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1 Introduction to Model-Based Testing

Software construction has proved to be more complex than expected. Most often software projects
run beyond budget, are delivered late and having many errors. Only an insignificant portion of the
products of the software industry are sold with warranty. There is a number of reasons for this state
of the practice, but companies usually complain about the costs of software verification as the cause
of not doing it thoroughly [Bro95, page 20] [BCKO03, page 88| [Pfl01, page 157] [McC04] [RT102, table
ES-1 at page ES-5]. Reducing the costs of verification would imply more projects within budget and
less errors. One of the most promising strategies for reducing the costs of verification is making it as
automatic as possible. On the other hand, the software industry relies almost exclusively on testing to
perform the functional verification of its products. Currently, testing is essentially a manual activity
that automates only the most trivial tasks [MFC*09, RTI02].

1.1 Software Testing

Software testing can be defined as the dynamic verification of a program by running it on a finite
set of carefully chosen test cases, from the usually infinite input domain, and comparing the actual
behavior with respect to the expected one [DBAT01, UL06]. We want to remark the following:

e Testing implies running the program as opposed to, say, static analysis performed on the source
code.

e The set of test cases on which the program will be executed is finite and usually very small,
compared with the size of the input domain.

e These test cases must be selected, i.e there are some criteria or rules that must be followed in
order to chose test cases. It would be wrong a selection process guided by the mood of the
engineer.

e The output produced by the program for each test case must be compared with the expected
output. If both agree then the program is correct on that test case; otherwise some error has
been found. The artefact that helps to decide the presence of an error is called oracle.

Many qualities of a program can be tested. For example, performance, portability, usability,
security and so on. Although they are all important, functional correctness is perhaps the one on
which industry pays more attention. In many contexts, for instance, performing poorly is bad but
performing wrongly is worse.

Traditionally, the testing process has been divided into five steps as shown in Figure 1. The
idea is to start testing small portions of the system under test (SUT) called units—usually they are
subroutines, procedures or functions—in such a way that once they have passed all the tests, they
are progressively assembled together. As new units are integrated, the resulting modules are tested.
Sometimes it is possible to independently test subsystems of the SUT. Finally, the full system is
tested by users. In this way, errors are discovered as earlier as possible.

Fastest focuses on improving a particular unit testing method and providing tool support for the
selection of functional test cases for it, as we will shortly see.

1.2 Functional Correctness and Formal Specifications

The last item above suggests that there must be some way of determining what the expected output
of a program is. In other words, there should be a way of determining whether the program is func-
tionally correct or not. The classical definition of functional correctness is: a program is functionally
correct if it behaves according to its functional specification [GIJMO3, page 17]. This means that two
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Figure 1: Steps of the testing process

documents or descriptions are needed to perform functional verification: the program itself and its
functional specification. In turn, this implies that functional testing is possible only if a specifica-
tion of the program or SUT is present. The functional specification is sometimes used as the oracle
because it is, in fact, the definition of correctness for its implementation.

Furthermore, if automation of the testing process is the goal, then some kind of formal specifi-
cation is mandatory because otherwise mechanical analysis of the specification becomes unfeasible,
turning testing automation unrealistic. A specification is formal if it is written in a formal notation
or language [GJMO3, page 167]. Formal notations or formalisms for specifying software systems
are known as formal methods and have a long and well-established tradition within the Software
Engineering community [Bow, HB99].

Fastest focuses on functional testing based on a formal functional specification of the SUT.

1.3 Model-Based Testing

When testing and formal specifications are combined we enter into the scope of Model-Based Testing
(MBT). MBT is a well-known technique aimed at testing software systems analyzing a formal model
or specification of the SUT [UL06, HBBT09]. That is, MBT approaches generate test cases from the
formal specification of the SUT. The fundamental hypothesis behind MBT is that, as a program is
correct if it satisfies its specification, then the specification is an excellent source of test cases.

One of the possible processes of testing a system through a MBT method is depicted in Figure
2. The first step is to analyze the model of the SUT looking for abstract test cases. Usually, MBT
methods divides this step into two activities: firstly, test specifications are generated, and, secondly,
abstract test cases are derived from them. Although the form of test specifications depends on the
particular MBT method, they can be thought as sets of abstract test cases. Test cases produced
during the “Generation” step are abstract in the sense that they are written in the same language
of the model, making them, in most of the MBT methods, not executable. In effect, during the
“Refinement” step these abstract test cases are made executable by a process that can be called
refinement, concretization or reification. Note that this not necessarily means that the SUT has been
refined from the model; it only says that abstract test cases must be refined. Once test cases have
been refined they have to be executed by running the program on each of them. In doing so, the
program produces some output for each test case. At this point, some way of using the model as
an oracle, to decide whether a given test case has found an error or not, is needed. There are two
possibilities depending on the MBT method and the formal notation being used:

1. When the model is analyzed during the “Generation” step, each abstract test case is bound
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Figure 2: A general description of the MBT process

to its corresponding expected result. Later, these expected results are refined along the same
lines of test cases. Finally, the actual output of the program is compared with the result of
refining the expected results.

2. The output produced by the SUT for each test case is abstracted at the level of the specification.
Then, each abstract test case and its corresponding abstract(ed) output are replaced in the
specification. If the specification reduces to true then no error was found; if it reduces to false
then an error was found.

MBT has been applied to models written in different formal notations such as Z [SC96], Finite
State Machines (FSM) and their extensions [GGSV02], B [LPU02], algebraic specifications [BGM91],
and so on. However, most of the work has focused on the “Generation” step from some variant of
FSM for system testing [HBB™09, NSV*08]. One of the greatest advantages of working with FSM
lays in the degree of automation that can be achieved by many MBT methods. On the other hand,
FSM pose a strong limit on the kind of systems that can be specified.

Fastest provides support for the “Generation” step from Z specifications as a way to widen the
class of systems that can be specified.



2 The Test Template Framework

Fastest implements the Test Template Framework (TTF). TTF is a MBT framework proposed by
Phil Stocks and David Carrington in [SC96] and [Sto93]. Although the TTF was meant to be
notation-independent, the original presentation was made using the Z formal notation. It is one of
the few MBT frameworks approaching unit testing.

The TTF deals with the “Generation” step shown in Figure 2. In this framework, each operation
within the specification is analyzed to derive or generate abstract test cases. This analysis consists
of the following steps, roughly depicted in Figure 3:

1. Define the input space (IS) of each operation.
2. Derive the valid input space (VIS) from the IS of each operation.

3. Apply one or more testing tactics', starting from each VIS, to build a testing tree for each
operation. Testing trees are populated with nodes called test classes.

4. Prune each of the resulting testing trees.

5. Find one or more abstract test cases from each leaf in each testing tree.

Pruned constants Abstract
Model — m» VIS --———-———-- —- -
fest tree selection fest cases
tactic 1 pruhing
First level of test Test tree
classes T
factic 2
Last flevel of test
classes
Second level of
test classes
tactic n
factic 3

Figure 3: The Test Template Framework process is a detailed view of the “Generation” step shown
in Figure 2.

One of the main advantages of the TTF is that all of these concepts are expressed in the same
notation of the specification, i.e. the Z notation. Hence, the engineer has to know only one notation
to perform the analysis down to the generation of abstract test cases.

The concepts introduced above are explained in the next section. How Fastest implements the
TTF, is explained by means of an example in Section 3.

Stocks and Carrington use the term “testing strategies” in [SC96].
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2.1 TTF Key Concepts
In this section the main concepts defined by the TTF are described.

2.1.1 Input Space

Let Op be a Z operation. Let z; ...z, be all the input and (non-primed) state variables declared in
Op (or in its included schemas), and Tj ... T, their corresponding types. The Input Space (IS) of
Op, written Op®, is the Z schema box defined by [z, : T} ...z, : T,].

2.1.2 Valid Input Space

Let Op be a Z operation. Let pre Op be the precondition of Op. The Valid Input Space (VIS) of
Op, written OpY"  is the Z schema box defined by [Op®® | pre Op].

2.1.3 Test Class

Informally, test classes are sets of abstract test cases defined by comprehension; hence each test class
is identified by a predicate. Test classes are also called test objectives [ULO06], test templates [SC96],
test targets and test specifications.

Let Op be a Z operation and let P be any predicate depending on one or more of the variables
defined in Op"?¥. Then, the Z schema box [OpY% | P] is a test class of Op. Note that this schema
is equivalent to [ISo, | pre Op A P]. This observation can be generalized by saying that if Op® is a
test class of Op, then the Z schema box defined by [Op® | P] is also a test class of Op. According to
this definition the VIS is also a test class.

If OpC is a test class of Op, then the predicate P in Op® == [Op® | P] is said to be the
characteristic predicate of Op© or Op®" is characterized by P.

2.1.4 Testing Tactic

In the context of the TTF a testing tactic is a means of partitioning any test class of any operation.
However, some of the testing tactics used in practice actually do not always generate a partition, in
the mathematical sense, of some test classes.

For instance, two testing tactics originally proposed for the TTF are the following:

e Disjunctive Normal Form (DNF). By applying this tactic the operation is written in Disjunctive
Normal Form and the test class is divided in as many test classes as terms are in the resulting
operation’s predicate. The predicate added to each new test class is the precondition of one of
the terms in the operation’s predicate.

e Standard Partitions (SP). This tactic uses a predefined partition of some mathematical operator
[Sto93]. For example, the partition shown in Figure 4 is a good partition for expressions of the
form S&T where # is one of U, N and \.
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Figure 5: The predicate of a test class at some level is the conjunction of the predicate of its parent
test class and its own predicate.

As can be noticed, standard partitions might be changed according to how much testing the
engineer wants to perform.

2.1.5 Testing Tree

The application of a testing tactic to the VIS generates some test classes. If some of these test classes
are further partitioned by applying one or more testing tactics, a new set of test classes is obtained.
This process can continue by applying testing tactics to the test classes generated so far. Evidently,
the result of this process can be drawn as a tree with the VIS as the root node, the test classes
generated by the first testing tactic as its children, and so on. In other words, test classes’ predicates
obey the relationship depicted in Figure 5. A consequence of this relationship is that the deeper the
tree, the more accurate and discovering the test cases. As was noted by Stocks and Carrington in
[SC96], the Z notation can be used to build the tree, as follows.

Op¥1s — (09" | P
Opl™ == [0p¥" | P}
Ops* == (0p¥"* | P}

[

[
Opi* == [Opy™* | P}
Opy* == [Op/* | P3]
Op;' == [VIS | P§]
Ops* == [Ops* | P3]
Opy* == [Ops* | P3]
Opi* == [Opy* | P}
Opy* == [Opy* | P}

2.1.6 Pruning Testing Trees

In general a test class’ predicate is a conjunction of two or more predicates. It is likely, then, that
some test classes are empty because their predicates are contradictions. These test classes must be
pruned from the testing tree because they represent impossible combinations of input values, i.e. no
abstract test case can be derived out of them. In this way, pruning the initial testing tree saves CPU
time because it avoids searching abstract test cases in empty sets.



2.1.7 Abstract Test Case

An abstract test case is an element belonging to a test class. The TTF prescribes that abstract test
cases should be derived only from the leaves of the testing tree. Abstract test cases can also be written
as Z schema boxes. Let Op be some operation, let Opy;s be the VIS of Op, let 2y : Ty ...z, : T}, be all
the variables declared in Opy;g, let Op© be a (leaf) test class of the testing tree associated to Op, let
P; ... P, be the characteristic predicates of each test class from Op® up to Opy;s (by following the
edges from child to parent), and let v, : Ty ... v, : T, be n constant values satisfying P; A ... A Py,.
Then, an abstract test case of Op® is the Z schema box defined by [Op® | 71 = v A ... Az, = v,].
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3 Running an Example on Fastest

The purpose of this section is to show and explain the list of commands that should be issued to
produce abstract test cases with Fastest. Our intention is to recreate the real work of an engineer
using the tool, to show how automatic the work can be. We will give many details but for a thorough
explanation read the rest of this user’s guide.

Within this section we will assume the following:

e The Z specification was already written and has no syntactic or type errors.
e The engineer is fluent in the TTF and Fastest.

e There are some standard partitions already defined.

The example consists in applying fastest to the Withdraw operation of the following Z specifica-
tion.

3.1 The Z Specification

Think in the savings accounts of a bank. Each account is identified by a so-called account number.
Clients can share an account and each client can own many accounts—some of which might be
shared with other clients, and some not. The bank requires to keep record of just the balance of each
account, and the ID and name of each client. Any person can open an account in the bank becoming
its first owner. Owners can withdraw money from their accounts.

As we have said, each savings account is identified by an account number. We need a way to
name these account numbers. Since account numbers are used just as identifiers we can abstract
them away, not caring about their internal structure. Z provides so-called basic or given types for
these cases. The Z syntax for introducing a basic type is:

[ACCNUM]
Along the same lines, we introduce basic types for the ID’s of clients and their names:
[UID, NAME)|

We represent the money that clients can deposit and withdraw and the balance of savings accounts
as natural numbers. We think that specifying them as real numbers does not add any significant
detail to the model, but makes it truly complicated since Z does not provides a native type for real
numbers. Then, we define:

MONEY ==
BALANCE == N

The state space is defined as follows:

Bank
clients : UID + NAME

balances : ACCNUM + BALANCE
owners : UID <+ ACCNUM

In this way, clients is a partial function from UID onto NAME. It makes sense to define such a
function because each person has a unique UID but not a unique name; and it makes sense to make
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clients partial because not every person is a client of the bank all the time. The same is valid for
balances: there is a functional relationship between account numbers and balances, and not all the
account numbers are used all the time in the bank. The symbol <+ defines binary relations. It is
correct to define owners as a relation, and not as a function, because a given client may own more
than one account and each savings account may be owned by many clients.

Now, we can define the initial state of the system as follows:

__InitBank
Bank

clients = ()
balances = ()
owners = ()

The specification of withdrawing money must say that only account owners can withdraw money
from their accounts and they cannot withdraw more money than is available in the account. Hence,
the operation requires the ID of the person willing to withdraw money, the account identifier and
the amount of money to be withdrawn.

_ WithdrawOk
A Bank

u? : UID
n?: ACCNUM
m?: MONEY

u? — n? € owners

n? € dom balances

m? >0

m? < balances n?

balances’ = balances ® {n? — balances n? — m?}
clients’ = clients

owners’ = owners

Then, we define an “error” schema for the negation of each precondition of the successful case.

AccountNotEzxists ==
[EBank; n? : ACCNUM | n? ¢ dom balances|

IncorrectAmount == [EBank; m? : MONEY | m? < 0]
NotAnOwner ==

[EBank; u?: UID; n?: ACCNUM | u? — n? ¢ owners|
InsufficientFunds ==

[EBank; u?: UID; n?: ACCNUM; m?: MONEY |

m? > balances n?]
Therefore, the total operation is defined as follows.

Withdraw ==
WithdrawOk
V AccountNotExists
V IncorrectAmount
V NotAnQuwner
V InsufficientFunds

12



3.2 Applying Fastest to Withdraw

We are going to generate test cases for the Withdraw operation defined above. Fastest is executed
from a command-line (or terminal) as follows:

java —jar fastest.jar
Fastest prints the following prompt from which users can issue commands.
Fastest>

To enter a command just type-in it along with its arguments and then press the return key. The
first step is to load the Z specification. A specification is loaded with loadspec followed by a file
name. The full path to the file must be written if it is not located in the directory from which Fastest
was started. In our example we have:

loadspec bank.tex

It is assumed that the file is a text file containing the full specification. If the specification
contains syntactic or type errors it will not be loaded and errors will be informed. After loading a
specification the user has to select one or more schemas to be tested. Only schemas representing
operations can be selected. To select the schema named Withdraw just run:

selop Withdraw

Now we can either queue some testing tactics or apply DNF (see Sect. 2.1.4). If we want to apply
a testing tactic to a sub-tree and not to the whole tree, we must apply DNF first and then queue the
tactic. We think that in most of the cases the second option is the best. Therefore, we apply DNF
with:

genalltt
Which also builds the corresponding testing tree. If we want to see the testing tree we can issue:
showtt
in which case we get:
Withdraw_VIS
| Withdraw_DNF_1
| Withdraw_DNF_2
I Withdraw_DNF_3

[ Withdraw_DNF_4
[ Withdraw_DNF_5

If we want to see the contents of a test specification:
showsch Withdraw_DNF_1

in which case we get:
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\begin{schema}{Withdraw\_ DNF\_ 1}\\
clients : UID \pfun NAME \\
balances : ACCNUM \pfun BALANCE \\
owners : UID \rel ACCNUM \\

u? : UID \\

n? : ACCNUM \\
m? : \nat
\where

u? \mapsto n? \in owners \\
n? \in \dom balances \\

m? > 0 \\

m? \leq balances™n?
\end{schema}

Since the operation uses @ which usually is difficult to implement, we will test its implementation
by partitioning WithdrawP™ with SP applied to the expression balances ®{n? — balances n? —m?}.
The standard partition delivered with Fastest for & is depicted in Figure 6. The command is as
follows:

addtactic Withdraw_DNF_1
SP
\oplus
balances \oplus \{n? \mapsto balances™n? - m?\}

In our opinion it does not make too much sense partitionig the remaining test specifications—
WithdrawP™" to Withdraw? " —with the same testing tactic because the implementation of & would
not be exercised if their conditions are met. For instance, if Withdraw?™" is true, i.e. if m? <0
holds, it is very unlikely that the program will go through the implementation of & since inputs
are usually checked right at the beginning of the subroutine. In other words, it would be a really
awkward program the one in which the balance of the account is updated and then it is checked
whether the amount is positive—and in that case the transaction is reversed.

At this point, we can queue another testing tactic or we can run genalltt to see the result of
applying SP. An expert user would know the results a priori so he/she would add another testing
tactic. In this case, we would like to test large withdrawals. Therefore, we can apply NR to m? to
partition all the test specifications resulting from the application of SP. By running the following
command:

addtactic Withdraw_DNF_1
NR
m?
\langle 100000, 1000000 \rangle

14



Withdraw_VIS
| ______ Withdraw_DNF_1

[ Withdraw_SP_1

| ______ Withdraw_NR_1
| o __ Withdraw_NR_2
P Withdraw_NR_3
| ______ Withdraw_NR_4
R Withdraw_NR_5

| __ Withdraw_SP_2

| | Withdraw_NR_6

| | ______ Withdraw_NR_7

| I Withdraw_NR_8

| | __ Withdraw_NR_9

| | __ Withdraw_NR_10

Figure 7: Part of the testing tree for Withdraw

NR will be applied to all the test specifications that will be generated when SP is finally applied—
recall that for the moment SP has been queue, not applied. The list of values should have been
chosen considering both business and technological issues. If genalltt is run both testing tactics are
applied in the order they were queued—DNF is applied only the first time this command is issued.
The first part of the output of showtt is shown in Figure 7. We have omitted the rest because it is
too long and it does not add more to the understanding of what is going on. The testing tree has
six more branches like Withdrawy® plus WithdrawP™" to WithdrawPN
The final step is to run command genalltca to generate test cases.
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4 Tips on Writing Z Models for Fastest

Z is a very general language that can be used for several purposes and specifications can be written
in a variety of styles. Although Fastest can work with any kind of Z specifications—provided they
are written with the subset of Z currently supported (Appendix A)—it works better if specifications
follow some specific rules described in the following sections.

Important!! Working differently as we suggest might lead to performance penalties or even to
Fastest being unable to derive abstract test cases. If the specification or some of its operations are
very complex, then Fastest could crash when these operations have to be processed. However, if
complex operations are treated correctly Fastest might provide very useful information regarding
test case design and even abstract test cases.

4.1 The Z Notation Is Not Fully Supported

Before writing a 7Z specification for Fastest, please, read Appendix A to learn what parts of the Z
notation are still unsupported by the tool. The support for these features is being postponed since
we consider that they are somewhat superfluous for Fastest’s purpose. Hence, you will get a broad
idea of what kind of models are best suited for Fastest by first reading the appendix.

4.2 Fastest Conforms to the Z ISO Standard

Fastest parses and type-checks specifications written in the KTEX mark-up that conforms to the Z
ISO Standard [ISO02]. Then, it does not accept Spivey’s grammar.

4.3 Fastest Is Meant to be Used for Unit Testing

The main and foremost purpose of Fastest is to be an aid in unit testing . Then, specifications
should represent units of implementation or they can be decomposed as such. To be more clear, we
think in an unit as a subroutine, a function, or a method. Therefore, if your model ends with schema
System representing the behaviour of the whole system, and you try to “test” System, Fastest will
probably perform poorly. Likely, System is the disjunction of a number of primitive operations each
of which, probably, represents a unit of implementation. Hence, you will get the best of Fastest by
trying to “test” each of these operations in isolation instead of working directly with System.

One important point here is that software design—i.e. decomposing the software into a set of
elements, assigning a function to each element and defining their relationships [GJMO03]—should
guide the specification. In doing so, you will identify a set of modules or components each providing
a public interface to the rest of the system. Each module should be simple and small enough to be
easily understood; it will probably be implemented by one programmer. The Z specification of such a
design should, then, has one state schema per module and one operation schema for each subroutine
exported by each module. These are the primitive operations. If you do not have a design or if you do
not want to define one before understanding the requirements, then at least, write the specification
as a set of primitive operations that are progressively integrated to provide some complex services.
In either case, use Fastest to derive test cases for these primitive operations.

Note that full specifications can be given for these primitive operations. In other words, give
schemas for both successful and erroneous conditions for each operation, but keep them primitive.
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Ay ==BANC A5 == [Decl | Pred] N BN C
AQZZBSC
A3 ==(BVD)ANC

_ Ag

*A4 B

Decl C
Pred = B’ Decl
Pred, = C’ Pred

Figure 8: Some compound operations. Decl is a declaration and Pred and Pred; are a predicates.
B, C' and D are primitive operations.

4.4 Be Careful in Testing Compound Operations

Although it is a matter of style, specifiers might want to represent that some operation “calls” or
“uses” the services of other operations. This is some times achieved by specifying an operation
as the conjunction (A) or the composition (3) of some other operations. In particular, conjunction
can be written as schema inclusion. We call these compound operations. For instance, consider the
compound operations sketched in Figure 8. Let’s assume in all cases that B, C' and D are primitive
operations. Besides, say that fA1, fA2, fA3, fA4, fA5, fA6, £fB, fC and fD are the subroutines
implementing the corresponding operations. Then, we suggest to work as follows in each case.

Cases A; and A;. These cases are very easy to deal with. Just derive test cases for B and C' and
not for A; and As. The point here, as with some of the other cases, is that the correctness of either
fA1 or £A2 depends solely on the correctness of both £B and f£C. Then, one should derive unit test
cases for £B and £C only and then integrate? them to test A1 and fA2. Since Fastest now is only
good for unit testing, then trying to apply it to derive test cases for A; and A; might not be the best
option.

Case A3. We have distinguished this case from the previous one because we want to emphasize that
we think that B and D are two distinct operations and not two schemas of the same operation—Ilike
the normal case and an erroneous one. If this is the case, then we think that the best course of action
is to work as indicated in the previous paragraph.

Case A;. B’ and (' do not have precondition since all of their variables are primed. Hence, their
predicates will not have much influence in abstract test case derivation since test cases are generated
from the input space of the operation. For this reason Fastest will not unfold these schema references.
In this case, then, the user can work directly with Ay.

Case A;. We suggest to write As as follows:

where E is [Decl | Pred], and then to derive test cases for B, C' and E and not for Az. If [Decl | Pred]
is not named, Fastest will not recognize it as an operation thus making it impossible for the user to
work with it.

?Integration testing is not implemented yet.
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z is intended to be a natural number but

N is not a type, then we need an invari- Naturals
ant. An equivalent schema would have been Tm HZ
Naturals == [z : Z] but the invariant would be
hidden.
__ NaturalsInv
__ Naturals Naturals
x: 7
0<z
0<z
__Decr
— Decr A Naturals
A Naturals —
x>0
' =1-1 ¥=xz—-1
No proof is needed to verify that Decr preserves
the state invariant because state variables are Theorem DecrVerifiesInvariant
restricted to satisfy it. NaturalsInv A Decr = NaturalsInv’
(a) Classic style. (b) Proof obligation style.

Figure 9: A simple example showing two styles of writing state invariants. Fastest works better with
the proof obligation style.

Case Ag. As with the previous case we suggest to rewrite Ag as follows:

E == [Decly | Pred|
As==ENBAC

where Decl; might be different from Decl since it may be necessary to add some variables because
E does not include B and C, which may add some declarations. If the operation is written in this
way, then derive test cases for B, C' and F and not for Ag as we suggested in the previous cases.

4.5 Do Not Include the State Invariant in the State Schema

It is the classic style within the Z community to include the state invariant inside the state schema,
as shows the simple example of Figure 9a. However, Fastest works better if the state invariant is
not included in the state schema as shown in Figure 9b. This is the style followed by specification
languages such as B [Abr96] and TLA+ [Lam02].

Writing the state invariant outside the state schema makes it a proof obligation rather than a
state restriction. At the same time, this style avoids implicit preconditions perhaps making the
specification clearer to programmers because they do not need to calculate them. But explicit
preconditions are the key to input domain partition, which is the fundamental concept behind the
TTF. Hence, by writing the state invariant outside the state schema we avoid implicit preconditions,
thus, enabling input domain partition.

4.6 Keep the State Schema Focused on a Set of Related Operations

As we have seen, the input space (IS) of a Z operation is defined as the schema declaring all the
input and state variables of the operation. An abstract test case is an element belonging to the
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StateA _ Oper

z: X AState

y:Y =StateB
m?: M

StateB P(m?, x,z")

a: A Yy =y
b:B

P(m?, z, ") is a predicate depending only on m?,

State z and z’; i.e. Oper modifies only z. Including
StateA =StateB makes a = a’ A b = b’ redundant.
StateB

Figure 10: State variables are grouped in state schemas. Operations include A of the full state and
= of those part of the state that they do not modify.

IS. Then, the more variables in the IS, the longer the abstract test cases. Furthermore, if some of
the IS variables are not referenced in the operation’s predicate, then it means that these variables
are irrelevant for the operation. But they still need to be included in abstract test cases. Hence,
it is possible that abstract test cases contain many variables such that only a fraction of them are
meaningful to the tester.

It does not matter whether this irrelevant variables appear in predicates such us var’ = var, there
still be an equality like var = const in every abstract test case of the corresponding operation. For
instance, it is a common style to divide the state variables in some state schemas that then are joined
to define the whole state space of the system, as shown in 10. In this way, specifiers avoid to write
many equalities for those variables that the operation does not modify. However, a better strategy
if the specification is going to be loaded into Fastest would be to specify Oper as follows:

Oper == [AStateA; m?: M | P(m?,z,2") Ay = y]

Clearly, this is possible only because Oper’s predicate depends only on the state variables declared
in StateA. In the extreme case Oper can be specified with:

Oper == [z,2: X: m?: M | P(m?,z.4')

but this implies that abstract test cases derived by Fastest will not mention y. This might be a
problem if the unit implementing Oper needs some initial value for all of its variables—but perhaps
that is an indication of some poor implementation.

4.7 Avoid Using Quantifiers

Quantifiers always complicate software verification. Then, it is a good advice to avoid them as
much as possible regardless whether Fastest will be used or not—wisely use the rich mathematical
operators provided by Z to avoid many quantifications. Fastest will enter into troubles if it needs
to find abstract test cases from test classes whose predicates include quantifiers. However, it will
succeed in many cases.

4.8 Avoid Axiomatic Definitions

Fastest supports axiomatic definitions as described in Section 5.4. However, their presence decreases
the level of automation of the tool, so it is better to avoid them as much as possible. Conceptually,
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axiomatic definitions are parameters of the specification. In other words, the meaning of an speci-
fication depends on the particular value assumed for each axiomatic definition. Since test cases are
derived from the specification, they are also parametrized by its axiomatic definitions. Therefore,
the user first needs to set a constant value for each axiomatic definition and then Fastest derives
test cases considering those values. In this way, the application is tested for only one of its possible
meanings.

4.9 Avoid Arbitrary Numeric Constants

If memSize stands for the amount of available memory of some computer and the specification
includes an axiomatic definition such as:

memSize : N
memSize = 1024
and an operation like:

_ WriteMemOk
A MemoryState
x?: BYTE

#mem < memdSize
mem’ = mem "~ (z7)

then possible test classes cases may be:

e mem = ()

o H#mem =1

o #mem = memSize — 1
e #mem = memdSize

o #mem = memSize + 1
and possible corresponding abstract test cases may be:
o 17 = byteO A mem = ()

e 17 = byte0 A mem = (byte0)

o 17 = byte0 A mem = (byte0, ..., byte0) where ... represents 1021 elements
o 17 = byteO A mem = (byte0, ..., byte0) where . .. represents 1022 elements
o 17 = byteO A mem = (byte0, ..., byte0) where ... represents 1023 elements
It is very important to remark that, although we have used “...” to represent elements in each

sequence, in the real abstract test cases the elements must be written down. Precisely, the difficulty in
writing down those test cases is the reason for which we suggest avoiding arbitrary numeric constants.
Fastest will automatically find abstract test cases for all the above test classes, but there are many
situations where it will fail.
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If the model is slightly rewritten Fastest will have more chances to automatically derive abstract
test cases for more test classes and, likely, the implementation will be verified as thoroughly as with
the first model. The only change is to avoid the constant by rewriting the axiomatic definition as
follows:

memSize : N
0 < memSize
Then, users can derive the same test classes and later they bind a smaller constant to memJSize,
for example 10.
If the implementation can be configured to assume that the available memory is 10 bytes, then it
is very likely that these test cases will uncover the same errors than the original ones—and perhaps
in less time. It is important to remark that this will work if the implementation is configured, and

not modified. In other words, it will work if there is some symbolic constant that can be modified
without changing a single line of code or if this value is returned by some external function.

4.10 Do Not Use Total Functions Over Infinite Sets

A total function whose domain is an infinite set is an infinite set. Fastest cannot generate test cases
involving infinite sets. Hence, no specification including a total function over an infinite set should
be provided to Fastest if it is expected that it will generate test cases for that function. Replace it
with a partial function or by a total function whose domain is finite (and not very large).
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5 User’s Manual

Throughout of this manual remember that Fastest is still a prototype. Then, it is not as robust as
it should be.

For an academic presentation of Fastest see [CAFT14].

5.1 Installing and Executing Fastest

Fastest should work on any environment with Java SE Runtime Environment 1.6 or newer. However,
it has been tested only on Linux and MS-Windows boxes. To install the tool, just decompress and
unarchive the file Fastest.tar.gz in any folder of your choice.

5.1.1 Running Fastest and Entering Commands

To run Fastest in application mode, open a command window and run one of the following commands,
where INSTALLDIR is the full path to the directory where Fastest was installed.

java -jar INSTALLDIR/fastest.jar

java -Xss128k -Xms512m -Xmx512m -jar INSTALLDIR/fastest.jar

The first command will serve for most purposes, but if large specifications will be used then the
second command is a better option. If the computer has at least 1 Gb of memory then the second
option should be used. The Xms and Xmx options indicate the minimum and maximum amounts of
memory that the Java process will be able to use, respectively. Then, if more memory is needed
increase the maximum (it must be a multiple of 1024). In this version of Fastest it is difficult to
know if more memory is needed, but one symptom is command genalltt (section ?7?) taking too
long—more than one minute—to finish.

In either case, Fastest prints the following prompt from which users can issue commands.

Fastest>

To enter a command just type-in it along with its arguments and then press the return key. There
are three ways of learning which commands are available:

e Type help and press the return key.
e Press the TAB key and a list of commands will be printed.

e Type-in the first letters of a command and then press the TAB key: either a list of the commands
whose name starts with those letters will be printed, or the complete command name, if any,
will be printed. For instance, if after entering the a key the TAB key is pressed the following
is printed ([TAB] means pressing the TAB key):

Fastest>a[TAB]

addtactic apply
Fastest>a

And if the d key is pressed followed by the TAB key again, the result is the whole addtactic
command printed, as follows:
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Fastest>ad[TAB]dtactic

When the TAB key is pressed after command loadspec, Fastest prints the contents of the working
directory. For example, if Fastest is run from the installation directory, the result is as follows:

Fastest>loadspec [TAB]

doc fastest-server. jar fastest. jar
lib
Fastest>showsch

If the user types-in the first letters of one these files or directories and then presses the TAB key
again, the name will be completed or a filtered list will be displayed, as with command names. If
the letters correspond to a file name and it is completed, a blank space is added at the end; but if
the letters correspond to a directory, when the name is completed a / or \ character is added at the
end. If the user presses the TAB key again, the content of this directory is displayed. The TAB key
can be further pressed as a means of exploring the contents of the inner directories.

The left and right arrow keys can be used to move the cursor along the line being edited to modify
it by inserting or deleting any character. The up and down arrow keys move across the commands
that have been issued during the session. If one of these commands is recovered the user can modify
it by using the left and right arrow keys, and can run it again by pressing the return key. Commands
are executed when the return key is pressed regardless of where the cursor is.

Important!! Note that Ctrl+C kills the program making all the data and commands to be lost.
Future versions will be more robust.

Important!! Fastest does not save anything by default. The user has to use one of the commands
described in section 5.9 to save the data generated during a session.

5.2 Steps of a Testing Campaign

Roughly speaking, currently, a typical testing campaign carried on with Fastest can be decomposed
in the steps listed below. Some of them are optional and some can be executed in a different order,
as is described in the referred sections between brackets. Also, at any time users can run commands
to explore the specification and the testing trees, and to save their results (5.9).

1. Load the specification (5.3).

2. Select the operations to be tested (5.3).

3. Set a value for each axiomatic definition (5.4.6).

4. Select a list of testing tactics to be applied to each operation (5.5).

5. Generate testing trees (one for each selected operation) (5.5).

6. Calculate abstract test cases and prune unsatisfiable test classes (5.7).

7. If some leaves do not have an abstract test case, then explore these leaves to determine the
cause for that. There are two possible causes:

e The leaf predicate is a contradiction, but Fastest failed in pruning it.
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e The leaf predicate is not a contradiction, but Fastest was not smart enough to find an
abstract test case for it. In this case you can try to reduce the size of some sets or integer
constants.

8. If all of the leaves have an abstract test case, then save the results (5.9) and leave the program
(5.10).

Step 4 is perhaps the most relevant step of all since it will determine how revealing and leafy
testing trees are going to be.

Steps 4 and 5 can be executed iteratively and in the specified order or the opposite one.

Test case design includes from step 1 to step 5. The remaining steps generate test data, i.e.
abstract test cases.

The following sections explain in detail each of the steps of a testing campaign carried on with
Fastest.

5.3 Loading a Specification and Selecting Schemas

An specification is loaded by executing loadspec followed by a file name. The full path to the file
must be written if it is not located in the directory from which Fastest was started, as in the following
example:

Fastest> loadspec doc/sensors-simp.tex

It is assumed that the file is a text file containing the full specification; the current version does
not support the KTEX directive \input{}. If the specification contains syntactic or type errors it
will not be loaded and the errors will be informed. It is possible to load only one specification at a
time. To load a new specification run the loadspec command again or reset the current session by
running command reset (in either case all the data generated so far will be lost).

It is possible to load specifications where terms are used before their declarations.

Once a specification has been loaded, it can be explored, printed and saved with the commands
described in section 5.9.

After loading a specification the user has to select one or more schemas to be tested. Only
schemas representing operations can be selected. A schema represents an operation if it contains any
combination of the following: (a) an input or unprimed state variable, or (b) an output or primed
state variable. To select an schema use selop followed by the name of a Z schema representing an
operation. The list of candidate Z schemas can be displayed with showloadedops, with no arguments.
It can be selected as many schemas as needed by issuing the same number of selop commands. A
schema that was previously selected can be deselected with command deselop followed by its name.

5.4 Dealing with Axiomatic Definitions

According to the TTF and to the semantics of the Z notation, identifiers declared in axiomatic defi-
nitions neither are state variables nor input variables. However, since they do appear in operations,
they are carried all the way down to test classes. Hence, when abstract test cases have to be derived
from test classes it is necessary to bind a value for each identifier declared in an axiomatic definition,
because otherwise there is no way to find a tuple of values satisfying the test class’ predicate—in this
sense, Fastest treats all these identifiers as model parameters. At the same time, some axiomatic
definitions may be complex predicates that must be considered when test classes and cases are gener-
ated. In summary, Fastest requires that all the axiomatic definitions appearing in at least one of the
selected operations must be replaced by a constant value or by its definition, before testing tactics
are applied. In this way, testing trees will not include axiomatic definitions.
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[CHAR, USER]

control, blank : P CHAR

null, tab, space : CHAR

Mazx, Mid, Min : Z

root : USER; adm, audit : P USER
ascitThl : N + CHAR

null € control

control N blank # ()
Min = 34

Maz = 1000 + Min
blank = {tab, space}
root € adm

adm = audit U {root }

Figure 11: Examples of identifiers declared in an axiomatic definition.

Fastest replaces axiomatic definitions by their values or definitions with command replaceaxdef
but, for some axiomatic definitions, users need to run command setaxdef before running replaceaxdef.
Users can see the identifiers for which Fastest automatically bound a constant value by running com-
mand showaxdefvalues. So, we recommend to first read the following sections.

Fastest classifies identifiers declared in axiomatic definitions in the following categories, treating
each of them in a different way as is described below.

5.4.1 Basic Types

An identifier, ident : T where T is a basic type, declared in an axiomatic definition is considered a
constant. For example null, tab, space and root in Figure 11 are considered to be constants of their
respective types. These constants are used when Fastest calculates abstract test cases (5.7). The
user does not need to take any action for these identifiers.

5.4.2 Symbolic Constants

A identifier, ident : T where T can be any type but a basic one, declared in an axiomatic definition
is a symbolic constant if there is exactly one equality of the form ident = cexpr, where cexpr is a
constant expression. A constant expression is any valid expression verifying any of the following:

e The expression is a number or an element of an enumerated type.

e The expression includes only symbolic constants, numbers, elements of enumerated or basic
types and Z symbols.

For example, in Figure 11, Min, Max and blank are symbolic constants. Mid is not a symbolic
constant because there is no equality defining a constant value for it; and adm is not a symbolic
constant neither because audit U {root} is not a constant expression.

When replaceaxdef is run Fastest automatically replaces all the symbolic constants by their
corresponding values. In particular, for example, Min is replaced by 34 in 1000 + Min so Max is
replaced by 1000 + 34 when it is replaced in a schema. Then, users do not need to run setaxdef for
this kind of axiomatic definition.
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5.4.3 Equalities

If an identifier, i¢dent : T where T is any type, is declared in an axiomatic definition, and there is
exactly one equality of the form ident = expr, where expr is not a constant expression, then users
should bind a value for each identifier in expr for which Fastest does not automatically bind a constant
value and, at the same time, they cannot bind a value to ident. Then, when replaceaxdef is run,
Fastest automatically replaces ident by ezpr (which now is a constant expression) in all the schemas.
If some variable in ezpr remains unset, Fastest will return an error message when genalltca is run
and all testing trees will need to be recreated.

For example, users need to manually bind a value to audit in Figure 11 but they cannot bind a
value to adm.

Users can bind values to identifiers with command setaxdef which is explained in Sect. 5.4.6.

5.4.4 Equivalences

An equivalence is any axiomatic definition matching the following:

z: T
Vy:UeP(z,y) & Qy)

where T and U are any types, P is an atomic predicate and () is any predicate. () may depend also
on other axiomatic descriptions. We say () is the definition of x. The following definition falls in
this category:

failed : P((TIME -+ PVAL) x PVAL x CheckDef)

Vh:TIME - PVAL; v: PVAL; d : CheckDef
(h,v,d) € failed < avrDelta(lastRepVal hv d.rep) < d.low

replaceaxdef replaces all the uses of axiomatic definitions of this kind by their corresponding
predicates. In doing so, formal parameters (for instance h, v and d in failed) are replaced by the
actual parameters appearing in the use being replaced. If an axiomatic definition in this category
depends on other axiomatic definitions, then these must have a constant value before replaceaxdef
is run. In this regard, users must do as explained in previous sections.

5.4.5 All Other Declarations

Identifiers declared in axiomatic definitions that do not meet the conditions described in the previous
sections fall in this category®. For these identifiers the user should give constant values so Fastest
has chances to find abstract test cases for all the test classes.

The user can bind values to identifiers with command setaxdef (5.4.6).

5.4.6 Command setaxdef

Fastest provides command setaxdef to bind values to identifiers declared in axiomatic definitions—
provided they can be bind at all. Command syntax is as follows:

setaxdef ident ["constant_declarations"] "value"

3We will further subdivide this category to solve some issues automatically in future releases.
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where, ident is the identifier for which the user wants to set a constant value and value is that
value. This means that Fastest will replace the identifier for the value when replacing other axiomatic
definitions. The optional parameter constant_declarations must be used when the value refers

to constants of basic types (see an example below). For example, the following command sets a value
for Mid (declared in Figure 11):

setaxdef Mid "517"

When such a command is issued, Fastest checks that the type of the value is consistent with the
type of the identifier. Also, it tries to check that the value satisfies all of the predicates, appearing
in axiomatic definitions, where the identifier is referenced. However, this check can only be finished
when all these predicates become constant, i.e. when all the variables have been bound to a constant
value. Then, when the last identifier is bound to a constant, the predicate is evaluated and, possibly,
an error message is printed. Therefore, if Fastest complains that the value that was last bound to an
identifier does not verifies a predicate in an axiomatic definition, the user should check whether this
last value is the cause of the problem or it is the values previously bound to the other identifiers.
If this is the case, the user can reset the previous values with the same command, until no error
messages are printed.

Now, let’s see an example involving the optional parameter constant_declarations. Say
asciiThl (defined in figure 11) is used in some operation. Then, Fastest needs that the user sets
a value for it so the tool can find abstract test cases for all the test classes generated for the opera-
tion. In the same axiomatic definition have been defined some CHAR’s but, say, the user wants to
test the operation with a more realistic ASCII table. Hence, the user can issue a command like this
one:

setaxdef ident "charO,charl,char2:CHAR"
"\{0 \mapsto null, 1 \mapsto charO, 2 \mapsto charil,
3 \mapsto char2, 4 \mapsto tab, 5 \mapsto space\}"

In other words, constant_declarations allows the user to declare some constants of basic types
that are used to define the constant value to be bound to the identifier. Internally, Fastest declare
these identifiers in axiomatic definitions. Although the user can chose any names in the declaration,
there are two things worth to mention:

1. Avoid name clashes with other identifiers declared in axiomatic definitions and operations.

2. Chose names that increase the likeness of Fastest finding abstract test cases by following the
rules described in section ?77.

If constants of different types need to be declared, the syntax is the same than in Z, i.e.:
setaxdef ident "charO,charl,char2:CHAR; userO,user7:USER"

The user can see the values bound to identifiers by running command showaxdefvalues. Besides,
Fastest provides command showaxdefs so users can easily see all the axiomatic definitions used in
the specification.

setaxdef can be executed right after loadspec.
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5.5 Applying Testing Tactics and Generating Testing Trees

Testing tactics can be applied to any sub-tree of any (previously) selected schema—in particular they
can be applied to the entire tree. To apply a testing tactic to a particular sub-tree, that sub-tree
must already exist. Then, the first tactic can only be applied to the VIS of the operation. The first
tactic applied by Fastest is always Disjunctive Normal Form (DNF, see below). To apply DNF to all
the selected schemas just run genalltt.

Except for DNF| tactic application is performed in two steps:

1. Add the tactic to the list of tactics to be applied.

2. Run genalltt.

These steps can be repeated as many times as needed. It is also possible to run these steps even
before genalltt is run to apply DNF, in which case Fastest first applies DNF and then the tactics
added by the user—DNF is applied only once the first time genalltt is run. Testing trees can be
displayed with showtt (5.9).

Important!! If genalltt takes more than a couple of minutes to finish it might be the case that the
Java process run out of memory. It usually happens when the DNF of an operation has thousands of
disjuncts—this, in turn, occurs when the operation is too complex considering full schema unfolding.
If this occurs, the program will look like tilt—we hope to solve this in future versions. The only
thing the user can do is to kill the process from the operating system. This problem might be solved
by augmenting the memory available for the Java process (5.1).

The command addtactic adds a testing tactic to the list of tactics to be applied to a particular
(previously selected) operation. Tactics are applied in the order they are entered by the user. Initially,
the list of tactics of any operation includes only DNF', which is the first to be applied. The command
syntax is rather complex because it depends on the tactic that is going to be applied (see the following
sections for more details). The base syntax is:

addtactic sub_tree tactic_name parameters

where sub_tree is the name of either a selected schema or the name of a test class already generated,
tactic_name is the name of a tactic supported by Fastest, and parameters is a list of parameters
that depends on the tactic.

If sub_tree is the name of a schema, the tactic is applied to all the existing leaves of the
corresponding testing tree. If sub_tree is the name of an existing test class, the tactic is applied to
all the leaves of the sub-tree whose root node is that test class. The examples shown in Figure 12
may clarify this behaviour.

Unless addtactic prints an error message, the tactic has been successfully added. This com-
mand produces no other effect than adding the tactic to an internal list until command genalltt is
executed.

Command showtactics prints a brief description of the available tactics; the following sections
describe them in more detail.

5.5.1 Disjunctive Normal Form

This tactic is applied by default and it must not be selected with addtactic. By applying this tactic
the operation is written in Disjunctive Normal Form and the VIS is divided in as many test classes
as terms are in the resulting operation’s predicate. The characteristic predicate of each class is the
precondition of one of the terms in the operation’s predicate.
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KeepMaxReading_NR_3
KeepMaxReading_NR_4
KeepMaxReading_NR_5

KeepMaxReading_SP_!
KeepMaxReading_SP__

[
I
[
I
[
[
I KeepMaxReading_DNF_.
[
I
[
I
I
I
1

_ KeepMaxReading_DNF_3
KeepMaxReading_SP_11
KeepMaxReading_SP_12
KeepMaxReading_SP_13
KeepMaxReading_SP_14

KeepMaxReading_SP_15 genalltt _
addtactic KeepMaxReading_DNF_1 SP < smax~s? < r?
addtactic KeepMaxReading SP < smax~s? < r? addtactic KeepMaxReading_DNF_3 NR r? \langle 10, 1000 \rangle
genalltt genalltt

(¢) Applying DNF and SP to the entire testing (d) Applying DNF and then two different tactics to two different
tree. test classes.

Figure 12: In each figure we show the testing tree produced with the script shown below them (scripts
include only the relevant commands).
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5.5.2 Standard Partition (Fastest’s name SP)

This tactic uses a predefined partition of some mathematical operator (see “Standard domains for Z
operators” at page 165 of Stocks” PhD thesis [St093]).

Take a look at Appendix C and at the file INSTALLDIR/1ib/conf/stdpartition.spf to see what
standard partitions are delivered with Fastest and how to define new ones. We think the syntax is
rather straightforward. The user can edit this file to change, erase or add standard partitions, thus
making this tactic quite powerful and flexible. Fastest needs to be restarted if this file is changed
because it is loaded only during start up.

To apply one of those standard partitions to an operation the command is as follows.

addtactic op_name SP operator expression

where operator is the IXTEX string of a Z operator and expression is a Z expression written in
ETEX. It is assumed that operator appears in the expression and this in turn appears in the
predicate of the selected operation. Hence, this tactic can be applied to different operators and
different expressions of the same operation.

The application of the tactic divides each test class at a given level of the testing tree in as many
test classes as conjunctions defines the partition. Each conjunction is conjoined to the predicate of
the test class being partitioned to form a new test class.

5.5.3 Free Type (Fastest’s name FT)

This tactic generates as many test classes as elements a free type (enumerated) has. In other words
if a model defines type COLOUR ::= red | blue | green and some operation uses ¢ of type COLOUR,
then by applying this tactic each test class will by divided into three new test classes: one in which
¢ equals red, the other in which ¢ equals blue, and the third where ¢ equals green.

The tactic is applied with the following command:

addtactic op_name FT variable

where variable is the name of a variable whose type is a free type.

Currently, Free Type works only if the free type is actually an enumerated type, i.e. an inductive
type defined only by constants.
5.5.4 In Set Extension (Fastest’s name ISE)

It applies to operations including predicates of the form expr € {expry, ..., expr,}. In this case, it
generates n test classes such that expr = expr;, for ¢ in 1..n, are their characteristic predicates. The
command to add this tactic is as follows:

addtactic op_name ISE predicate

where predicate is an atomic predicate of the form shown above.

5.5.5 Proper Subset of Set Extension (Fastest’s name PSSE)

This tactic uses the same concept of ISE but applied to set inclusions. PSSE helps to test op-
erations including predicates like expr C {expr,...,expr,}. When PSSE is applied it generates
2™ — 1 test classes whose characteristic predicates are expr = A; with ¢ € 1..2" — 1 and A; €
P{expry, ..., expr,} \ {{expr, ..., expr,}}. {expry, ..., expr,} is excluded from P{expry, ..., expr,}
because expr is a proper subset of {ezpr, ..., expr,}. The command syntax is as follows:

addtactic op_name PSSE predicate

where predicate is an atomic predicate of the form shown above.
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5.5.6 Subset of Set Extension (Fastest’s name SSE)

It is similar to PSSE but it applies to predicates of the form expr C {expry, ..., expr,} in which case
it generates 2" by considering also {expry, ..., expr,}. The command syntax is as follows:

addtactic op_name SSE predicate

where predicate is an atomic predicate of the form shown above..

5.5.7 Numeric Ranges (Fastest’s name NR)

With this tactic the user can bind an ordered list of numbers, nq,...n;, to a numeric variable, var,
in such a way that, when the tactic is applied, it generates 2 x k 4 1 test classes characterized by the
following predicates: var < ny, var = ny, my < var < ng, ..., var = n;, n; < var < Ngy1, Var = N1,

.oy var < ng, var = ng and ng < var. Consider the following example.

Variable appearing in operation memPointer : N
List provided by the user (0,65535)
T, — memPointer < 0
Ty — memPointer = 0
Test classes generated by the tactic 75 — 0 < memPointer N memPointer < 65535
Ty — memPointer = 65535
Ty — 65535 < memPointer

The command to apply this tactic is as follows:
addtactic op_name NR variable \langle list of numbers \rangle
where variable is the name of a numeric variable appearing in the operation; and each element in
the list must be separated by a comma and in increasing order. The list must be non empty. If the

type of the variable is N, Fastest checks that all the numbers in the list are naturals.

Important!! In this version, Fastest will accept lists of numbers in any order but the behaviour of
the tactic will be unpredictable.

5.5.8 Mandatory Test Set (Fastest’s name MTS)

With this tactic the user can bind a set of constants, {vy,...,v,} to an expression, expr, in such a
way that, when the tactic is applied, it generates n + 1 test classes characterized by the following
predicates: expr = v; for all 7 in 1..n, and expr & {v,..., v, }.

The command to apply this tactic is as follows:
addtactic op_name MTS "expr" set_extension

where expr is an expression appearing in the operation and set_extension is a set extension,
written in KTEX mark-up, whose members are constants. Fastest checks whether the types of expr
and set_extension are consistent.

In this version, the constants in set_extension can be numbers, elements of enumerated types,
identifiers declared in axiomatic definitions or constants assembled out of them—for instance, 2 —
ON, where ON is an element of an enumerated type.
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5.6 Manually pruning the testing tree

Test classes can be pruned not only because they are empty, but also because they will not give
meaningful test cases. This is at the engineer discretion. Fastest provides commands prunefrom and
prunebelow to erase a sub-tree from some testing tree; and command unprune to restore previously
erased sub-trees. Their syntax and semantics are as follows.
e prunefrom class_name
This command deletes the sub-tree hanging from and including class_name. It is useful to
erase leaves.
e prunebelow class_name

This command deletes the sub-tree hanging from but not including class_name.

® unprune class_name

This command restores the sub-tree hanging from and including class_name. Note that it is
impossible to restore a sub-tree hanging from a pruned test class.

It is important to remark that manually pruning test classes from a testing tree can reduce the
quality of testing. This happens when the tester prunes one or more classes that are not empty, and
thus Fastest will not generate abstract test cases for them.

5.7 Generating Abstract Test Cases

genalltca finds abstract test cases for the leaves of the testing trees and prunes unsatisfiable test
classes.

Important!! With the default configuration values, Fastest will try to find a test case for each test
class for at most 10 seconds. Then, if there are many leaves this process can can take a long time to
finish. The tool will remain useless until the whole process terminates. If the process is interrupted,
it will have to be restarted from the very begining. In that case all the abstract test cases generated
so far will be lost.

Besides generating abstract test cases, the output of this command is a series of messages printed
on the screen. For each test class being analysed, the command first prints a message like this one:

Trying to generate a test cases for the class: <tcn>

where tcn is the name of the test class. After some time Fastest will print one of the following
messages for each test class:

o If Fastest found an abstract test case for a given test class, the following message is written:
<tcn> test case generation -> SUCCESS.
e [f Fastest was unable to find an abstract test case it will print the following message:
<tcn> test case generation -> FAILED.
Once genlltca finishes, the user can explore and save the abstract test cases with command
showsch -tca (5.9). Then, the user has to analyse those test classes for which a FAILED message

was printed. As was explained above, the FAILED message might correspond to an empty test class
that Fastest could not prune.
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5.8 Timeout for Abstract Test Case Generation

There is one configuration variable, defined in the file INSTALLDIR/1ib/conf/fastest.conf, that
can be used to change the time that Fastest will spend in trying to find a test case for a given
test class. The variable is called SETLOG_TIMEOUT and must be equal to some integer number in
miliseconds. The default value is 10000, that is Fastest will try to find a test case for each test class
for at most 10 seconds.

Every time this value is changed, Fastest must be restarted.

Fastest is delivered with the best value according to our experience.

5.9 Exploring and Saving the Results

The specification and the results of the work carried on with Fastest can be displayed or saved in
ETEX format with the commands of the show family.

Important!! If Fastest terminates by any means, all data will be lost unless the user has saved it
in files with one or more of the commands described in this section.

showloadedops prints the names of all the Z schemas that look like operation schemas. Fastest
considers that a Z schema is an operation schema if it includes input or before state variables, on
one hand, and output or after state variables, on the other. If an schema is the result of an schema
expression, then all of them might be considered operations. For instance, if A == B vV C and B
and (' are operation schemas, then showloadedops will print something like:

E I
QW =

However, the user should select only A as an operation to be tested since B and C' will be
considered when DNF is applied. Operation selection is explained in section 5.3.

showtatics prints a brief description of all the available testing tactics. A deeper explanation of
them can be fund in section 5.5 and its subsections.

The remaining show commands display and save the specification, testing trees, test classes,
abstract test cases and values bound to identifiers declared in axiomatic definitions. In any case,
command options must be entered in the order they are documented. Some commands feature the -o
option that redirects the output to a file. This is the only way, so far, to save the results generated by
Fastest. The output of most of these commands is WTEX mark-up. The following table summarizes
these commands.

Command Description Options
showaxdefs Displays the axiomatic definitions | [-o <file_name>] redirects the
present in the specification in IX¥TEX | output to a file

mark-up.

showaxdefvalues | Displays the values bound, either au- | [-o <file_name>] Same as before.
tomatically or manually, to identifiers
declared in axiomatic definitions.
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Command

Description

Options

showsch

Displays a given schema (it can be ei-
ther any of the specification schema,
test classes or abstract test cases) KTEX
mark-up.

<sch_name>

The name of the schema to be
displayed.

<unfold_order>]

Displays the result with more
or less detail (basically it ex-
pands up to some level the in-
cluded schema boxes). -u -1
expands all the schemas.

<file_name>]

Same as before.

showsch -tca

Displays all of the schemas correspond-
ing to abstract test cases (of all testing

trees) BTEX mark-up.

[-p

<op_name>]

Displays only the abstract
test cases of operation
schema op_name.

<unfold_order>]

Same as before.

<file_name>]

Same as before.

showsch -tcl

Displays all of the schemas correspond-
ing to test classes (of all testing trees)

ETEX mark-up.

<op_name>]

Displays only the abstract
test classes of operation
schema op_name.

<unfold_order>]

Same as before.

<file_name>]

Same as before.
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Command Description Options

showspec Displays the entire specification KXTEX
mark-up.
[-u]
Same as -u -1 before.
[-o <file_name>]
Same as before.
showtt Displays all of the testing trees.

[-p <op_name>]
Displays only the testing tree
of operation schema op_name.
[-o <file_name>]
Same as before.

[-x] Displays also the test classes
that were pruned.

5.10 How to Quit Fastest

Important!! Before leaving Fastest save your results. Fastest will not save anything by default and
will not remember you that there is unsaved data.

To leave the program just type quit and press the return key.
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A 7 Features Unsupported by Fastest
The following Z features are still unsupported by Fastest; the list is not exhaustive.

e Type synonyms are not supported.

e The hide (\hide, \) operator.

Fastest will crash if the specification being loaded uses this operator.

e Schema names referenced in the predicate part of some schema.
The referenced schemas will not be unfolded, thus severely reducing the effectiveness of both
automatic pruning and abstract test case search. Test case design will still be quite meaningful.
e Variable substitution.
Schema expressions such as Ala/b] where A is a schema and a and b are variables, are not
supported. If B == A[a/b], then B will not be recognized as an operation regardless of A.
e The following operators: if .

The if clause will not be rewritten when DNF is calculated, as it should be.

e The KTEX mark-up \input.
Command loadspec will only load the specification explicitly present in the file passed as
parameter. It will ignore any \input commands present in that file.

e Inductive types.

Fastest is unable to find abstract test cases from test classes whose predicates include references
to (non-constant) constructors defined in inductive types. Automatic pruning might not work
correctly in this case.

Though, enumerated types are fully supported.

e The 6 operator.
However, Fastest should be able to find abstract test cases for test classes using variables whose
type is a schema type.

e The Z sectioning system.

7 sections are not recognized by Fastest.

e Generic definitions and generic schemas.

This features are not supported although the user can perform test case design with specifi-
cations using them. Fastest will work as usual for those operation schemas that do not use
generics.

e Schema composition and piping.

Schemas defined by these operators will not be recognized as operations by Fastest, thus making
it impossible for the user to “test” them.

Section 4.4 might give some light on how to deal with this limitation.
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B Test Classes Generated for KeepMaxReading

The following schema boxes represent the test classes generated for the operation KeepMazReading.
In the framework developed in [Sto93] each test class is described as a Z schema. This is important
because only one notation is necessary to describe the specification and the test results.

KeepMaxReading VIS _ KeepMaxReading_SP_4
smax : SENSOR + Z smaz : SENSOR + 7
s?7: SENSOR s?: SENSOR

r? .7 r?:Z

s? € dom smax
smazx s? < r?
smazx s? =0

r? >0

_ KeepMaxReading_ DNF_1____
smax : SENSOR + 7
s?: SENSOR
I/

KeepMaxReading _SP_5
smaz : SENSOR + 7

s?7 € dom smax —
smazx 87 < r?

s?: SENSOR
r? 7
_ KeepMaxReading_ SP_1____ s? € dom smax
smaz : SENSOR = 7 smax s7 < r?
s?: SENSOR smaz s? >0
r? 7 r? >0
s?7 € dom smax
smaz s? < 17 _ KeepMazReading_ DNF_2
smaz s? < 0 smaz : SENSOR —+ 7Z
r? <0 s? : SENSOR
r? .7
_ KeepMazReading_SP_2___ s? ¢ dom smaz
smaz : SENSOR = 7
83 SENSOR _ KeepMaxReading_SP_6
rtZ smax : SENSOR +— 7
3?7 € dom smax s?: SENSOR
smax s? < r? r? 7
sgna_x s7<0 s? ¢ dom smax
rt=0 smaz s7 <0
r? <0
_ KeepMaxReading_ SP_3
smax : SENSOR + Z _ KeepMaxReading_SP_7
s$?7: SENSOR smax : SENSOR +~ 7
r?: 7 s?: SENSOR
rt .7
3?7 € dom smax
smax s? < r? s? ¢ dom smax
smaz s7 < 0 smaz 87 < 0
r? >0 r?7 =0
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_ KeepMaxReading_SP_8

smazx : SENSOR = 7Z
s?: SENSOR
r? 7

s? ¢ dom smax
smax s? < 0
r? >0

KeepMaxReading_SP_9
smax : SENSOR -+ 7
s?: SENSOR

r? .7

s? ¢ dom smazx
smaz s? =0
r? >0

KeepMazxReading_SP_10
smax : SENSOR -+ 7
s?: SENSOR

r? .7

s? ¢ dom smazx
smazx s7 > 0
r? >0

KeepMazxReading_DNF_3_

smax : SENSOR + Z
s?7: SENSOR
r? .7

s?7 € dom smazx
r? < smazx s?

KeepMazReading_SP_11
smaz : SENSOR + 7
s?: SENSOR

r? .7

s? € dom smax
r? < smax s?
smaz s? <0
r? <0
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_ KeepMaxReading_SP_12
smazx : SENSOR —+ Z
s?: SENSOR
r? .7

s? € dom smazx
r? < smax s?
smazx s? <0
r? =0

__ KeepMaxReading_SP_13
smax : SENSOR + 7
s?: SENSOR
r? .7

s?7 € dom smazx
r? < smax s?
smazx 87 < 0

r? >0

— KeepMaxReading_SP_14
smaz : SENSOR + 7
s?7: SENSOR
r? .7

s? € dom smazx
r? < smax s7
smaz s? =10

r? >0

— KeepMaxReading_SP_15
smaz : SENSOR + Z
s?: SENSOR
r? . 7

s? € dom smazx
r? < smax s7
smaz s? >0
r? >0




C Standard Partitions

The following standard partitions are included by default in the file 1ib/conf/stdpartition.spf.
The user can erase or modify these partitions and define new ones as well by simply editing the file.
Fastest needs to be restarted so it is notified of changes.

C.1 Sets

Standard partition for expressions of the form SU T

S={}T=A{}

S=A{LT#{}

S#FA{LT =1}

SHEFGT#{LSNT={}

S T#{LSCT

SH#FGT#{1LTCS

S%{LT%{}?T:S
S#{},T#{},(SHT)#{},_\(SQT),—\(TQS),T#S

Standard partition for expressions of the form SN T

§S={}LT=A}
S={LT#{}
S#L T =A}

SHEFGT#{LSNT={}

SHEFGT#{LSCT

SFEF{LGT#{LTCS

S#{}>T%{}7T:S
SEGLT#{LGNT)#{}~(SCT),~(TCS),T#S

Standard partition for expressions of the form S\ T

S={}T={}
S={}LT#{}
S#LT =A}

SHEFGT#{LSNT={}

S T#{LSCT

SHEFLGT#{LTCS

S#{LT%{}?T:S
SEGT#{.GNT)#{}~(SCT),~(TCS),T#S

Standard partition for expressions of the form z ¢ A

A={)
A#{}

Standard partition for expressions of the form z € A

A={z}
A#{z},z € A

Standard partition for expressions of the form #A

#A=0
#A=1
#A>1
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C.2 Integers
Standard partition for expressions of the form n < m

A<0,B<0
A<0,B=0
A<0,B>0
A=0,B>0
A>0,B>0

Standard partition for expressions of the form n < m

A<0,B<0,A<B
A<0,B<0,A=1B
A<0,B=0
A<0,B>0
A=0,B=0
A=0,B>0
A>0,B>0,A<B
A>0,B>0,A=8

Standard partition for expressions of the form n > m

A<0,B<0
A<0,B=0
A=0,B<0
A>0,B=0
A>0,B>0

Standard partition for expressions of the form n > m

A<0,B<0,A>B
A<0,B<0,A=1B
A=0,B<0
A=0,B=0
A>0,B<0
A>0,B=0
A>0,B>0,A>B
A>0,B>0,A=18

Standard partition for expressions of the form n = m

A<0,B<0
A=0,B=0
A>0,B>0

Standard partition for expressions of the form n # m

n<0,m<0
n<0,m=0
n<0,m>0
n=0m<0
n=0m>0
n>0m<0
n>0m=0
n>0,m>0
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Standard partition for expressions of the form n + m

n<0,m<0,n<m
n<0,m<0,n=m
n<0,m<0,n>m
n<0,m=0
n<0,m>0
n=0,m<0
n=0m=20
n=0m>0
n>0m>0n<m
n>0m>0n=m
n>0m>0,n>m

C.3 Relations

Standard partition for expressions of the form R ® G

R={}G={}
R={},G#{}
R#{},G={}

R#{},G#{},domR =dom G

R#{},G#{},dom G C dom R

R #{}, G #{},(dom RNdom G) = {}

R#{},G#{},dom R C dom G

R#{},G#{},(domRNdom G) # {},~ (dom G C dom R),~ (dom R C dom G)

Standard partition for expressions of the form S < R

R={}

R#{}, S ={}

R#{},S=domR

R#{},S#{},S CdomR

R#{},5#{} SNndomR = {}
R#{},SNdomR # {},dom R C S
R#{},SNdomR # {},~ (dom R C §),—~ (S C dom R)

Standard partition for expressions of the form S < R

R={}

R#{},5={}

R#{},S=domR

R#{},S#{},S CdomR
R#{},5#{},SNndomR = {}

R#{},SNdomR #{},domR C S
R#{},SNdomR # {},— (domR C §),—~ (S C dom R)
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Standard partition for expressions of the form R > S

R={}

R#{}S =1}
R#{},S=ranR
R#{}S#{}SCranR

R#{},S#{},SNranR = {}
R#{},SNranR # {},ranR C S

R#{},SNranR # {},—~ (ran R C §),—~ (S Cran R)
C.4 Sequences

Standard partition for expressions of the form s ¢
The case #ran s > #s is impossible.

JFHS < F#t,H#rans < #s,Frant < #t
JHS < #t,H#rans = #s,#Frant < #t
JHSs < #t,H#rans = #s, #rant = #t
JFHSs < #t,H#rans < #s,#Hrant = #t
JFHs = #t, H#rans < #s, #Hrant < #t
#s = #t,#rans = #s,#rant < #t
#s = F#t, #rans = #s, #rant = #t
#s = Ft, #rans < #s,#rant = #t
JFEs > Ht Hrans < #s, Hrant < #i
JFHESs > H#t H#rans = #s, Hrant < #t
JFHs > #t, H#rans = #s, #rant = #t
JFHs > #t,H#rans < #s,#rant = #t

W W »W »W »W »W »W »W »W »W »W »W ?»w ;W »
1N N N N N N L N N N N N T N
N TN TN TN TN TN TN TN TN TN N T T S
S TS T T T T T S T S S S S S
[ S s S SRS TS T S RS
1N N N N N N L O N N N L N
P T e T
T S T S T T S S S S S S S S

Standard partition for expressions of the form squash(f)

f={
f#{}1ledomf,domf C1l..#f—1,#ranf < #f

f#{}1edomf,domf C1..#f—1,#ranf = #f

f#A{} ,domf C2..#f — 1, #ranf < #f

[ # {hdomf C 2. 4f — 1 #ranf = 4f

f#{}#f €edomf,domf C2..#f, #ranf < #f

[ # () #F € domf,domf C 2. £, #ranf = #f

[ 4 (domf = 1. 4f #ranf < #f

[ domf = 1. #f #ranf = #f

[ #{h1€domf, #f ¢ domf,~(domf C1..4f) #ranf < £f

[ #{}1€domf, #f ¢ domf,~ (domf C 1..#f), #ranf — £f

f# {31 ¢ domf, #f ¢ dom f,dom f (1 (1. #) £ [}, (domf C 1. £f), #xanf < #f
74 {31 ¢ domf,#f ¢ dom f,dom f (1 (1. #) # {},— (domf C 1. #f). #xan f = #f
{4 {11 ¢domf #f €domf ~ (domf C 1. #f), #ranf < #f

f#{h1¢domf, #f €domf,~ (domf C 1..#f), #ranf = #f

f 4 (hdomf (1. #f) = {}, #ranf < #f

F 4 {hdomf 0 (1. 4f) = {} ranf = #f
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