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Abstract. We study the normal holonomy group, i.e. the holonomy

group of the normal connection, of a CR-submanifold of a complex space

form. We complete the local classification of normal holonomies for com-

plex submanifolds. For the so called generic CR-submanifolds we show

that the normal holonomy group acts as the holonomy representation of

a Riemannian symmetric space. In case of a totally real submanifold we

give two results about reduction of codimension. We describe explicitly

the action of the normal holonomy in the case in which the totally real

submanifold is contained in a totally real totally geodesic submanifold.

In such a case we prove the compactness of the normal holonomy group.

1. Introduction

The object of this paper is to study the normal holonomy group of

CR-submanifolds of complex space forms. For general facts about CR-

submanifolds of Kähler manifolds see for example [Be78, BKY81, Chen81,

KY80].

For submanifolds of Rn or more generally of real space forms, a fundamen-

tal result is the Normal Holonomy Theorem[Ol90]. It asserts roughly that

the non-trivial component of the action of the normal holonomy group on

any normal space is the isotropy representation of a Riemannian symmetric

space (called s-representation for short). The Normal Holonomy Theorem

is a very important tool for the study of submanifold geometry, especially

in the context of submanifolds with “simple extrinsic geometric invariants”,

like isoparametric and homogeneous submanifolds (see [BCO03] for an in-

troduction to this subject). The Normal Holonomy Theorem plays also a

very important role in the geometric proof of Berger’s Theorem [Ol05].
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For complex submanifolds of complex space forms the normal holonomy

group was studied in [AD04]. It turns out that the normal holonomy the-

orem is not true in general, see Remark 3.1. However, the action of the

normal holonomy group on any normal space is an s-representation if the

complex submanifold is full (i.e. it is not contained in a proper complex

totally geodesic submanifold) and either the normal holonomy group acts

irreducibly or the second fundamental form has no nullity [AD04].

A global result was obtained in [CDO11] showing that for complete com-

plex submanifolds M ⊂ CPn of the complex projective space the normal

holonomy group is either the full unitary group of the normal space or

the complex submanifold M is the unique complex orbit of the projective

isotropy representation of an irreducible Hermitian symmetric space.

In this paper we complete the local classification of normal holonomies of

complex submanifolds of space forms. Here is our first result.

Theorem 1. Let M be a full (non necessarily complete) complex submani-

fold of a complex space form and let Hol0p(M,∇⊥) be the restricted holonomy

group of the normal connection. Then Hol0p(M,∇⊥) acts on the normal

space νp(M) as the isotropy representation of a (non necessarily irreducible)

Hermitian symmetric space without flat factor.

Our next result shows that the Normal Holonomy Theorem holds for the

class of generic CR-submanifolds of complex space forms.

Theorem 2. Let M be a generic CR-submanifold of a complex space form

Sc. Then the restricted normal holonomy group of M acts on the normal

space as the holonomy representation of a Riemannian symmetric space i.e.

a flat factor plus a s-representation.

As an application we get the following corollary.

Corollary 1.1. A Ricci-flat Lagrangian submanifold of a complex space

form is flat.

In Section 6 we explore the normal holonomy group of totally real sub-

manifolds of complex space forms. We start with an example showing that

the strategy we used for generic CR-submanifolds can not be adapted to

this case. In particular, we characterize the so called holomorphic circles

[AMU00, page 8, Definition] (also called Kähler-Frenet curves [MT06, In-

troduction]) as those curves of the complex projective space whose pull-back

to the sphere via the Hopf fibration has flat normal bundle. We give two
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results about reduction of codimension. For totally real submanifolds of to-

tally geodesic totally real submanifolds of a complex space form we give an

explicit description of the action of its normal holonomy group. It turns out

that the normal holonomy group is compact but it does not act, in general,

as in Olmos’ holonomy theorem.

2. Preliminaries and basic facts

2.1. Complex space forms and Hopf fibrations. Let Sc be a complex

space form of holomorphic sectional curvature c. For the sake of simplicity

we shall assume that Sc is one of the standard models, that is, the complex

euclidean space Cn if c = 0, the complex projective space CPn if c = 4 or

the complex hyperbolic space CHn if c = −4. However all the results here

are valid for arbitrary c.

Denote by J the complex structure, by 〈 , 〉 the standard metric and by

∇ the Levi-Civita connection on Sc.
We will now introduce the Hopf fibrations for the complex hyperbolic and

projective spaces.

If z = (z0, z1, · · · , zn), w = (w0, w1, · · · , wn) ∈ Cn+1, define

〈z, w〉 = Re

(
n∑
i=0

ziwi

)
; 〈z, w〉1 = Re

(
−z0w0 +

n∑
i=1

ziwi

)
Then 〈 , 〉 is the standard inner product on Cn+1, which can be identified

with the Euclidean space R2n+2.

On the other hand, 〈 , 〉1 is a scalar product of signature 2 on Cn+1. We

will denote by Cn+1
1 the complex vector space Cn+1 with this scalar product.

Then Cn+1
1 can be identified with the standard semi-Euclidean space R2n+2

2 .

For c = 4, denote by N c the (2n+ 1)-dimensional sphere in Cn+1, that is

N4 = S2n+1 = {z ∈ Cn+1 : 〈z, z〉 = 1}

and for c = −4 denote by N c the Lorentzian pseudo-hyperbolic space (or

anti-De Sitter space) Hn+1
1 in Cn+1

1 , that is,

N−4 = Hn+1
1 = {z ∈ Cn+1 : 〈z, z〉1 = −1}.

Recall that Hn+1
1 is a Lorentzian real space form of constant sectional

curvature K = −1 (see [ON83, Prop. 29, page 113]).

The one-parameter group U(1) = {z = eiθ : θ ∈ R} acts by multiplication

on N c and Sc = N c/U(1). Moreover, the standard projection

πc : N c → Sc
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is a principal fiber bundle, called Hopf fibration.

Let ηp := p be the position vector field on N c and let Vp and Hp be the

vertical and horizontal subspaces associated to πc at p respectively. That is,

Vp = Tp(π
−1
c (πc(p)) and Hp = (Vp)

⊥ ⊂ TpN c. Then

Vp = spanR{Jηp}; Hp ≡ Tπc(p)Sc.

Jη is called the Hopf vector field of N c. Observe that Hp is a J-invariant

subspace and dπc identifies J|Hp
with the complex structure J of Sc. More-

over, π4 is a Riemannian submersion and π(−4) is a pseudo Riemannian one,

and in both cases H defines a Riemannian subbundle of TN c.

Denote by ∇′ the Levi-Civita connection of N c and by gc the metric on

N c induced from the corresponding inner product on the ambient complex

space.

For a vector field X in Sc we will always denote by X̂ its horizontal lift

to N c, i.e., X̂ is the only horizontal vector field in N c, πc-related to X. Then

from O’Neil formulas for a submersion one gets that for each X, Y ∈ X(Sc),

(1) ∇′
X̂
Ŷ = ̂(∇XY ) + gc(X, JY )Jη

(2) ∇′JηX̂ = ∇′
X̂
Jη = JX̂ = ĴX.

(cf. [NT82])

2.2. CR-submanifolds. A submanifold M of Sc (or more generally, of a

Kählerian manifold) is called a CR-submanifold if there exists a differen-

tiable distribution D on M such that for each x ∈M , Dx is a complex sub-

space of TxSc, i.e., JDx = Dx, and the orthogonal distribution D⊥ ⊂ TM is

anti-invariant, i.e., JD⊥x is normal to M .

There are three particular cases of CR-submanifolds we are interested in.

If Dx = TxM , then M is a complex submanifold of Sc.
If on the contrary Dx = {0}, i.e. JTxM ⊂ νxM for each x, then M is a

totally real (or anti-invariant) submanifolds of Sc.
Finally, if dim D⊥x = dim νxM , and consequently JνxM ⊂ TxM , M is

called a generic CR-submanifold (or simply generic submanifold) of Sc.
A submanifold which is both totally real and generic, i.e., JTxM = νxM

is called a Lagrangian submanifold of Sc.



THE NORMAL HOLONOMY OF CR-SUBMANIFOLDS 5

We will now introduce some preliminaries on the general theory of sub-

manifolds of a complex space form and state how the geometry of a sub-

manifold M of the complex projective or hyperbolic space relates with that

of if pull-back via the Hopf fibration.

Let M be a Riemannian submanifold of Sc. Denote by ∇ the Levi-Civita

connection of M and by ∇⊥ the normal connection on the normal bundle

νM = (TM)⊥. Let α and A be the second fundamental form and shape

operator of M respectively. They are defined, taking tangent and normal

components with respect to the decomposition TSc|M = TM ⊕ νM by the

Gauss and Codazzi formulas

(3) ∇XY = ∇XY + α(X,Y ), ∇Xξ = −AξX +∇⊥Xξ

and related by 〈α(X,Y ), ξ〉 = 〈AξX,Y 〉, for any tangent vector fields X and

Y to M and any normal vector field ξ.

Denote by R
c

the Riemannian curvature tensor of Sc. Recall that if

X,Y ∈ X(Sc) then

(4) R
c
X,Y =

1

4
c(X ∧ Y + JX ∧ JY − 2 〈JX, Y 〉 J)

where X ∧ Y (Z) = 〈Y, Z〉X − 〈X,Z〉Y .

Let R and R⊥ be the Riemannian and the normal curvature tensors of

M respectively. Then for X,Y, Z tangent to M and ξ, ζ normal to M , the

well known equations of Gauss, Codazzi and Ricci hold:

(5)
〈
R
c
X,Y Z,W

〉
= 〈RX,Y Z,W 〉+〈α(X,Z), α(Y,W )〉−〈α(X,W ), α(Y,Z)〉

(6) (R
c
X,Y Z)⊥ = (∇∗Xα)(Y,Z)− (∇∗Y α)(X,Z)

(7)
〈
R
c
X,Y ξ, ζ

〉
=
〈
R⊥X,Y ξ, ζ

〉
− 〈[Aξ, Aζ ]X,Y 〉 .

where ∇∗ is the connection ∇⊕∇⊥ on the vector bundle TSc|M .

Assume now that M ⊂ Sc with c = 4 or c = −4.

Let π̂ : M̂ →M be the pull-back of the principal U(1)-bundle πc : N c →
Sc, where πc is the Hopf fibration introduced in the previous section. If c > 0,

i.e. M ⊂ CPn, then M̂ is a Riemannian submanifold of the sphere N4 =

S2n+1 and π̂ is a Riemannian submersion. If c < 0, i.e. M ⊂ CHn, then M̂

is a Lorentzian submanifold of N (−4) = Hn+1
1 and π̂ a pseudo-Riemannian
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submersion (observe that for c = −4 one has g(−4)(Jη, Jη) = −1). Along

this paper we will call M̂ the pull-back of M .

The vertical subspace V̂p of π̂ coincides with Vp = RJηp and the horizontal

subspace Ĥp = Hp ∩ TpM̂ is isometric via dπ̂p with Tπ̂(p)M .

If X,Y are tangent vector fields to M and ξ is a normal vector field to

M , their horizontal lifts are respectively tangent and normal to M̂ .

Denote by ∇̂, ∇̂⊥, α̂ and Â the Levi-civita and normal connections re-

spectively and the second fundamental form and shape operator of M̂ . Then

from equations (1) and (2) it is not difficult to obtain the following (recall

that the hat ·̂ always indicates the horizontal lift of a vector)

(8) ∇̂X̂ Ŷ = ∇̂XY + 〈X, JY 〉 Jη, α̂(X̂, Ŷ ) = ̂α(X,Y ).

(9) Âξ̂X̂ = ÂξX − 〈X, Jξ〉 Jη, ∇̂⊥
X̂
ξ̂ = ∇̂⊥Xξ

(10) Âξ̂Jη = −(Ĵξ)> ∇̂⊥Jη ξ̂ = (Ĵξ)⊥

for vector fields X, Y tangent to M and a vector field ξ normal to M .

2.3. Normal holonomy. Given a submanifoldM of a (pseudo-)Riemannian

manifold N , the normal holonomy group is the holonomy group associated

to the normal connection ∇⊥ of M . Namely, given a piecewise differentiable

curve γ : I → M such that γ(0) = p and a normal vector ξp ∈ νpM , one

defines as usual the parallel displacement τ⊥γ (ξp) of ξp along γ with respect

to the connection ∇⊥.

Set Ωp(M) the set of piecewise differentiable loops of M based at p and

by Ω0
p(M) ⊂ Ωp(M) the set of null-homotopic piecewise differentiable loops

of M based at p. Then the normal holonomy group of M at p is defined as

Holp(M,∇⊥) = {τ⊥γ : νpM → νpM : γ ∈ Ωp(M)} ⊂ O(νpM)

and the restricted normal holonomy group of M at p is the subgroup of

Holp(M,∇⊥) defined as

Hol0p(M,∇⊥) = {τ⊥γ : νpM → νpM : γ ∈ Ω0
p(M)} ⊂ SO(νpM).

Hol0p(M,∇⊥) is the connected component of the identity of Holp(M,∇⊥).
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3. Complex submanifolds: Proof of Theorem 1

In [CDO11] it was proved that the normal holonomy group of a full com-

plete complex submanifold of the projective space is either the full group

SO(ν(M)) or the submanifold has parallel second fundamental form.

In this section we prove Theorem 1 which improves the results of [AD04]

and complete the local classification of normal holonomies of complex sub-

manifolds of complex space forms.

For the flat complex space form Cn the result is in [Di00, Remark 2.2.,

page 253]. Namely, the existence of a flat factor for the normal holonomy

action implies a reduction of codimension which is not possible since the

submanifold is assumed to be full.

For the complex projective space or its non compact dual the result was

proved in [AD04] under the stronger hypothesis that either the action of

Hol0p(M,∇⊥) is irreducible or the second fundamental form α of M has no

nullity i.e. the index of relative nullity µ(p) = dim(Np) of M is zero, where

Np = ∩ξ∈νpM ker(Aξ).

So it is enough to show that if the index of relative nullity of M is non zero

then Theorem 1 holds. In this case, there exists a unitary vector X ∈ Np
and then by the Ricci equation (7), one has

R⊥(X, JX)ξ = − c
2
Jξ ,

for any ξ ∈ νpM , where c is the constant holomorphic sectional curvature

of the non flat complex space form. This shows that the complex structure

J belongs to the Lie algebra of the normal holonomy group at the point

p ∈M . Then Theorem 1 follows from [AD04, Theorem 24 and Proposition

9]. 2

Remark 3.1. Without the hypothesis of the submanifold being full Theorem

1 is not true. Indeed, the normal holonomy group of a codimension 2 totally

geodesic CPn ⊂ CPn+2 is the diagonal action of U(1) on C2. Such action

is not even polar [BCO03, pag. 92, exercise 3.10.6] hence cannot be an

s-representation.

Remark 3.2. The normal holonomy action of a complex submanifold is not

necessarily irreducible. Here is an example: Let M ⊂ C3 be the cone given

by the equation

x2 + y2 + z2 = 0 ,
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Then the projectivization Z of the product of cones M ×M ⊂ C6 gives a

3-dimensional algebraic variety of CP 5 . The normal holonomy group of

the smooth open subset Zsmooth ⊂ Z does not act irreducibly on the normal

space at any point p ∈ Zsmooth. This is so since the normal holonomy group

of Zsmooth is the same as the normal holonomy at a smooth point of the

product M × M ⊂ C6 see [CDO11, Remark 5, page 211]. We note that

the induced Riemannian metric (from the Fubini-Study metric on CP 5) on

Zsmooth is locally irreducible.

4. Generic CR-Submanifolds: Proof of Theorem 2

Observe that for the case c = 0, Theorem 2 is a direct consequence of the

Normal Holonomy Theorem for real space forms [Ol90]. Therefore we will

prove it for c 6= 0.

4.1. The strategy: The strategy will be the following. Consider a generic

submanifold M of Sc and its pull-back M̂ via the Hopf fibration π : Hc →
Sc. Then for each p ∈ M̂ , dπp defines an isometric isomorphism between

νpM̂ and νπ(p)M and conjugation by dπp defines an isomorphism between

SO(νπ(p)M) and SO(νpM̂). We will show that for any p ∈ M̂ :

(1) The action of Hol0π(p)(M,∇⊥) on νπ(p)M identifies, via conjugation

with dπp, with the action of Hol0p(M̂, ∇̂⊥) on νpM̂ .

(2) Hol0p(M̂, ∇̂⊥) acts on νpM̂ as the holonomy representation of a Rie-

mannian symmetric space.

We start with some technical results. We will keep the notation intro-

duced in section 2.2.

Fix some p in M̂ and set x = π̂(p). Let γ(t) = eitp be a vertical curve in

M̂ such that γ(0) = p. For ξ ∈ νxM , let ξ̂(t) be the horizontal lift of ξ to

M̂ at γ(t). Then we have:

Lemma 4.1. M is a generic CR-submanifold if and only if ξ̂(t) is a ∇̂⊥-

parallel vector field along γ(t) = eitp for each p ∈ M̂ and each ξ ∈ Tπ̂(p)M .

Proof. Fix p in M and let ξp ∈ νpM̂ . Set ξ := dπ̂p(ξp) and let ξ̂(t) be

the normal vector field along γ(t) = eitp defined above. Observe first that

ξ̂(t) = eit · ξ̂p (identifying each tangent space of N c with a subspace of the

ambient space). So

∇′γ′(t)ξ̂t =
d

dt |t

(
eit · ξ̂q

)
= Jξ̂t.
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Since Jξ̂t is the horizontal lift at γ(t) of Jξ, we get that ξ̂ is ∇̂⊥-parallel in

M̂ for each ξ ∈ νπ̂(p)M and each p ∈ M̂ if anf only if JνxM is tangent for

each x ∈M , that is, if and only if M is a generic CR-submanifold. �

Remark 4.2. Let Jη be the Hopf vector field of N c and let {ϕt = eit}t∈R
be its flow. Then ϕt is an isometry of N c and Lemma 4.1 can be stated as

follows: M is a generic CR-submanifold if and only if ϕt is a transvection

with respect to the normal connection of M̂ , along ϕt(p), for each p ∈ M̂ .

Lemma 4.3. Let M be a generic CR-submanifold of a complex space form

Sc, with c 6= 0 and let M̂ be its pullback via the Hopf fibration πc : N c → Sc.
Let Jη be the Hopf vector field. Fix p ∈ M̂ and set x = π(p). Then

(1) R̂⊥
Jη,X̂

= 0 for any horizontal vector X̂ ∈ TpM ;

(2) [Âξ̂, Âζ̂ ]Jη = 0, for any ξ̂, ζ̂ ∈ νpM̂ ;

(3) AξJζ = AζJξ for any ξ, ζ ∈ νxM (cf. [KY80, Lemma 2.1])

Proof. We will prove first that statements (1), (2) and (3) are equivalent.

Let ξ, ζ ∈ νxM and let ξ̂, ζ̂ be the horizontal lifts of ξ and ζ at p respectively.

Since N c is a real space form (a Lorentzian space form in the case of

c < 0) the Ricci equation gives

(11) 〈R̂⊥
Jη,X̂

ξ̂, ζ̂〉 = 〈[Âξ̂, Âζ̂ ]Jη, X̂〉.

for any horizontal tangent vector X̂ ∈ TpM̂ . This proves the equivalence

between (1) and (2).

On the other hand, from equations (9) and (10) we have

[Âξ̂, Âζ̂ ]Jη = −Âξ̂(Ĵζ) + Âζ̂(Ĵξ)

= −ÂξJζ + 〈Jξ, Jζ〉Jη + ÂζJξ − 〈Jξ, Jζ〉Jη

= ̂AξJζ −AζJξ

This proves the equivalence between (2) and (3).

Let us prove (3). Let Y ∈ TxM . Then

〈AξJζ, Y 〉 = 〈α(Jζ, Y ), ξ〉 =
〈
∇Y Jζ, ξ

〉
=
〈
J∇Y ζ, ξ

〉
= 〈AζY, Jξ〉 = 〈AζJξ, Y 〉 .

Since Y is arbitrary, this concludes the proof. �

The following is an immediate consequence of Lemma 4.3 and a result in

[Ol93, Appendix].
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Corollary 4.4. Let M̂ be the pull-back to N c of a generic CR-submanifold

M of a complex space form Sc, c 6= 0 via the Hopf fibration π. Then for any

piecewise-differentiable curve σ : I → M̂ there exist a horizontal curve σ0

and a vertical curve γ (with respect to π) such that

τ̂⊥σ = τ̂⊥γ ◦ τ̂⊥σ0 ,

where τ̂⊥ denotes the ∇̂⊥ parallel displacement on M̂ .

Proposition 4.5. Let M be a generic CR-submanifold of a complex space

form Sc, with c 6= 0 and let M̂ be its pullback via the Hopf fibration πc :

N c → Sc. Fix p ∈ M̂ and set x = π(p). Then the action of Hol0x(M,∇⊥) on

νxM̂ identifies, via conjugation with dπp, with the action of Hol0p(M̂, ∇̂⊥)

on νpM̂ .

Proof. Fix p ∈ M̂ and let x = π(p) ∈ M . We can consider the restricted

normal holonomy group of M at x acting on νpM̂ via dπp in the following

way.

If τ⊥ ∈ Hol0x(M,∇⊥) and ξ̂ ∈ νpM̂ , then

τ⊥ · ξ̂ = (dπp|νpM̂ )−1 ◦ τ⊥ ◦ dπp(ξ̂).

If c(t) is a loop in M based at x, then its horizontal lift ĉ(t) at p is a

curve in M̂ such that π(ĉ(1)) = π(p) = x. There is a unique vertical curve

δ(t) = eiθtĉ(1) in M̂ joining ĉ(1) and ĉ(0) = p, for some fixed real number

θ. Consider the loop σ(t) based at p obtained by moving along ĉ from p to

ĉ(1) and then along δ from ĉ(1) back to p. Then if τ⊥ is the ∇⊥-parallel

displacement in M along c, from (9) and Lemma 4.1 we obtain that the

parallel displacement of any normal vector ξp ∈ νpM̂ along σ is actually

τ⊥ · ξp.
Conversely, if σ is a loop in M̂ based at p, then by Corollary 4.4, there

exist a vertical curve γ and a horizontal curve σ0 starting at p such that

τ̂⊥σ = τ̂⊥γ ◦ τ̂⊥σ0 . Now, if τ⊥ is the ∇⊥-parallel displacement in M along the

loop π(σ0), then from equation (9) and Lemma 4.1 it is easy to see that for

any ξp ∈ νpM̂ , τ̂⊥γ ◦ τ̂⊥σ0(ξp) = τ⊥ · ξp.
This shows that the action of Hol0x(M,∇⊥) on νxM is the same, via

conjugation with dπ̂p, as the action of Hol0p(M̂, ∇̂⊥) on νpM̂ . �

4.2. Proof of Theorem 2 when c > 0. From Proposition 4.5 it follows

that:

1) The action of Hol0π(p)(M,∇⊥) on νπ(p)M identifies, via conjugation

with dπp, with the action of Hol0p(M̂, ∇̂⊥) on νpM̂ .
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Since M̂ is a submanifold of a sphere, the Normal Holonomy Theorem

[Ol90] implies that:

2) Hol0p(M̂, ∇̂⊥) acts on νpM̂ as the holonomy representation of a Rie-

mannian symmetric space.

This proves Theorem 2 when c > 0. 2

4.3. Proof of Theorem 2 when c < 0. From Proposition 4.5 it follows

that:

1) The action of Hol0π(p)(M,∇⊥) on νπ(p)M identifies, via conjugation

with dπp, with the action of Hol0p(M̂, ∇̂⊥) on νpM̂ .

Since the pull-back M̂ is a Lorentzian submanifold of the anti-De-Sitter

space, Olmos’ normal holonomy theorem [Ol90] can not be used directly.

Actually, Olmos’ normal holonomy theorem is not true for an arbitrary

Lorentzian submanifold of the anti-De-Sitter space. However, Olmos’ proof

can be adapted to our case i.e. when M̂ is the pull-back of a generic CR-

submanifold of the complex hyperbolic space.

Theorem 2 for c < 0 is a consequence of Proposition 4.5 and the following

result.

Proposition 4.6. Let M be a generic CR-submanifod of the complex hy-

perbolic space CHn and let π : Hn+1
1 → CHn be the Hopf fibration. Let

M̂ ⊂ Hn+1
1 be the pull-back of M . Let p ∈ M̂ and let Hol0p(M̂, ∇̂⊥) be the

restricted normal holonomy group at p.

Then Hol0p(M̂, ∇̂⊥) is compact, there exists a unique (up to order) or-

thogonal decomposition νpM̂ = V0 ⊕ · · · ⊕ Vk of the normal space νpM̂ into

Hol0p(M̂, ∇̂⊥)-invariant subspaces and there exist normal subgroups Φ0, · · · ,Φk

of Hol0p(M̂, ∇̂⊥) such that

i) Hol0p(M̂, ∇̂⊥) = Φ0 × · · · × Φk (direct product);

ii) Φi acts trivially on Vj if i 6= j;

iii) Φ0 = {1} and if i ≥ 1, Φi acts irreducibly on Vi as the isotropy

representation of an irreducible Riemannian symmetric space.

Proof. The key object in Olmos’ proof is the algebraic curvature tensor R⊥

on νM̂ with non positive sectional curvature and that carries the same

geometric information as the normal curvature tensor R̂⊥ of M̂ .

Following [Ol90] we introduce the algebraic curvature tensor R⊥ on νM̂

by the formula:〈
R⊥(ξ1, ξ2)ξ3, ξ4

〉
:= −1

2
tr([Âξ1 , Âξ2 ] ◦ [Âξ3 , Âξ4 ])
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So in the same way as in [Ol90], one can prove

(i) R⊥(ξ1, ξ2) = −R⊥(ξ2, ξ1);

(ii)
〈
R⊥(ξ1, ξ2)ξ3, ξ4

〉
= −

〈
ξ3,R⊥(ξ1, ξ2)ξ4

〉
;

(iii)
〈
R⊥(ξ1, ξ2)ξ3, ξ4

〉
=
〈
R⊥(ξ3, ξ4)ξ1, ξ2

〉
(iv) R⊥(ξ1, ξ2)ξ3 +R⊥(ξ2, ξ3)ξ1 +R⊥(ξ3, ξ1)ξ2 = 0.

(v) Im(R⊥p ) = Im(R̂⊥p ).

Now we compute the sectional curvature 〈R⊥(ξ, ζ)ζ, ξ〉. Choose an or-

thonormal basis {e0, e1, · · · , ek} of TpM̂ such that e0 = Jη is the Hopf vector

and therefore e1, · · · , ek are horizontal vectors.

So we have

〈R⊥(ξ, ζ)ζ, ξ〉 =
1

2
tr([Âξ, Âζ ]

2)

= −1

2

〈
[Âξ, Âζ ]

2Jη, Jη
〉

+
1

2

k∑
i=1

〈
[Âξ, Âζ ]

2ei, ei

〉

= −1

2

k∑
i=1

〈
[Âξ, Âζ ]ei, [Âξ, Âζ ]ei

〉
≤ 0

since by Lemma 4.3 [Âξ, Âζ ]Jη = 0 hence the vectors [Âξ, Âζ ]ei are horizon-

tal.

Observe also that

(12) 〈R⊥(ξ, ζ)ζ, ξ〉 = 0 if and only if [Âζ , Âξ] = 0

Now the proof follows as in [Ol90]. �

5. Lagrangian submanifolds: Proof of Corollary 1.1

Since Lagrangian submanifolds are in particular generic CR-submanifolds

we get the following result.

Theorem 3. Let M be a Lagrangian submanifold a complex space form

and let Hol0p(M,∇⊥) be the restricted holonomy group of the normal con-

nection. Then Hol0p(M,∇⊥) acts on the normal space νpM as the holonomy

representation of a Riemannian symmetric space.

We give now the proof of Corollary 1.1.

Proof. Notice that the complex structure J can be regarded as an isomor-

phism between the tangent space TpM and the normal space νpM . Let ξ(t)

be a ∇⊥-parallel normal field along a loop γ(t) based at p. Then Jξ(t) is
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a tangent field along γ(t) which is parallel with respect to the Levi-Civita

connection. Indeed, the equation

Dγ′(t)Jξ(t) = J
(
∇⊥γ′(t)ξ(t)−Aξ(t)(γ

′(t))
)

= −JAξ(t)(γ′(t))

shows that Dγ′(t)Jξ(t) is normal hence Jξ(t) is parallel with respect to the

Levi-Civita connection of M .

In a similar way if X(t) is a vector field of M along γ, parallel with respect

to the Levi-Civita connection we get that JX(t) is a ∇⊥-parallel vector field

along γ.

Then the isomorphism J is an intertwiner isomorphism between the nor-

mal and the tangent holonomy groups. Hence, by the above theorem, the

tangent holonomy group acts as an s-representation. Now the corollary fol-

lows from the well-known fact that Ricci-flat Riemannian symmetric spaces

are flat. �

6. Totally real submanifolds: some results about their normal

holonomy group

Along this section we keep the notations of Section 2.2.

6.1. An example. Let us give an example showing that the strategy we

followed for generic CR-submanifolds does not work for totally real sub-

manifolds. Namely, the normal holonomy group of the pull-back M̂ can be

different from the normal holonomy group of M .

Let M ⊂ CPn, n > 1 be a curve of the complex projective space. Then

the normal holonomy group of M is of course trivial. To compute the normal

curvature tensor of M̂ we need to compute the shape operators of M̂ . Let

T be a unit vector field tangent to M and denote by T̂ its horizontal lift.

Then {Jη, T̂} is an orthogonal frame of M̂ . Observe that normal bundle of

M splits as νM = RJT ⊕ (RJT )⊥ where J(RJT )⊥ = (RJT )⊥. Then the

normal bundle of the pull-back M̂ splits as

νM̂ = RJT̂ ⊕ (RJT̂ )⊥

where J(RJT̂ )⊥ = (RJT̂ )⊥. Let ξ be a section of (RJT )⊥ and consider the

section ξ̂ of ν(M̂). Then, by equations (9) and (10) the shape operator Âξ̂ of

M̂ in direction ξ̂ is given in the frame {Jη, T̂} by the following 2×2 matrix:

Âξ̂ =

(
0 0

0 〈Aξ(T ), T 〉

)
.
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The shape operator ÂJT̂ of M̂ is given in the frame {Jη, T̂} by the following

2× 2 matrix:

ÂJT̂ =

(
0 1

1 〈AJT (T ), T 〉

)
.

So we have the following proposition.

Proposition 6.1. Let M ⊂ CPn be a curve of the complex projective space.

Then the pull-back M̂ has flat normal bundle if and only if

〈Aξ(T ), T 〉 = 0

for all ξ ∈ ν(M) such that 〈ξ, JT 〉 = 0. Equivalently, M̂ has flat normal

bundle if and only if the curve M is a so called holomorphic circle [AMU00,

page 8, Definition] (also called Kähler-Frenet curve [MT06, Introduction]).

Namely,

∇TT = κJT

where κ is a smooth function on M .

Proof. The pull-back M̂ is a submanifold of a sphere. Then by Ricci equation

M has flat normal bundle if and only if all shape operators commute. Then

the conclusion follows from

[Âξ̂, ÂJT̂ ] =

(
0 −〈Aξ(T ), T 〉

〈Aξ(T ), T 〉 0

)

�

Remark 6.2. Interesting examples of holomorphic circles are the so called

magnetic geodesic [GS13, Introduction].

Then if M ⊂ CPn is not a holomorphic circle we get a submanifold whose

normal holonomy group is different from the normal holonomy group of its

pull-back M̂ . Indeed, by the above proposition the normal bundle of M̂ is

not flat whilst the normal bundle of M is. Moreover, by [BCO03, Exercise

4.6.16, page 136] we get the following proposition.

Proposition 6.3. Let M be a full curve of CPn which is not an holomor-

phic circle and let M̂ be its pull-back. Then the normal holonomy group

Holp(M̂, ∇̂⊥) acts transitively on the unit sphere of the normal space.



THE NORMAL HOLONOMY OF CR-SUBMANIFOLDS 15

6.2. Injection of the normal holonomy group. At the light of the above

example one can not expect to identify the normal holonomy of M with that

of its pull-back M̂ . However, we will show that the holonomy group of M

injects into the normal holonomy group of M̂ . We will need the following

lemma.

Lemma 6.4. Let M be a submanifold of a space form Sc, with c 6= 0, and let

M̂ be its pullback to N c. Then M is totally real if and only if the horizontal

distribution Ĥ is a parallel distribution of M̂ .

Proof. The only if part was proved in [NT82, Lemma 1.1]. For convenience

of the reader we give here a proof. From equation (8) it is immediate to see

that if M is totally real then Ĥ is an autoparallel distribution and therefore

parallel since the Hopf vector field is geodesic.

On the other hand, if H is parallel, equation (8) implies 〈X, JY 〉 = 0 for

every X,Y ∈ X(M) and so M is totally real. �

Theorem 4. Let M be a totally real submanifold of a complex space form

Sc with c 6= 0. Let M̂ be its pullback to N c. Then the normal holonomy

group Holp(M,∇⊥) is a subgroup of Holp̂(M̂, ∇̂⊥), where p̂ is any point of

M̂ such that πc(p̂) = p.

Proof. Let σ be a loop in M based at p and let σ̂ be its horizontal lift to M̂

at p̂. Since Ĥ is an integrable distribution, one gets that σ̂ is also a loop in

M̂ based at p̂.

Moreover dπ̂ defines an isometry between the normal spaces of M̂ and

M , which from equation (9) preserves parallel transport along horizontal

curves. This implies that the map Φ : Holp(M,∇⊥) → Holp̂(M̂, ∇̂⊥) given

by Φ(τ⊥σ ) = τ⊥σ̂ is an injective homomorphism. �

6.3. Reduction of codimension.

Theorem 5. Let M be a totally real submanifod of a complex space form

Smc .

(1) There exists a totally geodesic complex submanifold Snc of Smc such

that M ⊂ Snc if and only if there exists a ∇⊥-parallel sub-bundle W0

of νM such that TM ⊕W0 is J-invariant.

If in particular JM is ∇⊥-parallel (i.e. W0 = JM), then M is a

Lagrangian submanifold of Snc (cf. [CHL77]).

(2) There exists a totally geodesic totally real submanifold N of Smc such

that M ⊂ N if and only if there exists a ∇⊥-parallel subbundle W0
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of νM such that the first normal space N1 of M is contained in W0

and W0 ⊥ J(TM ⊕W0).

Proof. Let M be a totally real submanifold of a complex space form Sc.
By the result in [DV13] we know that if the first normal space N1 =

α(TM × TM) is contained in a ∇⊥-parallel sub-bundle W of νM such that

V := TM ⊕W is R
c
-invariant, then M is contained in a totally geodesic

submanifold N of Sc of dimension equal to rank(V). We are going to show

that this is indeed the case in both items.

Case (1). Assume that there is a ∇⊥-parallel sub-bundle W0 of νM such

that V := TM ⊕W0 is J-invariant. From equation (4) one can easily see

that V is R
c
-invariant.

Since V is J-invariant and M is totally real, one has that

W0 = J(TM)⊕W1

and W1 is J-invariant. Let W2 = (W0)
⊥ ⊂ νM . So the normal bundle of M

decomposes as νM = J(TM)⊕W1 ⊕W2. Given two tangent vectors X,Y

to M , set α(X,Y ) = ξ + ξ1 + ξ2, where ξ ∈ J(TM), ξ1 ∈ W1 and ξ2 ∈ W2.

Then one has

(13) ∇XJY = J∇XY = J∇XY + Jξ + Jξ1 + Jξ2 .

On the other hand, ∇XJY = −AJYX+∇⊥XJY . Comparing with the normal

part in (13) we get

∇⊥XJY = J∇XY + Jξ1 + Jξ2 .

Since J(TM) ⊂W0 and W0 is ∇⊥-parallel we get

Jξ2 = ∇⊥XJY − Jξ1 − J∇XY ∈W0

Since W2 is also J-invariant, we get Jξ3 = 0 and so α(X,Y ) ∈W0.

Therefore the first normal space is contained in W0 and M is contained

in a totally geodesic submanifold N of Sc whose tangent bundle (along M)

is TM ⊕W0 = V. Since V is J-invariant it follows that N is a complex

totally geodesic submanifold hence a complex space form Snc .

The converse is immediate, taking W0 = νM ∩ TSnc .

Case (2). Assume now that there exists a ∇⊥-parallel sub-bundle W0 of

νM such that N1 ⊂ W0 and W0 ⊥ J(TM ⊕W0). Then it is not difficult

to see, from equation (4) that V := TM ⊕W0 is R
c
-invariant. Since W0
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contains the first normal space of M , there is a totally geodesic submanifold

N of Sn containing M whose tangent bundle along M is TM ⊕W0. This

implies that N is totally real. Conversely, assume that M is contained in a

totally geodesic totally real submanifold N of Smc . Then W0 := νM ∩ TN
satisfies the conditions of the statement. �

Remark 6.5. Let M be a non-full totally real submanifold of a complex

space form Smc contained in a complex space form Snc ⊂ Smc . Then (νSmc )|M
is contained in ν0(M), the largest parallel and flat sub-bundle of νM .

In fact (νSnc )|M is ∇⊥-parallel. So, to prove the inclusion (νSmc )|M ⊂
ν0(M), it is enough to see that R⊥X,Y ξ = 0 for every ξ ∈ (νSmc )|M . To see

this, observe that the first normal space of M is contained in TSnc and so if

ξ, ζ ∈ (νSmc )|M then Aξ = Aζ = 0. Hence from the Ricci equation (7) we

have 〈
R⊥X,Y ξ, ζ

〉
=
〈
R
c
X,Y ξ, ζ

〉
= 0

for every X, Y ∈ X(M).

From Theorem 3, Theorem 5 and Remark 6.5 one immediately gets the

following

Corollary 6.6. Let M be a totally real submanifold of a complex space form

Snc . If J(TM) is a ∇⊥-parallel sub-bundle of νM , then the normal holonomy

group Hol0(M,∇⊥) acts on each normal space as the holonomy representa-

tion of a symmetric space (i.e. a flat factor plus an s-representation).

Now we compute the normal holonomy group Hol(M,∇⊥) of a totally

real submanifold M ⊂ N ⊂ Smc , where N is a totally geodesic totally real

submanifold of Smc , i.e., N is a real projective space in the case c > 0 and

N is a real hyperbolic space in the case c < 0.

Theorem 6. Let M be a totally real submanifold of a complex space form

Smc contained in a totally real, totally geodesic submanifold N of Smc . The

normal bundle νM decomposes as the sum of the ∇⊥-parallel subbundles

νM = νNM ⊕ νN|M ,

where νNM is the normal bundle of M as a submanifold of N . Then

(1) The normal holonomy group acts on νNM as the holonomy repre-

sentation of a symmetric space.

(2) The parallel subbundle νN|M splits as

νN|M = W ⊕W⊥
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where W is the smallest ∇⊥-parallel subbundle containing J(TM).

The group Hol(M,∇⊥) acts trivially on W⊥ and it is the full orthog-

onal group on W i.e. hol(M,∇⊥)|W = so(W ).

(3) W = J(TM) if and only if M is a totally geodesic submanifold of

Smc .

Proof. The parallel splitting ν(M) = νNM ⊕ νN|M follows from the fact

that N is a totally geodesic submanifold of M . Since N is also totally real,

it is a real space form and so Hol(M,∇⊥) acts on νNM as the holonomy

representation of a symmetric space as follows from Olmos’ Theorem [Ol90].

This proves (1).

For (2), let E1 := ∇⊥J(TM) be the subbundle of ν(N)|M obtained by

taking derivatives of sections of J(TM). By taking further derivatives we

get the subbundles Ej := ∇⊥ · · · ∇⊥︸ ︷︷ ︸
j−times

J(TM). So the smallest ∇⊥-parallel

subbundle of νN|M containing J(TM) is

W = J(TM) + E1 + E2 + E3 + · · · .

To prove that hol(M,∇⊥)|W = so(W ) notice that the curvature tensor of

∇⊥ on νN|M is

R⊥X,Y ξ =
1

4
c(JX ∧ JY )(ξ).

This immediately implies that W⊥ is flat i.e. the action of Hol(M,∇⊥) is

trivial and that Λ2J(TM) ⊂ hol(M,∇⊥)|W . As it is well-known the covari-

ant derivatives ∇jR⊥ also belong to the holonomy algebra hol(M,∇⊥)|W .

As consequence we get that J(TM) ∧ Ei and Ei ∧ Ej are both contained

in hol(M,∇⊥)|W . Thus, Λ2W is contained in the Lie algebra hol(M,∇⊥)|W
which proves that hol(M,∇⊥)|W = so(W ). This proves (2).

To prove (3) observe that W = J(TM) if and only if J(TM) is parallel.

Take X,Y ∈ X(M). Then comparing the normal parts of ∇XJY = J∇XY
one gets

J∇XY + Jα(X,Y ) = ∇⊥XJY

since α(TM×TM)∩J(TM) = {0}. Therefore J(TM) is parallel if and only

if Jα(X,Y ) = 0, i.e. M is totally geodesic. This proves (3) and completes

the proof of the theorem. �
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One of the consequences of Olmos’ holonomy theorem is the compactness

of the normal holonomy group of a submanifold of a real space form. In

general there are no reasons to expect the compactness of the normal ho-

lonomy group for submanifolds of a Riemannian space even in the case of

submanifolds of symmetric spaces (e.g. [AD04, Theorem 10, (b,i)]).

For a totally real submanifold contained in a totally real totally geodesic

submanifold of a complex space form Smc the following theorem shows that

the normal holonomy group is indeed compact.

We will need the following lemma which is a standard consequence of

[Hel62, Proposition 6.6., page 122].

Lemma 6.7. Let K be a compact connected Lie group and let N � K be

a normal subgroup of K. If the center of K is contained in N then N is

closed hence compact in K.

Theorem 7. Let M be a totally real submanifold of a complex space form

Smc contained in a totally real, totally geodesic submanifold N of Smc . Then

the normal holonomy group Hol0p(M,∇⊥) at p ∈M is compact.

Proof. According to the decomposition νM = νNM⊕W⊕W⊥, any element

τ of Hol0p(M,∇⊥) has the block diagonal form

τ =

 A 0 0

0 B 0

0 0 1

 .

By item (2) of Theorem 6 the map φ : Hol0p(M,∇⊥) → SO(W ) defined

by φ(τ) = B gives rise to the following short exact sequence of groups

(14) 0→ Ker(φ)→ Hol0p(M,∇⊥)→ SO(W )→ 0

Then to show that Hol0p(M,∇⊥) is compact it is enough to show that

Ker(φ) is compact. By definition we have that τ ∈ Ker(φ) if and only if

τ =

 A 0 0

0 1 0

0 0 1


and so we have an injective map ψ : Ker(φ) → Hol0p(M ⊂ N,∇⊥), where

Hol0p(M ⊂ N,∇⊥) is the normal holonomy group of M regarded as a sub-

manifold of N .
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Claim 1: The image ψ(Ker(φ)) is a normal subgroup of Hol0p(M ⊂
N,∇⊥).

Indeed, any element x of Hol0p(M ⊂ N,∇⊥) is determined by a loop γ in

M at p. Then the parallel transport τγ ∈ Hol0p(M,∇⊥) has the matrix

τγ =

 x 0 0

0 B 0

0 0 1


Then that Ker(φ) is a normal subgroup of Hol0p(M,∇⊥) follows from a direct

computation with the diagonal block decomposition.

Claim 2: The center of Hol0p(M ⊂ N,∇⊥) is contained in ψ(Ker(φ)).

Indeed, the short sequence (14) induces a morphism

ρ : SO(W )→ Hol0p(M ⊂ N,∇⊥)/ψ(Ker(φ)) .

Observe that if dim(W ) > 2 then SO(W ) is a semisimple Lie group hence the

center of Hol0p(M ⊂ N,∇⊥) must be contained in ψ(Ker(φ)). If dim(W ) = 1

then M is a curve so the claim is trivial. If dim(W ) = 2 then M is a surface

with parallel JTM . So part (3) of Theorem 6 implies that Hol0p(M ⊂ N,∇⊥)

is trivial and the claim follows.

Then the theorem follows from Lemma 6.7 taking into account that

Hol0p(M ⊂ N,∇⊥) is a compact Lie group due to Olmos’ holonomy the-

orem [Ol90]. �

As an immediate consequence we have the following corollary.

Corollary 6.8. The normal holonomy group Hol0p(M,∇⊥) is a product

K × SO(W ) where K � Hol0p(M ⊂ N,∇⊥) is a compact normal subgroup

containing the center of Hol0p(M ⊂ N,∇⊥). More precisely, the normal

subbundle νNM splits as

νNM = ν1 ⊕ ν2 ,

and the normal holonomy group Hol0p(M ⊂ N,∇⊥) is a product

Hol0p(M ⊂ N,∇⊥) = K × ρ(SO(W )) ,
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where K acts on ν1 and ρ(SO(W )) acts on ν2. The normal bundle νpM

splits as

νp(M) = ν1 ⊕ ν2 ⊕W ⊕W⊥

and Hol0p(M,∇⊥) = K × SO(W ) acts as K × ρ(SO(W ))× SO(W )× 1.

Corollary 6.9. Let M be a totally real submanifold of a complex space

form Smc , contained in a totally real totally geodesic submanifold N of Smc .

The normal holonomy group Holp(M,∇⊥) acts as the holonomy represen-

tation of a Riemannian symmetric space if and only if the representation

ρ : SO(W )→ SO(ν2) is trivial. Moreover, if the codimension of M in N is

smaller than dim(M), then Holp(M,∇⊥) acts as the holonomy representa-

tion of a symmetric space i.e. the representation ρ is trivial.

Proof. The first part is a direct consequence of the previous corollary.

For the second part we only need to prove that under these hypothesis

ρ(SO(W )) is trivial. Observe that dim(M) > 1 and if dim(M) = 2 then

M is a surface in the three dimensional real space form N . So νNM is flat

hence ρ is trivial.

Assume dim(M) ≥ 3. Since the codimension of M is smaller than

its dimension, we should have a representation ρ : SO(W ) → SO(ν2)

with dimW ≥ dim J(TM) > dim(ν2). This shows that ρ is trivial in

case dimW = 3 or dimW ≥ 5, since SO(W ) is a simple Lie group and

dimSO(W ) > dimSO(ν2).

If dimW = 4, we must have 3 ≤ dim(M) ≤ 4. If dim(M) = 4, J(TM) =

W and hence M is totally geodesic. So νNM is flat and ρ(SO(W )) is trivial.

If dim(M) = 3, then it is a hypersurface in N or it has codimension equal

to 2. In the last case, we should have a representation ρ : SO(4) → SO(2)

which must be again trivial. �
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