Análisis Matemático II

SEGUNDO PARCIAL — MARTES 10 DE AGOSTO DE 2021

NOMBRE Y APELLIDO: ______ LEGAJO: _____

	A	В	С	D	Е	F	G	Н	I	J	K	L	M	N	O	P	Q	R	S	Т	U	V	W	X	Y	Z	Ñ
ſ	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27

Inicial del primer nombre: (α): _____ Segunda letra del apellido (β): _____

- 1. Calcule el momento de inercia del cilindro circular, que tiene por altura α y por radio de la base β y de densidad constante ρ , con respecto a un diámetro de su base.
- 2. Calcule el volumen de la región que se encuentra entre la esfera $x^2 + y^2 + z^2 = (\alpha + \beta)^2$ y fuera del cilindro $x^2 + y^2 = \alpha^2$.
- 3. Invierta el orden de integración y calcule

$$\int_0^{\frac{1}{\beta^4}} \int_{\sqrt[4]{y}}^{\frac{1}{\beta}} \cos\left(\beta^4 \pi x^5\right) dx dy.$$

4. ¿Qué región R del plano xy minimiza el valor de la integral $\iint\limits_R \left(x^2+y^2-\beta\right) dA$? Justifique. Calcule ese valor mínimo.