Análisis Matemático II

C	ECHNDO	EXAMEN	Parcial —	LIMES 2	DE	SEDTIEMBDE	DE	2010	1
ι.	うじんテレニションしつ	L'A A MEN	I ARCHAL —	LIUNES Z	1) 17	SEP LEWISHE	1) 17	Z(1) 1 S	-1

Apellido y Nombre: ______ Legajo: _____

CARRERA: Ingeniería Eléctrica _____ Comisión: 2.01 ____

1. Calcule

$$\iiint_D z\,dV,$$

donde D es la región del primer octante limitada por los planos $y=0,\,z=0,\,x+y=2,\,2y+x=6$ y el cilindro $y^2+z^2=4.$

- 2. Calcule la masa de una placa cuadrada de lado a, sabiendo que la densidad en cada punto es proporcional al cuadrado de su distancia a uno de sus vértices. Ayuda: Considere el cuadrado de vértices (0,0), (a,0), (0,a) y (a,a).
- 3. Calcule el centro de masa de la lámina plana acotada por las curvas $y = \sqrt{16 x^2}$, y = 0 si la densidad en cada punto es igual a k.
- 4. Indique si las siguientes proposiciones son verdaderas o falsas. Justifique.
 - a) Las expresiones A y B dadas por

$$A = 4 \int_0^4 \int_0^{\sqrt{16-x^2}} \int_{\frac{x^2+y^2}{4}}^4 dz \, dy \, dx, \quad B = 4 \int_0^4 \int_{\frac{y^2}{4}}^4 \int_0^{\sqrt{4z-y^2}} dx \, dz \, dy,$$

representan el mismo volumen.

b) $\int_a^b \int_c^d f(x)g(y) dx dy = \int_a^b f(x) dx \int_c^d g(x) dx.$

$$I = \iiint_E z \, dV > 0;$$

entonces I representa el volumen de la región E.