Análisis Matemático II

SEGUNDO PARCIAL — LUNES 9 DE AGOSTO DE 2021

NOMBRE Y APELLIDO: ______ LEGAJO: _____

	A	В	С	D	Е	F	G	Н	I	J	K	L	M	N	O	P	Q	R	S	Т	U	V	W	X	Y	Z	Ñ
ſ	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27

Inicial del primer nombre: (α): _____ Segunda letra del apellido (β): _____

- 1. Calcule el momento de inercia del cono circular, que tiene por altura β y por radio de la base α y de densidad constante ρ , con respecto al diámetro de su base.
- 2. Calcule el volumen del cilindro $x^2 + y^2 = 2\alpha x$ comprendido entre el paraboloide $x^2 + y^2 = 2\alpha z$ y el plano z = 0.
- 3. Invierta el orden de integración y calcule

$$\int_0^{\frac{\beta}{\sqrt{2}}} \int_0^x \left(x^2 + y^2\right) dy dx + \int_{\frac{\beta}{\sqrt{2}}}^{\beta} \int_0^{\sqrt{\beta^2 - x^2}} \left(x^2 + y^2\right) dy dx.$$

4. Calcule $\iint_R (y-2x^2) dA$ donde R es la región interior a la curva de nivel α^2 del campo escalar $f(x,y) = x^2 + y^2$.