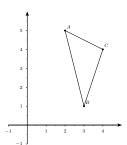
Elementos de Álgebra y Geometría Analítica

Primer examen parcial — 1	Martes 7 de mayo de 2013 — Tema 1
Apellido y Nombre:	Legajo:

- 1. Considere los puntos A(2,5), B(3,1) y C(4,4).
 - a) Grafique el triángulo que determinan.
 - b) Calcule la amplitud del ángulo BAC.
 - c) Calcule el perímetro del triángulo.
 - d) Calcule el área del triángulo.
- 2. Considere los vectores $\vec{y} = (1, 2, 3)$ y $\vec{z} = (-3, 2, -1)$.
 - a) Determine los cosenos directores del vector \vec{x} , si $\vec{x} \perp \vec{y}$, $\vec{x} \perp \vec{z}$ y el ángulo que forma con el eje OZ es agudo.
 - b) Determine el vector \vec{w} que es paralelo y del mismo sentido que el vector \vec{x} y además los vectores \vec{w} , \vec{y} y \vec{z} forman un paralelepípedo de volumen 24.

SOLUCIÓN PROPUESTA



 $1. \quad a$

b)
$$\overrightarrow{AB} = (3,1) - (2,5) = (1,-4)$$
. $\overrightarrow{AC} = (4,4) - (2,5) = (2,-1)$.

$$\cos\left(BAC\right) = \frac{\overrightarrow{AB} \cdot \overrightarrow{AC}}{\left|\overrightarrow{AB}\right| \left|\overrightarrow{AC}\right|} = \frac{1 \times 2 + (-4) \times (-1)}{\sqrt{1^2 + (-4)^2} \sqrt{2^2 + (-1)^2}} = \frac{6}{\sqrt{17}\sqrt{5}} \Rightarrow BAC \approx 49^{\circ}.$$

c)
$$\overrightarrow{BC} = (4,4) - (3,1) = (1,3).$$

Perímetro =
$$\left| \overrightarrow{AB} \right| + \left| \overrightarrow{AC} \right| + \left| \overrightarrow{BC} \right| = \sqrt{1^2 + (-4)^2} + \sqrt{2^2 + (-1)^2} + \sqrt{1^2 + 3^2}$$

= $\sqrt{17} + \sqrt{5} + \sqrt{10} \approx 9.52145$.

d) Del apartado 1b se sigue que

$$\operatorname{sen}(BAC) = \sqrt{1 - \left(\frac{6}{\sqrt{17}\sqrt{5}}\right)^2} = \frac{7}{\sqrt{85}}.$$

$$\operatorname{Área} = \frac{1}{2} \left| \overrightarrow{AB} \right| \left| \overrightarrow{AC} \right| \operatorname{sen}(BAC) = \frac{1}{2} \sqrt{17} \sqrt{5} \frac{7}{\sqrt{85}} = \frac{7}{2} = 3.5.$$

2. a) El vector \vec{x} es paralelo al vector $\vec{y} \times \vec{z} = (-8, -8, 8)$. Como la tercera componente del vector $\vec{y} \times \vec{z}$ es positiva, entonces \vec{x} y $\vec{y} \times \vec{z}$ tienen el mismo sentido. Luego

$$\vec{x}_0 = \frac{1}{|(-8, -8, 8)|}(-8, -8, 8) = \frac{1}{8\sqrt{3}}(-8, -8, 8) = \left(-\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right).$$

Los cosenos directores del vector \vec{x} son respectivamente $-\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}$.

b) Como los vectores \vec{w} y \vec{x} son paralelos, entonces $\vec{w} = \alpha \vec{x}_0$, con $\alpha > 0$, porque \vec{w} y \vec{x} tienen el mismo sentido. Además $|\vec{w} \cdot \vec{y} \times \vec{z}| = |\alpha \vec{x}_0 \cdot \vec{y} \times \vec{z}| = \alpha |\vec{x}_0 \cdot \vec{y} \times \vec{z}| = 24$, de donde resulta

$$\begin{aligned} \text{Volumen} &= \alpha \, |\, \overrightarrow{x}_0 \cdot \overrightarrow{y} \times \overrightarrow{z} \, | = \alpha \left(8 \sqrt{3} \right) = 24 \quad \Rightarrow \quad \alpha = \sqrt{3} \\ &\Rightarrow \quad \overrightarrow{w} = \sqrt{3} \left(-\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} \right) = (-1, -1, 1). \end{aligned}$$