Álgebra y Geometría Analítica

SEGUNDO PARCIAL — 17 DE OCTUBRE 2024

Nombre y Apellido: ______ Legajo: _____

1. Sea
$$A = \begin{bmatrix} \sqrt[3]{2} & 0 \\ 0 & 1 \end{bmatrix}$$
.

- a) Verifique que $A^3 = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$.
- b) Calcule A^{2024} .
- 2. Analice la validez de las siguientes proposiciones. Justifique en cada caso.
 - a) Las matrices singulares (no inversibles) tienen traza nula.
 - b) Si \vec{x}_1 es solución del sistema homogéneo $A\vec{x} = \vec{0}$, entonces $\alpha \vec{x}_1$ también.
 - c) Si $A^{2024} = \mathbb{I}$, entonces $A\vec{x} = \vec{b}$ es compatible determinado para cualquier vector \vec{b} .
- 3. Dado el sistema de ecuaciones lineales

$$\begin{cases} kx + y + z = 1 \\ x - ky + z = k \\ x + y - k^{2}z = 1 + k^{2} \end{cases}$$

indique para qué valores del parámetro real k, el sistema resulta

- a) compatible determinado;
- b) compatible indeterminado;
- c) incompatible.
- 4. Resuelva la ecuación matricial en *X*:

$$X^t A + (BX)^t = C,$$

donde A, B y C son elementos de $\mathbb{R}^{2\times 2}$ tales que

$$a_{ij} = 2i - j$$
, $b_{hk} = \begin{cases} 0 & h = k, \\ h & h \neq k, \end{cases}$ $c_{rs} = rs$.