pseudo-
Riemannian metric for which the center is non-degenerate, then this met-
ric is naturally reductive.

Our aim here is to characterize the Lorentzian naturally reductive met-
rics on the Heisenberg Lie group of dimension three. We shall prove a converse
of the result above.

Theorem 3.1. If H3(R) is endowed with a naturally reductive pseudo-Rieman-
nian left-invariant metric with pair (G, R) where G has dimension four and
R < G acts by isometric automorphisms on H3(R), then the center of H3(R)
is non-degenerate.

Thus, the property of the center being non-degenerate characterizes the
naturally reductive metrics on H3(R) whenever the isometries fixing a point
act by isometric isomorphisms.

As known there is a one-to-one correspondence between left-invariant
pseudo-Riemannian metrics on H3(R) and metrics on the corresponding Lie
algebra h3, which is generated by e1, e2, e3 obeying the non-trivial Lie bracket
relation [e1, e2] = e3. To prove the theorem above we start with the next
result, which does not make use of any metric.

Lemma 3.2. Let g = Re0 ⊕ h3 where the commutator C1(g) ⊆ h3 and the
restriction of ad(e0) to v = span{e1, e2} is non-singular. If m ⊂ g is a Lie
subalgebra of g which is isomorphic to h3 then m = h3 = span{e1, e2, e3}.
Proof. Let m denote a subalgebra of g such that m = span{v1, v2, v3} with
[v1, v2] = v3 and [vi, v3] = 0 for i = 1, 2. Take

v1 = a0e0 + w1 + a3e3 v2 = b0e0 + w2 + b3e3 v3 = c0e0 + w3 + c3e3

where wi ∈ span{e1, e2} for all i = 1, 2, 3. Since C1(g) ⊆ span{e1, e2, e3} it
follows that c0 = 0. Let A denote the restriction of ad(e0) to v, thus, we have
the following equations

v3 = [v1, v2] = A(a0w2 − b0w1) + ω(w1, w2)e3

0 = [v1, v3] = a0Aw3 + ω(w1, w3)e3

0 = b0Aw3 + ω(w2, w3)e3.

If either a0 or b0 is different from zero, then w3 = 0 and so v3 = c3e3.
Therefore a0w2 − b0w1 = 0 and so we can write w2 in terms of w1 or w1 in
terms of w2 depending on whether a0 �= 0 or b0 �= 0, respectively. It is not
hard to see that putting these conditions in v1, v2, v3 then one gets that the
set v1, v2, v3 is linearly dependent which is a contradiction. So a0 = b0 = 0
and m = span{e1, e2, e3}. �

Let H3(R) denote the Heisenberg Lie group equipped with a left-invariant
Lorentzian metric with non-degenerate center. Now if G is a Lie group acting
by isometries on H3(R) which is naturally reductive with pair (G, R), then G
is a semidirect extension of H3(R) and R [10,11] and G admits a bi-invariant
metric (according to Theorem 2.2 in [22]). Hence, the Lie algebra of G should
be a solvable Lie algebra of dimension four admitting an ad-invariant metric,
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therefore either g0 or g1 of the previous section. Thus, Theorem 3.1 follows
from the next result and the previous lemma.

Lemma 3.3. Let h3 denote the Heisenberg Lie algebra of dimension three
equipped with a naturally reductive metric with pair (gi, R) i=0,1 where R �
gi/h3 acts by skew adjoint derivations on h3. Then the center of h3 is non-
degenerate.

Proof. Let v ∈ gi be an element which is not in span{e1, e2, e3}. Thus, gi =
Rv ⊕ h3 and we may assume v = e0 + αe1 + βe2 + γe3 and [v, h3] ⊆ h3.

For g0 the action of ad(v) is given by

ad(v)e1 = e2 − βe3 ad(v)e2 = −e1 + αe3 ad(v)e3 = 0.

Let Q denote a metric on h3 such that bij = Q(ei, ej) and for which ad(v) is
skew adjoint. The condition Q(ad(v)x, y) = −Q(x, ad(v)y) for all x, y ∈ h3

gives rise to a system of equations on the coefficients bij :

b12 − βb13 = 0 b22 − βb13 = b11 − αb13 b23 − βb33 = 0
b12 − αb23 = 0 b13 − αb33 = 0.

It is not hard to see that if we write B = (bij) then detB �= 0 implies b33 �= 0,
that is Q non-degenerate implies the center of h3 non-degenerate.

This also applies for g1. One writes down the action of ad(v) and from
Q(ad(v)x, y) = −Q(x, ad(v)y) the equations follow

b11 − βb13 = 0 b12 − βb23 = b12 − αb13 b13 − βb33 = 0
b22 − αb23 = 0 b23 − αb33 = 0.

In this case also b33 �= 0 says that the center of h3 must be non-degenerate. �
The simply connected Lie group H3(R) with Lie algebra h3 can be real-

ized on the usual differentiable structure of R
3 together with the next multi-

plication

(v, z) · (v′, z′) =
(

v + v′, z + z′ +
1
2
vT Jv′

)
,

where v, v′ ∈ R
2, vT denotes the transpose matrix of the 2×1 matrix v, and

J denotes the matrix given by

J =
(

0 1
−1 0

)
.

A basis of left-invariant vector fields at every point (x, y, z) ∈ R
3 satis-

fying the non-trivial Lie bracket relation [X1,X2] = X3 is given by

X1 = ∂x − y

2
∂z

X2 = ∂y +
x

2
∂z

X3 = ∂z.

Two non-isometric Lorentzian metrics on H3(R) can be taken by defining

1 = 〈X1,X1〉 = 〈X2,X2〉 = −〈X3,X3〉 (10)
1 = 〈X1,X2〉 = 〈X3,X3〉 (11)
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and the other relations are zero. Each of them is a naturally reductive pseudo-
Riemannian metric on H3(R) with the following expression in the usual
coordinates of R

3:

h1 =
(
1 − y2

4

)
dx2 +

(
1 − x2

4

)
dy2 − dz2 + 1

4xy dxdy − y

2
dxdz +

x

2
dydz

h2 =
y2

4
dx2 +

x2

4
dy2 + dz2 +

1
4
xy dxdy +

y

2
dxdz − x

2
dydz.

Making use of this information one can compute several geometrical
features on H3(R) [23]. Recall that an algebraic Ricci soliton on H3(R) is
a left-invariant pseudo-Riemannian metric such that its Ricci operator Rc
satisfies the equality

Rc(g) = c Id + D where c ∈ R and D is a derivation of h3,

that is D : h3 → h3 is a linear map which satisfies D[x, y] = [Dx, y] + [x,Dy]
for all x, y ∈ h3.

A pseudo-Riemannian manifold is called locally symmetric if ∇R ≡ 0,
where ∇ denotes the covariant derivative with respect to the Levi-Civita
connection and R denotes the curvature tensor. The Ambrose–Hicks–Cartan
theorem (see for example [21, Thm. 17, Ch. 8]) states that given a complete
locally symmetric pseudo-Riemannian manifold M , a linear isomorphism A :
TpM → TpM is the differential of some isometry of M that fixes the point
p ∈ M if and only if it preserves the symmetric bilinear form that the metric
induces into the tangent space and if for every u, v, w ∈ TpM the following
equation holds:

R(Au,Av)Aw = AR(u, v)w. (12)

While in the Riemannian case, the isometry group of a left-invariant
metric on a two-step nilpotent Lie group N is the semidirect product of
N and the group of isometric automorphism, the question in the pseudo-
Riemannian situation is still open in the general case (see [11]). However,
for a pseudo-Riemannian left-invariant metric on H3(R) with non-degenerate
center, the isometry group is the semidirect product I(H3(R)) = H3(R) �

F (H3(R)), where F (H3(R)) denotes the isotropy subgroup at the identity,
which corresponds to the isometric automorphisms, see [11].

Moreover,
• if h0 is a flat metric on H3(R) then (H3(R), h0) is a space form and

hence it is isometric to R
3
1 [21].

• for the non-flat metrics, the action of the isotropy subgroup (of the
full isometry group) at the identity element is given by isometric auto-
morphisms [11] so that I(H3(R), hi) = H3(R) � Ki, i = 1, 2, where Ki

denotes the group of (hi) isometric automorphisms. In [23], this group
is described.

Proposition 3.4. The isometry groups for the Lorentzian left-invariant met-
rics on H3(R) are given by

• I(H3(R), h0) = R
3

� O(2, 1),
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• I(H3(R), h1) = H3(R) � O(2),
• I(H3(R), h2) = H3(R) � O(1, 1).

Moreover, both Lorentzian left-invariant non-flat metrics are algebraic Ricci
solitons.

Proof. The description of the isometry group for a two-step nilpotent Lie
group equipped with a left-invariant metric obtained in [23] and the observa-
tions above give the proofs of the isometry groups. Notice that the connected
component of the identity are G0 and G1 for h1 and h2, respectively, (see the
description of G0 and G1 in the next section).

By computing the Ricci tensor in the case of the naturally reductive
metrics h1 and h2, one verifies that the corresponding Ricci operators satisfy

Rc(h1) = Rc(h2) =
3
2
Id − D (13)

where D is the derivation of h3 given by

D(X1) = −X1 D(X2) = −X2 D(X3) = −2X3,

showing that both h1 and h2 are algebraic Ricci solitons. See also [5]. �

Remark 4. A left-invariant Lorentzian metric on H3(R) is flat if and only
if the center is degenerate [16]. In [24], a non-flat Lorentzian metric with
degenerate center on R × H3(R) is proved to be naturally reductive and it
admits an action by isometries of the free three-step nilpotent Lie group in
two generators.

Left-invariant pseudo-Riemannian metrics on two-step nilpotent Lie
groups are geodesically complete [10,15].

Remark 5. Natural reductiveness of the Lorentzian metrics on H3(R) also
follows from results in [7,8].

Relative to the algebraic structure of the isometry group of (H3(R), h0)
usual computations show that h3 is not an ideal of the Lie algebra of I(H3(R),
h0), but I(H3(R), h0) = H3(R)O(2, 1).

The results of [10] are more specific for left-invariant metrics with non-
degenerate center; they were improved in [11]. These observations modify the
list given in [6] to obtain the present list in Proposition 3.4.

Therefore our study here revisit previous results in [6–9] giving alterna-
tive and improved proofs.

4. Simply connected solvable Lie groups with a bi-invariant
metric in dimension four

Our aim now is to describe geometrical features of the simply connected
solvable Lie groups of dimension four provided with a bi-invariant metric,
more precisely those corresponding to the Lie algebras g0 and g1 described
in Proposition 2.5.

Recall that if G is a connected real Lie group, its Lie algebra g is iden-
tified with the Lie algebra of left-invariant vector fields on G. Assume G
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is endowed with a left-invariant pseudo-Riemannian metric 〈 , 〉. Then the
following statements are equivalent (see [21, Ch. 11]):

1. 〈 , 〉 is right-invariant, hence bi-invariant;
2. 〈 , 〉 is Ad(G)-invariant;
3. the inversion map g → g−1 is an isometry of G;
4. 〈[X,Y ], Z〉 + 〈Y, [X,Z]〉 = 0 for all X,Y,Z ∈ g;
5. ∇XY = 1

2 [X,Y ] for all X,Y ∈ g, where ∇ denotes the Levi Civita con-
nection;

6. the geodesics of G starting at the identity element e are the one parameter
subgroups of G.

By (3), the pair (G, 〈 , 〉) is a pseudo-Riemannian symmetric space. Fur-
thermore, by computing the curvature tensor one has

R(X,Y ) = −1
4

ad([X,Y ]) for X,Y ∈ g. (14)

4.1. Structure of the Lie Groups

The action of e0 on h3 on both Lie algebras g0 and g1, lifts to a Lie group
homomorphism ρ : R → Aut(H3(R)) which on (v, z) ∈ R

2 ⊕ R has a matrix
of the form

ρ(t) =
(

Ri(t) 0
0 1

)
i = 0, 1 (15)

where

R0(t) =
(

cos t −sin t
sin t cos t

)
for g0, R1(t) =

(
et 0
0 e−t

)
for g1. (16)

Let G0 and G1 denote the simply connected Lie groups with respective
Lie algebras g0 and g1. Then G0 and G1 are modeled on the smooth manifold
R

4, where the algebraic structure is the resulting from the semidirect product
of R and H3(R), via ρ. Thus, on Gi for i = 0, 1, the multiplication is given
by

(t, v, z) · (t′, v′, z′) = (t + t′, v + Ri(t)v′, z + z′ +
1
2
vT JRi(t)v′). (17)

This information is useful to find a basis of the left-invariant vector
fields. For G0 such a basis at every point (t, x, y, z) ∈ R

4 is given by the
following vector fields, each of them evaluated at (t, x, y, z):

X0 = ∂t

X1 = cos t ∂x + sin t ∂y +
1
2
(x sin t − y cos t) ∂z

X2 = − sin t ∂x + cos t ∂y +
1
2
(x cos t + y sin t) ∂z

X3 = ∂z
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and for G1 it is given by
X0 = ∂t

X1 = et ∂x − 1
2
y et ∂z

X2 = e−t ∂y +
1
2
x e−t ∂z

X3 = ∂z.

These vector fields verify the relations given in (3) and (4), respectively.
For every i = 0, 1 the bi-invariant metric on Gi induced by the ad-

invariant metric on gi described in (9) induces on R
4 the next pseudo-

Riemannian metric (in the usual coordinates):

g0 = dz dt + dx2 + dy2 +
1
2
(ydx dt − xdy dt) for G0

g1 = dz dt + dx dy +
1
2
(ydx dt − xdy dt) for G1.

4.2. Geodesics

Computing the Christoffel symbols of the Levi-Civita connection for the met-
rics g0, g1 (cf. [21]), a curve α(s) = (t(s), x(s), y(s), z(s)) is a geodesic in Gi

if its components satisfy the second-order system of differential equations:
• for G0 ⎧

⎪⎪⎨

⎪⎪⎩

t′′(s) = 0,
x′′(s) = −t′(s)y′(s),
y′′(s) = t′(s)x′(s),
z′′(s) = 1

2 t′(s)(x(s)x′(s) + y(s)y′(s)).

• for G1 ⎧
⎪⎪⎨

⎪⎪⎩

t′′(s) = 0,
x′′(s) = t′(s)x′(s),
y′′(s) = −t′(s)y′(s),
z′′(s) = − 1

2 t′(s)(x(s)y′(s) + y(s)x′(s)).

On the other hand, if Xe =
∑3

i=0 aiXi(e) ∈ TeG, then the geodesic α
through e with initial condition α′(0) = Xe is the integral curve of the left-
invariant vector field X =

∑3
i=0 aiXi. Suppose α(s) = (t(s), x(s), y(s), z(s))

is the curve satisfying α′(s) = Xα(s), then its coordinates are as below.
• On G0, for a0 �= 0:

t(s) = a0s,

x(s) =
a1

a0
sin a0s +

a2

a0
cos a0s − a2

a0
,

y(s) = −a1

a0
cos a0s +

a2

a0
sin a0s +

a1

a0
,

z(s) =
1
2

[(
a2
1

a0
+

a2
2

a0
+ 2a3

)
s −

(
a2
2

a2
0

+
a2
1

a2
0

)
sin a0s

]
.

If a0 = 0, it is easy to see that α(s) = (0, a1s, a2s, a3s) is the corre-
sponding geodesic.
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• On G1 for a0 �= 0:

t(s) = a0s,

x(s) =
a1

a0
ea0s − a1

a0
,

y(s) = −a2

a0
e−a0s +

a2

a0
,

z(s) =
(

a1a2

a0
+ a3

)
s − a1a2

a2
0

sinh(a0s).

If a0 = 0 again α(s) = (0, a1s, a2s, a3s) is the corresponding geodesic.
As a consequence if X =

∑3
i=0 aiXi(e), the exponential map is

• On G0, if a0 �= 0,

exp(X) =
(

a0,
1
a0

(R0(a0)J − J)(a1, a2)t, a3 +
1
2

(
a2
1

a0
+

a2
2

a0

)(
1 − sin a0

a0

))

if a0 = 0,

exp(X) = (0, a1, a2, a3).

• On G1, if a0 �= 0

exp(X) =
(

a0,
a1

a0
(ea0 − 1),

a2

a0
(1 − e−a0),

a1a2

a0
+ a3 − a1a2

a2
0

sinh(a0)
)

if a0 = 0,

exp(X) = (0, a1, a2, a3).

In both cases the geodesic passing through the point g ∈ Gi, i = 0, 1 and
with derivative the left-invariant vector field X, is the translation on the left
of the one-parameter group at e, that is γ(s) = g exp(sX) for exp(sX) given
above.

4.3. Isometries

Let G be a connected Lie group with a bi-invariant metric, and let I(G)
denote the isometry group of G. This is a Lie group when endowed with
the compact-open topology. Let ϕ be an isometry such that ϕ(e) = x, for
x �= e. Then Lx−1 ◦ϕ is an isometry which fixes the element e ∈ G. Therefore
ϕ = Lx ◦ f where f is an isometry such that f(e) = e. Let F (G) denote the
isotropy subgroup of the identity e of G and let L(G) := {Lg : g ∈ G}, where
Lg is the translation on the left by g ∈ G. Then F (G) is a closed subgroup
of I(G) and the explanation above says

I(G) = L(G)F (G) = {Lg ◦ f : f ∈ F (G), g ∈ G}. (18)

Thus, I(G) is essentially determined by F (G).
The following lemma is proved by applying Relation (12) in the Ambrose–

Hicks–Cartan Theorem to the Lie group G equipped with a bi-invariant met-
ric and whose curvature formula was given in (14). In this way, one gets a
geometric proof of the next result (see [17]).
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Lemma 4.1. Let G be a simply connected Lie group with a bi-invariant pseudo-
Riemannian metric. Then a linear isomorphism A : g → g is the differential
of some isometry in F (G) if and only if for all X,Y,Z ∈ g, the linear map
A satisfies the following two conditions:
(i) 〈AX,AY 〉 = 〈X,Y 〉;
(ii) A[[X,Y ], Z] = [[AX,AY ], AZ].

Notice that if G is simply connected, every local isometry of G extends
to a unique global one. Therefore the full group of isometries of G fixing
the identity is isomorphic to the group of linear isometries of g that satisfy
condition (ii) of Lemma 4.1. By applying this to our case, one gets the next
result.

Theorem 4.2. Let G be a non-abelian, simply connected solvable Lie group
of dimension four endowed with a bi-invariant metric. Then the group of
isometries fixing the identity element F (G) is isomorphic to:

• ({1,−1} × O(2)) � R
2 for G0,

• ({1,−1} × O(1, 1)) � R
2 for G1.

In particular, the connected component of the identity of F (G) coincides
with the group of inner automorphisms {Ig : Gi → Gi, Ig(x) = gxg−1}g∈Gi

,
for i = 0, 1.

Proof. We proceed with g0, the case of g1 follows with the same procedure.
Let A : g0 → g0 be a linear isometry that satisfies the conditions of

Lemma 4.1.
Since C1(g0) coincides with C2(g0) it follows that AC1(g0) ⊆ C1(g0).

We also have [C1(g0), C1(g0)] = span{e3} and from the relation −Ae3 =
[Ae1, [Ae1, Ae0]] one has Ae3 = a33e3. Thus, we may assume that in the
basis {e0, e1, e2, e3} the map A has a matrix of the form

⎛

⎜
⎜
⎝

a00 0 0 0
a10 a11 a12 0
a20 a21 a22 0
a30 a31 a32 a33

⎞

⎟
⎟
⎠ .

From 〈Ae0, Ae3〉 = 1 it follows that

a00a33 = 1. (19)

From 〈Aei, Aej〉 = δij , for i, j = 1, 2 one gets that

Ã :=
(

a11 a12

a21 a22

)
∈ O(2). (20)

Now A[e0, [e1, e0]] = [Ae0, [Ae1, Ae0]] = Ae0 implies

a2
00a11 = a11, a2

00a21 = a21 (21)

and

a31 = −a00(a10a11 + a20a21). (22)

Equations (19), (20) and (21) assert

a00 = a33 = ±1. (23)
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Now from A[e0, [e2, e0]] = [Ae0, [Ae2, Ae0]] = Ae2 one has

a32 = −a00(a10a12 + a22a20). (24)

Set w = (a10, a20)T , from (22) and (24) it follows that (a31, a32) = ∓wT Ã.
Finally, the relation 〈Ae0, Ae0〉 = 0 implies a30 = ∓ 1

2 ||w||2. Therefore

A =

⎛

⎝
±1 0 0
w Ã 0

∓ 1
2 ||w||2 ∓wT Ã ±1

⎞

⎠ (25)

where w ∈ R
2 and Ã ∈ O(2). Moreover, any matrix of the form (25) verifies (i)

and (ii) of Lemma 4.1. This gives a group isomorphic to ({1,−1}×O(2))�R
2

for which the identity component corresponds to those matrices of the form
(25) with a00 = a33 = 1 and Ã ∈ SO(2) ={R0(t) : t ∈ R}.

On the other hand, the set of isometric automorphisms of g0 coincides
with the set Ad(G0), that is, the matrices of the form

Ad(t, v) =

⎛

⎝
1 0 0

Jv R0(t) 0
− 1

2 ||v||2 −(Jv)T R0(t) 1

⎞

⎠ , v ∈ R
2

being A(t, v) = Ad(t, v, z) for v = (x, y). By dimension and since Ad(G0) is
connected, it must coincide with the identity component.

The procedure for g1 is the same. In this case we obtain that in the basis
{e0, · · · , e3}, the matrix of a linear isometry of g1 that satisfies the conditions
of Lemma 4.1 is of the form

A =

⎛

⎝
±1 0 0
w Ã 0

∓ 1
2 ||w||2 ∓wT J̃Ã ±1

⎞

⎠ (26)

with w = (x, y)T ∈ R
2, ||w||2 = 2xy, Ã ∈ O(1, 1) and J̃ =

(
0 1
1 0

)
.

The matrix A(t, v) of Ad(t, v, z) with v = (x, y) is of the form (26) with
a00 = 1, w = (−x, y) and Ã = R1(t). �

Remark 6. For G0 compare with [3]. In [11], one can see that at the connected
component of the identity one has I0(G0) = G0�Inn(G0) while the semidirect
structure is no longer true for the full isometry group I(G0) = G0F (G0) as
in (18).
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