
{log}: Programming and Automated Proof in Set Theory

Maximiliano Cristiá
*

Gianfranco Rossi
†

{log} (‘setlog’)1 is a programming language and satisfiability solver based on set theory and set relation

algebra, implementing the concept of formulas as programs—as an alternative approach to formulas as types
or proofs as programs. As a programming language it is at the intersection of Constraint Logic Programming,

set programming and declarative programming. As a satisfiability solver {log} implements several decision

procedures for the theory of finite sets and finite set relation algebra. In {log} programmers can write

abstract programs using all the power of set theory and binary relations. These programs can resemble

B or Z specifications. Then, the correctness of {log} programs is more evident than if they were written

in conventional programming languages. Furthermore, {log} programs are also set formulas. Hence,

programmers can use {log} again to automatically prove their programs verify non trivial properties. We call

the capacity of {log} code to behave as a formula and as a program, the formula-program duality; in {log} one

can write forgrams2 instead of plain programs.

The following is a {log} forgram computing the minimum (𝑀) of a set (𝑆):

min(𝑆, 𝑀) :- 𝑀 in 𝑆 & foreach(𝑋 in 𝑆, 𝑀 ≤ 𝑋).

where in corresponds to ∈ and foreach(𝑋 in 𝑆, 𝑀 ≤ 𝑋) to ∀𝑋(𝑋 ∈ 𝑆 =⇒ 𝑀 ≤ 𝑋); both in and foreach are

constraints. As can be seen, the forgram follows the mathematical definition of minimum of a set. We can

use min as a program to compute the minimum of a given set:

min({12, 3, 6, 8}, 𝑀)

in which case {log} answers 𝑀 = 3. {log} can also perform symbolic executions of min:

min({12, 3, 𝑌, 8}, 𝑀) [𝑌 is a variable] (1)

in which case {log} (interactively) returns two solutions: 𝑀 = 3, 3 ≤ 𝑌, and 𝑀 = 𝑌,𝑌 ≤ 3. As this example

shows, in {log} a query (or goal) is executed against a set of stored clauses, much as in Constraint Logic

Programming (CLP) languages. In CLP terminology, the set of stored clauses is called program. Hence, min
is a program as it is a stored clause. In this sense, {log} has an operational semantics similar to that of CLP

languages [13].

min is also a formula or specification. Then, we can use {log} to check some of its properties. As {log}
is a satisfiability solver, if we want to check 𝑝 =⇒ 𝑞 we have to call {log} on ¬(𝑝 =⇒ 𝑞): if the answer is

false, it means that 𝑝 =⇒ 𝑞 is a theorem; otherwise, it is not and {log} will deliver a counterexample. For

instance:

neg(min(𝑆, 𝑀) & min(𝑆, 𝑁) implies 𝑀 = 𝑁) (2)

returns false, whereas:

neg(min(𝑆, 𝑀) & min(𝑆, 𝑁) implies 𝑀 < 𝑁) (3)

*
Universidad Nacional de Rosario and CIFASIS, Argentina — cristia@cifasis-conicet.gov.ar

†
Università di Parma, Italy — gianfranco.rossi@unipr.it

1https://www.clpset.unipr.it/setlog.Home.html
2Forgram is a portmanteau word resulting from the combination of formula and program.

1

returns a counterexample: 𝑆 = {𝑀 ⊔ 𝑁1} ∧ 𝑀 = 𝑁 ∧ foreach(𝑋 in 𝑁1 , 𝑀 ≤ 𝑋), where {𝑀 ⊔ 𝑁1} means

{𝑀} ∪ 𝑁1 and 𝑁1 is a new set variable. Note that the counterexample can be satisfied by substituting 𝑁1

with the empty set, in which case we get: 𝑆 = {𝑀}, 𝑀 = 𝑁 .

{log} implements a decision procedure for the theory of hereditarily finite sets (HFS), i.e., finitely nested

sets that are finite at each level of nesting [13]; a decision procedure for a very expressive fragment of the

theory of finite set relation algebras [4]; a decision procedure for HFS extended with restricted intensional

sets [6]; a decision procedure for HFS extended with cardinality constraints and linear integer arithmetic

(L|·|) [10], which uses SWI-Prolog’s CLP(Q) to provide a decision procedure for the theory of linear integer

arithmetic [15]; a decision procedure for L|·| extended with integer intervals [9]; and a decision procedure

for restricted quantifiers [11]. In this way, the expressiveness of the {log} language is equivalent to the

class of finite set relation algebras [2]. On top of that, {log} adds direct access to integer algebra, restricted

quantifiers and integer intervals which are not (directly) present in relation algebra. In this sense, the

language is similar in expressiveness to specification languages such as B and Z [1, 16].

For example, the language of {log} allows to express the notion of array as a forgram:

arr(𝐴, 𝑁) :- 0 < 𝑁 & pfun(𝐴) & dom(𝐴, int(1, 𝑁)).

where arr(𝐴, 𝑁) states that 𝐴 is an array of length 𝑁 ; pfun(𝐴) is a constraint forcing 𝐴 to be a function; and

dom(𝐴, int(1, 𝑁)) is a constraint stating that the integer interval int(1, 𝑁) is the domain of 𝐴. The argument

to pfun is a set. Then, in {log} functions are sets of ordered pairs which implies that equality on functions is

extensional, and not intensional as in functional programming. In turn arr and foreach play an important role

when modeling imperative programs as forgrams. For instance, the forgram below computes the minimum

(𝑀) of an array (𝐴 of length 𝑁) by stating conditions over the state trace (𝑇) of the canonical implementation

of minimum of an array:3

minarr(𝐴, 𝑁, 𝑀) :- [arr(𝐴, 𝑁) is assumed]

arr(𝑇, 𝑁) & [a trace of length 𝑁 is necessary to compute the minimum of 𝐴]

get(𝐴, 1, 𝑋1) & [{log} implementation of the get operation over arrays]

𝑇 = {[1, 𝑋1], [𝑁, 𝑀] ⊔ 𝑇1} & [set the first and last states of the trace]

foreach(𝐼 in int(2, 𝑁), [{log} specification of the loop to search for the minimum]

Let [𝑀𝑖 , 𝑋𝑖] [two existential variables (per iteration) are introduced]

Be get(𝑇, 𝐼 − 1, 𝑀𝑖) & get(𝐴, 𝐼, 𝑋𝑖) [𝑀𝑖 and 𝑋𝑖 are bound to specific values]

In If 𝑋𝑖 < 𝑀𝑖 Then [𝐼 , 𝑋𝑖] in 𝑇 Else [𝐼 , 𝑀𝑖] ∈ 𝑇 [the minimum is updated or not]

).

That is, minarr is a logic representation of the imperative canonical algorithm computing the minimum of

an array. Note how each state of the trace is specified in the If statement: if the 𝐼-th element of 𝐴 is less than

the accumulated minimum (i.e. 𝑀𝑖) then the new state in 𝑇 must be [𝐼 , 𝑋𝑖]; otherwise, the minimum is not

updated ([𝐼 , 𝑀𝑖] ∈ 𝑇). In this way, the structure of minarr somewhat resembles that of the corresponding

imperative program but {log} processes it as any other forgram.

The decision procedures mentioned above are integrated into a single solver, implemented in Prolog,

which constitutes the core of {log}. Several in-depth empirical evaluations provide evidence that {log} is

able to solve non-trivial problems [4, 6, 12]; in particular as an automated verifier of security properties

[5, 8, 3] and for Z and B specifications [8, 7]. In all these empirical evaluations {log} is mainly used as an

automated verifier. As such, its performance is acceptable in terms of the number of verification conditions

that it is able to discharge in a reasonable time. For example, concerning the decision procedure for L|·| ,
{log} performs no worse than state-of-the-art SMT solvers and better than special-purpose algorithms [10,

Section 7.3].

3This is not {log} syntax; the forgram is written in {log} with a less readable syntax. Adding this syntactic sugar to {log} is in our

TODO list. The essence and structure of the real forgram are basically the same.

2

Internally, {log} is a rewriting system composed of more than a hundred of rewrite rules. These rules

implement low-level properties of set theory. One of the cornerstones of the system is the implementation

of set unification [14] which determines when two finite sets are equal:

{𝑎 ⊔ 𝐴} = {𝑏 ⊔ 𝐵} →
(𝑎 = 𝑏 ∧ 𝐴 = 𝐵) ∨ (𝑎 = 𝑏 ∧ {𝑎 ⊔ 𝐴} = 𝐵) ∨ (𝑎 = 𝑏 ∧ 𝐴 = {𝑏 ⊔ 𝐵}) ∨ (𝐴 = {𝑏 ⊔ 𝑁} ∧ 𝐵 = {𝑎 ⊔ 𝑁})

where 𝑁 is a new set variable. Clearly, this rule involves exploration of four disjunctive alternatives which,

in general, implies a heavy use of backtracking. Set unification is necessary to express and to (automatically)

reason about specifications common in B and Z such as:

𝐴′ = 𝐴 ∪ {𝑥} (Z)

𝐴 := 𝐴 ∪ {𝑥} (B)

which in {log} are written as 𝐴_ = {𝑥 ⊔ 𝐴}, where 𝐴_ is interpreted as the value of 𝐴 in the next state.

However, many times such “deep” equality testing is not necessary. For example, checking whether or

not all the elements of a set verify a given property does not require, in general, set equality. This leads us

to other of the main rewrite rules implemented in {log}4:

𝑥 in {𝑦 ⊔ 𝐴} → 𝑥 = 𝑦 ∨ 𝑥 in 𝐴 (4)

{𝑥 ⊔ 𝐴} ⊆ 𝐵 → 𝑥 ∈ 𝐵 ∧ 𝐴 ⊆ 𝐵 (5)

As can be seen, rules such as these make a lighter use of backtracking and, more importantly, they tend to be

closer to the optimal computational complexity required for those operations. Testing if an element belongs

to a set requires a linear search on the set; whereas testing if all the elements of a set belong to another set,

requires a quadratic search. This is so regardless of sets being basic types or implemented by means of lists

or multisets. Nevertheless, rule (4) could have been defined to make it more efficient by stopping the search

once 𝑥 = 𝑦 succeeds:

𝑥 in {𝑦 ⊔ 𝐴} → 𝑥 = 𝑦! ∨ 𝑥 in 𝐴 (6)

where 𝐺! is the {𝑙𝑜𝑔} notation to state that we are interested in just the first solution of goal 𝐺. However, as 𝑦
may be a variable and 𝐴 may contain other variables as elements, this turns the solver incomplete making it

unsuitable as an automated theorem prover. {log} would no longer be able to return a finite representation

of all the possible solutions of the input formula. In this way, {log} is able to compute at a symbolic level

not present in, for instance, functional programming. This capacity, on the other hand, pays the price of

reduced efficiency.

When {log} terminates on some formula the result is a simplified, equivalent formula. An example is

the answer to formula (2). When the returned formula is not false, it is a disjunction of formulas in solved
form—e.g., the two solutions of (1). A formula in solved form is guaranteed to be satisfiable—e.g., the

solution shown for (3). The disjunction of formulas in solved form is equivalent to the input formula.

The rewriting system is integrated with syntactic unification and CLP(Q) thus generating a truly con-

straint solving algorithm. As an example, at some point, (1) is rewritten into:

𝑀 in {12, 3, 𝑌, 8} & 𝑀 ≤ 12 & 𝑀 ≤ 3 & 𝑀 ≤ 𝑌 & 𝑀 ≤ 8

Then, rule (4) is applied making 𝑀 to be bound to each element in {12, 3, 𝑌, 8}, thus creating a series of

purely integer formulas that are solved by CLP(Q). For example:

𝑀 = 12 → 12 ≤ 12 & 12 ≤ 3 & 12 ≤ 𝑌 & 12 ≤ 8 → false [12 ≤ 3]

𝑀 = 𝑌 → 𝑌 ≤ 12 & 𝑌 ≤ 3 & 𝑌 ≤ 𝑌 & 𝑌 ≤ 8 → 𝑌 ≤ 3

4Rules for special cases are not shown for brevity.

3

References
[1] J.-R. Abrial. The B-book: Assigning Programs to Meanings. Cambridge University Press, New York, NY,

USA, 1996.

[2] Hajnal Andréka, Steven R Givant, and István Németi. Decision problems for equational theories of relation
algebras, volume 604. American Mathematical Soc., 1997.

[3] Maximiliano Cristiá, Guido De Luca, and Carlos Daniel Luna. An automatically verified prototype

of the android permissions system. CoRR, abs/2209.10278, 2022. Under consideration in Journal of

Automated Reasoning.

[4] Maximiliano Cristiá and Gianfranco Rossi. Solving quantifier-free first-order constraints over finite sets

and binary relations. J. Autom. Reason., 64(2):295–330, 2020.

[5] Maximiliano Cristiá and Gianfranco Rossi. Automated proof of Bell-LaPadula security properties. J.
Autom. Reason., 65(4):463–478, 2021.

[6] Maximiliano Cristiá and Gianfranco Rossi. Automated reasoning with restricted intensional sets. J.
Autom. Reason., 65(6):809–890, 2021.

[7] Maximiliano Cristiá and Gianfranco Rossi. An automatically verified prototype of a landing gear

system. CoRR, abs/2112.15147, 2021.

[8] Maximiliano Cristiá and Gianfranco Rossi. An automatically verified prototype of the Tokeneer ID

station specification. J. Autom. Reason., 65(8):1125–1151, 2021.

[9] Maximiliano Cristiá and Gianfranco Rossi. A decision procedure for a theory of finite sets with finite

integer intervals. CoRR, abs/2105.03005, 2021.

[10] Maximiliano Cristiá and Gianfranco Rossi. Integrating cardinality constraints into constraint logic

programming with sets. Theory and Practice of Logic Programming, pages 1–33, 2021.

[11] Maximiliano Cristiá and Gianfranco Rossi. A set-theoretic decision procedure for quantifier-free, decid-

able languages extended with restricted quantifiers. CoRR, abs/2208.03518, 2022. Under consideration

in Journal of Automated Reasoning.

[12] Maximiliano Cristiá, Gianfranco Rossi, and Claudia S. Frydman. {𝑙𝑜𝑔} as a test case generator for the

Test Template Framework. In Robert M. Hierons, Mercedes G. Merayo, and Mario Bravetti, editors,

SEFM, volume 8137 of Lecture Notes in Computer Science, pages 229–243. Springer, 2013.

[13] Agostino Dovier, Carla Piazza, Enrico Pontelli, and Gianfranco Rossi. Sets and constraint logic pro-

gramming. ACM Trans. Program. Lang. Syst., 22(5):861–931, 2000.

[14] Agostino Dovier, Enrico Pontelli, and Gianfranco Rossi. Set unification. Theory Pract. Log. Program.,
6(6):645–701, 2006.

[15] Christian Holzbaur, Francisco Menezes, and Pedro Barahona. Defeasibility in CLP(Q) through general-

ized slack variables. In Eugene C. Freuder, editor, CP, volume 1118 of Lecture Notes in Computer Science,
pages 209–223. Springer, 1996.

[16] J. M. Spivey. The Z notation: a reference manual. Prentice Hall International (UK) Ltd., Hertfordshire,

UK, UK, 1992.

4

