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We will introduce the basics of the B-Method by means of an example where a set of user

requirements are formalized or modeled as a B specification. However, we start with some

preliminaries about the B-Method.

1 Preliminaries about B

B specifications take the form of state machines described by means of predicate logic and set

theory. A B state machine consists of:

1. A set of states. This set of states is given by defining state variables. Each state variable has a

name and a type. The set of states is given by all possible values of all the state variables.

For example, if we have two state variables, x whose type is Z and y whose type is {ok,no},
then some of the possible states of this state machine can be written in mathematics as

follows (this is NOT B notation):

(x = 1,y = ok), (x = 4,y = ok), (x = 4,y = no), (x = 7,y = ok), . . .

which we would draw as follows if we were using the classic graphic notation for state

machines:

x = 1

y = ok
x = 4

y = ok
x = 4

y = no
x = 7

y = ok

Two states are equal if all the state variables have the same value. That is, every time one

of the state variable changes its value, we have a new state.

2. A set of state operations. State operations are described by means of predicate logic and set

theory. There are two classes of state operations: state transitions and state queries. State

transitions make the state machine to go from one state to another, possibly taking some

input values and producing some output values. State queries do not change the current

state but only produce some output values, possible taking some input values.

If x is a state variable and a state transition changes its value to another one, we will write

x := expr meaning that the new value of x is the one obtained by evaluating the expression

expr.
For example, we can say that state transition T increments the value of state variable x in

3 and leaves y unchanged. Then we can write T in mathematics as follows (this is NOT B

notation):

T =̂ [x := x+3]

Graphically, we can say that T is the transition connecting the first two states depicted

above:

x = 1

y = ok
x = 4

y = ok
x = 4

y = no
x = 7

y = ok
T

In any case, T says that the state machine will move from a state to another one where the

value of x is three units greater than the value of x in the first state while the value of y
remains unchanged.

When T transitions from state s1 to state s2 we say that s1 is the before state or the start state
and s2 is the next state or after state.
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1.1 B types

As we have said, every B variable has a type. B types are more or less like types in programming

languages. For example, in Java all variables have a type. However, B types are closer to

mathematics than to programming languages. If T is a B type and x is a variable, then x ∈ T
means that x is of type T.

In B we have the following types:

• Numbers. In B we have the type of the integer numbers, noted Z, and the type of the

natural numbers, noted N.

The standard arithmetic operations are available: +, −, ∗, div, mod, >, <, ≤ and ≥.

• Enumerated types or enumerated sets. An enumerated type or set is just an enumeration of

constants. An enumerated type is introduced as follows:

TYPE NAME = {const1 , . . . , constn}

For example, if we are modeling the workflow of some dossier we may need to define the

following enumerated type:

STATUS = {requested,verified,aproved}

meaning that the dossier has been requested but not yet verified, that it has been verified but

not yet aproved and so on.

• Basic types or basic sets. A basic type is a set of values whose form or structure is unknown.

A basic type is introduced by simply stating its name. For example, if we want to work with

street addresses we use the name ADDR to mean the set of all possible street addresses.

We don’t care whether street addresses are character strings or numbers or anything else.

• Cross products. A cross product or Cartesian product type is the product of two types. It

is simply declared as follows:

T×U

where T and U are two B types. An element of T×U is an ordered pair (x,y) where x is

of type T and y is of type U. That is, T×U is the set of all ordered pairs (x,y) where x is

an element of T and y is an element of U.

Cross products are useful to group related characteristics of some entity. For example, we

may model the personal data of people as the combination of an address and a date of

birth:

ADDR×DATE

Then, if we have p ∈ADDR×DATE it means that p is an ordered pair whose first component

is of type ADDR and whose second component is of type DATE.

• Powerset types. A powerset type is the type of all subsets of a given type. It is noted as PT,

where T is a B type. The elements of a powerset type are sets. For example if we use:

PSTATUS
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then, possible elements of this type are: {}, {requested}, {verified,aproved}, . . .

Powerset types are used all the time in B specifications. For example, the B specification

of a program returning the maximum of a list of numbers is actually described with a set

of numbers, and not a list of numbers. Indeed, that program will return the same result

regardless of the order in which the numbers are input to it, as well as regardless of the

repeated elements the list might have. For instance, the maximum of the following two

lists is the same:

[3,5,1,3]
[1,5,3,3]

because both lists contain the same numbers. This is so because, essentially, these two

lists can be represented by the same set: {5,1,3}. Hence, if s is the set representing the

list of numbers of which we want to compute its maximum, we declare is as s ∈ PZ. Note

that if we declare s ∈ Z, it can hold only one integer number.

B provides a number of sophisticated set operators which, when used properly, can yield

very concise, simple and short specifications.

Sets and set operators are at the core of the B specification language.

Although in B sets may be infinite, in this course we will consider only finite sets.

• X↔ Y denotes the type of all binary relations between elements of types X and Y. It’s

defined as X↔ Y =̂ P(X×Y). Recall that a binary relation between sets X and Y is any

subset of X×Y. In other words, a binary relation is a set of ordered pairs.

Hence, if we have R ∈ X↔ Y then we know that R is a set of ordered pairs where each

first component is an element of X and each second component is an element of Y. That

is, R is a set such as {(x1 ,y1), (x2 ,y2), . . . }.
• X ↦→ Y denotes the type of all partial functions from X onto Y. A partial function is a

function which might not be defined in all its domain. In B, partial functions are sets of

ordered pairs. Actually we have:

X ↦→ Y ⊆ X↔ Y

That is, every partial function is a binary relation (although not every binary relation is a

partial function). More precisely:

X ↦→ Y =̂ {f | f ∈ X↔ Y ∧ ∀x,y1 ,y2.((x,y1) ∈ f ∧ (x,y2) ∈ f ⇒ y1 = y2)}

• seqX denotes the set of all sequences (lists) of elements of type X. In B an element of seqX
is a partial function whose domain is the integer interval [1,n] for some n (written as 1 . .n
in B); n is the length of the sequence. Formally:

seq(X) =̂ {s | s ∈ N ↦→ X ∧ ∃n.(n ∈ N ∧ dom(s) = 1 . .n)}
Although in B sequences are sets, the language provides some syntactic sugar to work with

them:

– The empty list is noted [ ].
– Explicit lists can be written by enclosing their elements between square brackets:

[a1 , . . . ,an].
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1.2 Domain and function application

This section is to recall two simple concepts of mathematics that all you should know.

The domain of a binary relation is the set of the first components of the ordered pairs that

belong to the relation. Formally, if R ∈ X↔ Y then:

dom(R) = {x | x ∈ X ∧ ∃y.(y ∈ Y ∧ (x,y) ∈ R)}

If f is a function, then f (x) denotes the application of f to x. Recall that if f ∈ X ↦→ Y, then f (x)
might not be defined for all x ∈ X.

2 Savings accounts – User requirements

The user requirements of the example we will use to introduce the B-Method consist of the

description of the basic operations over the savings accounts of a bank. This is a simplification

of a real problem as to serve as an introductory example of requirements formalization.

• Each bank customer is identified by means of his or her national identity card number

(NIC).

• Each bank customer can have at most one savings account.

• Each savings account is identified with the owner’s NIC.

• Each savings account will hold its current balance.

• When a savings account is just opened its balance is zero.

• Once a savings account is opened it is possible to deposit a positive amount of money; it is

possible to withdraw a positive amount of money but no greater than the current balance

account; and it is possible to consult the current balance.

• A savings account can be closed only if its current balance is zero.

• The balance of any account cannot be negative.

3 Savings accounts – B specification

Now, we will give the B specification corresponding to the requirements given above. We will

proceed as follows:

1. We will define a type for each state variable

2. We will define the set of states of the state machine

3. We will specify the operations of the state machine

The state machine is described inside a structure called Machine:

Machine Bank
. . . the state machine description goes here. . .

End

As can be seen the machine has a name: Bank.
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3.1 Types and state variables

Finding the right types for the state variables is perhaps the most important step when writing

a B specification. These types must be abstract; that is, they should represent a mathematical

object rather than a programming object. Then, in B most often the types of state variables are

sets, binary relations and partial functions. This is so because in this way the specification is

simple, short and easy to understand. The types of a B specification try to capture the essence
of the thing that is being considered. For example, if the essence of a thing is to be an integer

number, then the B type is Z rather than the typical int type of a programming language. In

effect, if x ∈ Z then x can be any integer number while if the type is int, x can be only a number

in an integer interval such as [minint,maxint]. In other words, an int occupies, say, four bytes,

but a Z occupies no bytes because is a mathematical object. If x and y are of type int then x+y
might yield an unexpected result due to overflows; if their type is Z, x+y is always what you

expect. When we write a specification we don’t want to worry about overflows.

As another example of the difference between a B type and an implementation type, consider

the name of a person. If you want to store the name of a person in a variable of a programming

language, then you probably would think of a character string of some appropriate length.

Further, you’d probably analyze if 40 chars is too little and if 120 is too many. In a B specification,

instead, you’d use a basic type:

NAME

where you can store names of any length because in a B specification memory consumption

doesn’t matter at all. That is, in a B specification we don’t think about memory consumption

because we will think about that once we understand the problem at hand. In fact, if we have

n ∈ NAME we can’t even talk about the size or length of n: it has no size because it belongs to a

basic type and we don’t know the structure or form of the elements of basic types.

So now we turn our attention to the types we need to specify the savings accounts. As we

have said, the customers identify themselves with their NIC and NIC are used to identify their

savings accounts. Hence, NIC are important in the requirements. However, are NIC numbers?

Are they strings? Are they composed of more than one value? It doesn’t matter. It only matters

that a NIC identifies a person and a savings account. Then we declare a basic type called NIC
inside the Bank machine as follows:

Machine Bank
Sets NIC

. . . the machine description continues here. . .
End

In this way we know nothing about the structure of the elements of NIC. Nevertheless, B

allows us to build sets of NIC and to define binary relations and partial functions that take or

return NIC. Besides, we can use the basic logic operations on the elements of NIC. For example,

assuming n,m ∈ NIC; A,B ∈ PNIC:

n = m
n ≠ m
n ∈ A
A ⊆ B
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are all valid B predicates.

It’s very important to note that n = m is a predicate, not an assignment. Then, we can write

n = m or m = n.

The user requirements say that we need to store the balance of each account and that money

can be deposited and withdrawn from them. Hence, we need to talk about amounts of money

in our specification. At first sight an amount of money looks like a real number. But, on the

other hand, we know that the minimal subunit of Euro is 1 cent. Then, actually, an amount

of money looks more like a rational number (because it always has a finite number of decimal

numbers). Furthermore, we can multiply any amount by 100 thus obtaining an integer number.

For instance, we may say that 1.32 euro are 132 cents of euro. Therefore, we can model any

amount of money with an integer number.

Now we need to think in the sate variables of our specification. Clearly, the bank will have

a number of savings accounts at any given time. For example, we may think that when the

bank just opens to the public it has no savings accounts until the first customer opens his or

her account. At that moment the bank has only one account whose balance is zero. So the

bank transitioned from the state having no accounts to the state where there is a single account

whose balance is zero. Now the owner of the account can deposit 200 euro in the account, thus

making the bank to transition to a new state where there is a single account but whose balance

is now 200 euro. After that, a new customer may open an account and so the bank transitions

to a new state where there are two savings account one with 200 euros and the other with zero.

In summary: each state of the bank is characterized by the number of savings accounts, the identity of
each owner and the balance of each account.

The requirements say that each account will be identified with the NIC of its owner and

that we should store the balance of the account. Hence, we can think of a savings account as

an ordered pair (nic,balance)where nic is the NIC of the owner of the account and balance is the

current balance of the account. Therefore, we can put all these ordered pairs in a set to get a

state of the bank:

{(nic1 ,balance1), . . . , (nicn ,balancen)}

That is, we have the number of savings accounts, the identity of each owner and the balance of each
account. So if 120 euro are deposited in the account identified with nic1 we have a new state:

{(nic1 ,balance1+120), . . . , (nicn ,balancen)}

In consequence, we can specify the state of the bank with a single state variable whose

values are sets of ordered pairs. We will call this variable sa for savings accounts. Now we state

that sa is the state variable of the Bank machine as follows:

Machine Bank
Sets NIC
Variables sa

. . . the machine description continues here. . .
End

Any set of ordered pairs is a binary relation. In our case the domain of the binary relation

is NIC and the range is N, because balances cannot be negative. So, to begin with, we have
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sa ∈ NIC↔ N. Furthermore, note that all the nici are different since each person has a different

NIC and requirements say that each person can have at most one savings account. Then, for
each nici we have an unique balance. Hence, we have a function between NIC and N. So, in a second

approximation, we have sa ∈NIC→N. That is, sa is a total function. However, not every person

will be a bank customer. This means that there may exist n ∈ NIC for which sa(n) is undefined

because the person whose NIC is n isn’t a bank customer. So, finally, we arrive at the right type

for the state variable, sa ∈ NIC ↦→ N. That is, sa is a partial function because not every person is

a bank customer at all times. The type of sa is encoded as follows in the Bank machine:

Machine Bank
Sets NIC
Variables sa
Invariant sa ∈ NIC ↦→ N

. . . the machine description continues here. . .
End

The word Invariant indicates that sa ∈ NIC ↦→ N is or should be a state invariant. A state

invariant is a predicate that is true of every state of the machine. Then, we’re saying that we

want sa to be a partial function from NIC onto N in every state of the bank. Clearly, if we arrive

to a state of the bank where there is an ordered pair (n,b) ∈ sa such that b < 0 we’re in trouble;

likewise, if the bank ever gets to a state such that (n,b1), (n,b2) ∈ sa ∧ b1 ≠ b2, we’re in trouble.

How can we be sure the bank will never get to those states? We’ll see that in Section 5. For now,

we’ll use Invariant just as the place where we give the type of our state variables.

As any state machine Bank starts from some initial state. In this case the bank has no savings

accounts. We encode this as follows:

Machine Bank
Sets NIC
Variables sa
Invariant sa ∈ NIC ↦→ N
Initialization sa := {}

. . . the machine description continues here. . .
End

Recall that in B partial functions are sets of ordered pairs. So it is legal to state that a partial

function is equal to the empty set.

Also observe that we use :=, called abstract assignment, to set the initial state. Abstract

assignments are used to set the values of state variables and output parameters. x := expr can

be read as “x becomes expr”. In x := expr, x must be a state variable or an output parameter and

expr can be an expression.

3.1.1 Why not a list instead of a function for sa?

What if we specify that sa is a list of ordered pairs instead of a partial function? For example, in

Java we can define the class SavingsAccountwith two member variables, nic and bal, to store

the NIC and balance of a savings account. Then we can define a list of SavingsAccount:
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List<SavingsAccount> sa;

where we can store the complete state of the bank.

So, why not doing the same in B? Actually, lists are available in B as sets of ordered pairs,

called sequences. Then, we could have defined sa as sa : seq(NIC×N) instead as a partial function.

So, why not doing like this which, after all, is closer to a possible Java implementation? The

answer is because defining sa as a sequence (or a list) is not exactly what sa is. For example, the

following is a possible value for sa if it’s declared as a sequence:

[(nic1 ,100), (nic2 ,230), (nic1 ,529)]

That is, apparently, the bank would have three accounts. However, note that the first and last

pairs have the same account identifier, nic1, but different balances, 100 and 529. Is this right?

What is the correct balance of the nic1 savings account? The answer is that this isn’t right

because an account should have exactly one balance. The problem is that a sequence (or a

list) allows for repetitions making it possible to have the same account identifier with different

balances. But, according to the requirements, this cannot happen.

On the other hand, if sa is defined as a partial function, the following set:

{(nic1 ,100), (nic2 ,230), (nic1 ,529)}

can’t be a value for sa because this set isn’t a partial function.

The point is that a partial function correctly models what sa should be. It doesn’t matter if

partial functions aren’t available in programming languages or if they aren’t efficient enough

because we are writing a formal specification, we aren’t writing a program1. We write a spec-

ification because we want to clearly understand what the program should do. For now we

aren’t concerned with performance issues; for now, we don’t care how to provide an efficient

program, we just care about providing a correct program. Later on, we can (and we will) care

about providing a correct and efficient program.

In other words:

1. When we write a specification we are defining the problem

2. When we write a program we are defining the solution to that problem

3.2 Specifying the operations for the savings accounts

So far the specification is the following:

Machine Bank
Sets NIC
Variables sa
Invariant sa ∈ NIC ↦→ N
Initialization sa := {}

. . . the machine description continues here. . .
End

1Actually, partial functions are available in, for instance, Java as hash tables.
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That is, we have the types we are using in the specification, the definition of the set of states

of the bank and the initial state.

The next step is to specify the operations that can be performed on the bank. According to

the requirements we must specify the following five operations (which are classified as either

state transitions or state queries):

1. Open an account (state transition)

2. Deposit money in an account (state transition)

3. Withdraw money from an account (state transition)

4. Query the current balance of an account (state query)

5. Close an account (state transition)

3.2.1 Open an account (state transition)

The operation specifying how an account is open is called open. In order to open an account

we need the account number of the new account. This value is an input parameter to open; we

call this parameter an. Operations are specified in a section named Operations, as follows.

Machine Bank
Sets NIC
Variables sa
Invariant sa ∈ NIC ↦→ N
Initialization sa := {}
Operations

open(an) =̂ . . . specify the operation here . . .
. . . the machine description continues here. . .

End

As we have said, ‘open an account’ is a state transition that can be described as follows:

• Take an

• Check if an ∈ NIC. Otherwise open could be called with a value that is not an account

identifier.

• Check if there is an account whose identifier is n (because we can’t open the same account

twice)

All the account identifiers used in the bank are the first components of the ordered pairs

stored in sa. This set can be easily obtained by taking the domain of sa, which is exactly

that: the set of the first components of the ordered pairs of sa.

The domain of sa is written dom(sa). Then, checking if there is an account whose identifier

is n can be written as an ∈ dom(sa).
• If an identifies a new account, then change the state of the bank by adding an ordered pair

of the form (an,0) to sa.

We add (an,0) because, according to the requirements, the new account’s balance is zero.
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Adding an ordered pair of the form (an,0) to sa can be done with set union: sa∪{(an,0)}.
That is, sa∪ {(an,0)} is a partial function equal to sa except that it has one more ordered

pair, (an,0).
Recall that we write sa∪{(an,0)} and not sa∪(an,0) because∪ expects two sets (and (an,0)
is an ordered pair, not a set; {(an,0)} is a singleton set whose element is an ordered pair).

In B the ordered pair (x,y) can also be written as x ↦→ y. For instance, sa∪{an ↦→ 0}. x ↦→ y
can be read as “x maps to y”. We will use the ↦→ notation from now on.

Now, we will write all that in the machine, as follows:

Machine Bank
Sets NIC
Variables sa
Invariant sa ∈ NIC ↦→ N
Initialization sa := {}
Operations

open(an) =̂
PRE an ∈ NIC ∧ an ∉ dom(sa)
THEN sa := sa∪{an ↦→ 0}
END;

. . . the machine description continues here. . .
End

The specification of open states that if the predicate written in the PRE section holds, then

the predicate written in the THEN section must hold. As in the Initialization section, abstract

assignments are used to set the values of the state variables in the new state. An abstract

assignment is compact form of representing a predicate. We will see that in Section 5. Then,

the specification of open can be depicted graphically as follows:

sa = {. . . } sa = {. . . }∪ {an ↦→ 0}
open(an)

That is, if open(an) is executed from a state where sa is equal to some set, symbolized with {. . . },
then the value of sa in the next state is {. . . }∪ {(an,0)}.

In general, an operation is specified by giving its preconditions and its postconditions. The PRE
section can only hold preconditions; the THEN section, called body, can hold both, preconditions

and postconditions. Then, in open the precondition is an ∈ NIC ∧ an ∉ dom(sa), and the post-

condition is sa := sa∪ {an ↦→ 0}. A precondition is a predicate that its expected to be true before
the operation is executed and a postcondition is a predicate that is guaranteed to be true after
the operation is executed. If the operation is called when the precondition is not met, the operation
can do anything. In other words, the specification says that if the precondition is true before the

operation is called, then the postcondition will be true after the operation is executed. It says

nothing about the behavior when the precondition doesn’t hold. In general, a precondition is a

predicate that depends only on state variables and input parameters; and a postcondition is a

predicate that can depend on any variable (state, input and output). The abstract assignment

(:=) can be used only in postconditions. For example, an ∈NIC ∧ an ∉ dom(sa) is a precondition

because it only depends on an (which is an input parameter) and sa (which is a state variable);
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and sa := sa∪ {an ↦→ 0} isn’t a precondition, and so it’s a postcondition, because it uses the

abstract assignment (:=).

Therefore, when you have to specify an operation try to think first in terms of preconditions

and postconditions. Then, write them down using the B language.

In the precondition we must give a type for each input parameter of the operation. We did

so by stating an ∈ NIC.

If the precondition is true before the operation is called, then the postcondition will be

true after the operation is executed.

If the operation is called when the precondition is not met, the operation can do anything.

The caller is responsible of calling the operation when its precondition is met.

Improving the specification of open with error messages. The specification of the operation

that opens an account given in open is fine but it doesn’t say what the system should do if open
is called when the precondition isn’t true. That is, what should happen if we attempt to open an

account whose identifier is already in use? So far, we have specified only called normal behavior
or happy path. That is, we have specified the operation when the caller makes no mistakes. If

the operation is called when the precondition does not hold, the specification says that open
can’t be executed. However, this is not very informative for the user. Imagine a user calling

open with an account number already in use. The system will do nothing. Then, the user may

think that the account has been opened because the system didn’t show an error. Hence, we are

going to improve open by adding to it error messages or error codes. More generally, we’re going

to specify the abnormal behavior or erroneous behavior.
Then, we need to say what are the messages the system will output when operations are

executed. Further, we need to define a type for the messages. Are error messages character

strings? Are they more like error codes, for instance 1 representing a successful operation

and 0 an unsuccessful one? As with other types of the specification, we try to abstract these

representations to capture the essence of what we want to say. Then, we will think of error

messages as constants of an enumerated type. For now, we will think in just two messages:

1. ok, meaning that the operation has been successfully executed

2. nicExists, meaning that a given account identifier is already in use in the bank

The fact that these messages look like character strings doesn’t mean they actually are so. ok
and nicExists are just values of some type we still need to define. Given that this type will have

a finite number of elements we can use an enumerated type. Then, we define the following:
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Machine Bank
Sets NIC; MSG = {ok,nicExists} [new set]

Variables sa
Invariant sa ∈ NIC ↦→ N
Initialization sa := {}
Operations

open(an) =̂
PRE an ∈ NIC ∧ an ∉ dom(sa)
THEN sa := sa∪{an ↦→ 0}
END;

. . . the machine description continues here. . .
End

We will add more elements to MSG as needed.

Showing an error message means that the system outputs the message to the environment.

B provides a general mechanism for operations to produce outputs (they can be error messages

or whatever other information should be sent to the environment). This mechanism is based

on output parameters. An output parameter is declared as follows:

msg← open(an) =̂ . . .

In this way msg is an output parameter of open.

Now, we will redefine open as to output ok when everything goes right, and nicExists when

an already used account number is passed in as input parameter. If an ∉ NIC the operation will

not be executed. Since outputs are something the operation produces once it’s executed we

need to modify the THEN section as well as moving some preconditions .

Machine Bank
Sets NIC; MSG = {ok,nicExists}
Variables sa
Invariant sa ∈ NIC ↦→ N
Initialization sa := {}
Operations

msg← open(an) =̂
PRE an ∈ NIC
THEN IF an ∉ dom(sa) THEN sa,msg := sa∪{an ↦→ 0},ok ELSE msg := nicExists END
END;

. . . the machine description continues here. . .
End

Observe the statement:

sa,msg := sa∪{an ↦→ 0},ok

This is called multiple assignment. The meaning of the multiple assignment is that several

variables are simultaneously assigned each one with a value. This kind of assignment can also
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be written as a parallel assignment:

sa := sa∪{an ↦→ 0} ∥ msg := ok

Parallel assignment is commutative:

x1 := expr1 ∥ x2 := expr2 ≡ x2 := expr2 ∥ x1 := expr1

This makes it clear that the assignments aren’t executed in any particular order.

Also observe that in the ELSE branch we don’t change the state of the machine. Then, only

an output is produced when an ∈ dom(sa).
Finally, consider that if an ∈ NIC doesn’t hold the operation is not executed at all; nothing

happens in that case, then.

Why not considering the possibility of calling open(an)with an ∉ NIC? In other words, why

we don’t issue an error message when an ∉NIC? The idea is that the programmer will implement

NIC as some type in the programming language. Then, the compiler of that programming

language won’t compile a program where there is a chance of an not being of the type chosen

by the programmer. Hence, we don’t need to consider the case where an ∉ NIC. In this way the

operation can’t be called in a state where its precondition doesn’t hold.

Specifications and implementations. Had this been the full specification of the system we

should handle it to a programmer so (s)he would implement it in some programming language.

It wouldn’t be necessary to handle him or her the user requirements (Section 2). The specification

contains enough information for the programmer to implement a correct program. More

importantly, the specification is precise, unambiguous and abstract. Then, the specification doesn’t

forbid any particular implementation as long as it’s correctly implemented.

However, before handling the specification to the programmer we can mathematically check

that the specification is more or less correct. We’ll see more on this in Section 5. Furthermore,

specifications can be mathematically transformed into programs. In this way, the implementation

is said to be correct by construction. The B-Method is particularly well-suited for that, although

we won’t get that far in this course.

3.2.2 Deposit money in an account (state transition)

Once we have an account we can deposit money in it. The operation, called deposit, receives

two inputs: the account identifier, an, and the amount to be deposited, amt. The type of an
is NIC and the type of amt is N. The preconditions for successfully depositing an amount of

money amt in the account an are the following:

1. an must be a NIC. Formally:

an ∈ NIC

This is the type of an. It’s mandatory to include the type of each input parameter.

2. an must be a valid account identifier. Formally:

an ∈ dom(sa)
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3. amt must be a natural number. Formally:

amt ∈ N
This is the type of amt. It’s mandatory to include the type of each input parameter.

4. amt must be a positive number (it makes no sense to deposit zero euro). Formally:

amt > 0

The postconditions for the normal behavior are the following:

1. The message ok must be shown.

2. The balance of an must be equal to its balance in the start state plus amt; all other accounts

remain the same; no accounts are added nor deleted from the bank.

The balance of an in the start state is sa(an). Indeed, since sa is a function from NIC
onto N, then sa(an) is the balance of an. It’s like, what is the cosine of 𝜋? The answer

is cos(𝜋). That is, we just apply the function to the argument. Besides, sa denotes the

set of accounts of the bank in the start state, so sa(an) is the balance of an in the start

state. Now, sa(an) + amt is equal to the balance of an in the start state plus amt. Then,

sa(an)+ amt must be the balance of an in the next state. We would like to write something

like: sa(an) := sa(an) + amt. However, this is illegal in B because the left hand side of an

abstract assignment must always be a variable. Anyway, let’s keep an eye on this.

Now we look at the other conditions: all other accounts remain the same; no accounts are

added nor deleted from the bank. Let’s abuse the abstract assignment again:

dom(sa) := dom(sa)
∀ i.(i ∈ dom(sa) ⇒ (i ≠ an⇒ sa(i) := sa(i)))

The first formula says that no account is added nor deleted from sa; the second says that

the balances of all the accounts different from an suffer no modifications. So we have the

following three conditions that establish the value of sa in the next state:

sa(an) := sa(an)+ amt
dom(sa) := dom(sa)
∀ i.(i ∈ dom(sa) ⇒ (i ≠ an⇒ sa(i) := sa(i)))

These conditions appear very frequently in B so the language provides an operator, called

update and noted ◁+, that specifies those three conditions in a single formula. Then, the

right B formula for the postcondition is the following:

sa := sa◁+ {an ↦→ sa(an)+ amt}

where the left hand side is now a variable and the right hand side an expression. B provides

◁+ because updating a function is a frequent operation in specifications. Updating a

function means to change the second component of one or more of its ordered pairs.

Hence, in general, we can use ◁+ as follows:

f ◁+ {(x1 ,y1), . . . , (xn ,yn)}
Furthermore, if an xi doesn’t belong to the domain of f then ◁+ adds the ordered pair

(xi ,yi) to f . Then, f ◁+ {(x1 ,y1), . . . , (xn ,yn)} will always be defined for all xi.

We will present the mathematical details of ◁+ below.
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Now we can specify the normal behavior when a deposit is made.

Machine Bank
Sets NIC; MSG = {ok,nicExists}
Variables sa
Invariant sa ∈ NIC ↦→ N
Initialization sa := {}
Operations

msg← open(an) =̂
PRE an ∈ NIC
THEN IF an ∉ dom(sa) THEN sa,msg := sa∪{an ↦→ 0},ok ELSE msg := nicExists END
END;

msg← deposit(an,amt) =̂
PRE an ∈ NIC ∧ amt ∈ N ∧ an ∈ dom(sa) ∧ 0 < amt
THEN sa,msg := sa◁+ {an ↦→ sa(an)+ amt},ok
END;

. . . the machine description continues here. . .
End

Even though 0 < amt implies amt ∈ N, B requires amt ∈ N to be included in the precondition

anyway. Same happens with an ∈ dom(sa) and an ∈ NIC. We can say that amt ∈ N and an ∈ NIC
are type constraints, whereas 0 < amt and an ∈ dom(sa) are functional preconditions. In a

technical sense both are preconditions but of a different nature.

Next, we need to specify the abnormal behaviors. In order to do that we need to negate each

functional precondition and specify an error message for each negation2. In this case we have

two abnormal behaviors given by the negation of each functional precondition:

• an ∉ dom(sa) then output nicNotExists
• amt = 0 then output amountError

This makes three behaviors for deposit: one normal plus two abnormal. We can specify this

with a nested IF-THEN-ELSE, as follows:

IF an ∈ dom(sa) ∧ 0 < amt
THEN sa,msg := sa◁+ {an ↦→ sa(an)+ amt},ok
ELSE IF an ∉ dom(sa) THEN msg := nicNotExists ELSE msg := amountError END
END

However, B provides a more convenient statement for these cases that avoids nesting:

SELECT an ∈ dom(sa) ∧ 0 < amt THEN sa,msg := sa◁+ {an ↦→ sa(an)+ amt},ok
WHEN an ∉ dom(sa) THEN msg := nicNotExists
WHEN amt = 0 THEN msg := amountError
END

2Another option is to define a single behavior comprising all the abnormal behaviors. In that case we can specify

that a generic error message is shown. However, in this course we will always write one case for each abnormal

behavior.
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Machine Bank
Sets NIC; MSG = {ok,nicExists,nicNotExists,amountError} [more elements in MSG]

Variables sa
Invariant sa ∈ NIC ↦→ N
Initialization sa := {}
Operations

msg← open(an) =̂
PRE an ∈ NIC
THEN IF an ∉ dom(sa) THEN sa,msg := sa∪{an ↦→ 0},ok ELSE msg := nicExists END
END;

msg← deposit(an,amt) =̂
PRE an ∈ NIC ∧ amt ∈ N
THEN

SELECT an ∈ dom(sa) ∧ 0 < amt THEN sa,msg := sa◁+ {an ↦→ sa(an)+ amt},ok
WHEN an ∉ dom(sa) THEN msg := nicNotExists
WHEN amt = 0 THEN msg := amountError
END

END
End

Figure 1: Specification of the deposit operation

If several conditions on a SELECT statement are true at the same time then the choice of the

branch that is executed is made nondeterministically. If none of the conditions is true, then the

entire statement won’t be executed. In our case the last two branches can be true at the same

time. This means that in that case deposit will show only one error message, but we don’t know

which one.

Finally, we can define the complete operation as shown in Figure 1.

Note that we move the functional preconditions to the THEN section in order to be able

to select what postcondition must hold in each case. Actually, the specification of deposit is

equivalent to the following formula:

an ∈ NIC ∧ amt ∈ N (1)

∧ (an ∈ dom(sa) ∧ 0 < amt⇒ sa,msg := sa◁+ {an ↦→ sa(an)+ amt},ok)
∧ (an ∉ dom(sa) ⇒msg := nicNotExists)
∧ (amt = 0⇒msg := amountError)

Keep in mind that x := expr isn’t a predicate but represents a predicate. So the above formula is

not exactly right because we’re mixing predicates with non-predicates. Nevertheless, we think

that the formula helps to understand what’s going on.

Mathematical details of the update operator (◁+) and other important B operators. If X and

Y are two B types and R,S ∈ X↔ Y, then the formal definition of the update operator is the
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following:

R◁+ S = ((dom(S))−◁R)∪S

where, if A ∈ PX then:

A−◁R = {x ↦→ y | x ↦→ y ∈ R ∧ x ∉ A}

Therefore, ◁+ is actually defined for binary relations, and not only for partial functions. As

any partial function is a binary relation then we can apply◁+ to partial functions as well. Clearly,

if R ∈ X↔ Y and f ∈ X ↦→ Y, then R◁+ f and f ◁+ R are both type-correct. Besides, as any set of

the form {x ↦→ y} is a binary relation then we can write sa◁+ {an ↦→ sa(an)+ amt)} as we did in

deposit. Consider, though, that ◁+ is defined for two binary relations of the same type.
As can be seen, ◁+ is defined in terms of other B operator, −◁, called domain anti-restriction.

This operator takes a set and a binary relation, and returns another binary relation. In effect,

the returned relation is a restriction of the initial relation; that is A−◁R ⊆ R. A−◁R removes from

R all the ordered pairs whose first component doesn’t belong to A. For example:

{2,4}−◁ {(5,a), (4,w), (4,q), (7, e), (2,q)} = {(5,a), (7, e)}

Therefore, if x ∈ dom(R) then R◁+ {x ↦→ y} first removes from R all the ordered pairs of the

form x ↦→ · and then adds x ↦→ y to the resulting relation. In other words:

dom({x ↦→ y})−◁R = {x}−◁R removes pairs of the form x ↦→ ·
({x}−◁R)∪ {x ↦→ y} = R◁+ {x ↦→ y} adds x ↦→ y

Clearly, if x ∉ dom(R) then R◁+ {(x,y)} is equal to R∪{(x,y)}.
As an example consider the following:

{(5,a), (4,w), (4,q), (7, e), (2,q)}◁+ {(7,x)}
= (dom({(7,x)})−◁ {(5,a), (4,w), (4,q), (7, e), (2,q)})∪ {(7,x)}
= ({7}−◁ {(5,a), (4,w), (4,q), (7, e), (2,q)})∪ {(7,x)}
= {(5,a), (4,w), (4,q), (2,q)} ∪ {(7,x)}
= {(5,a), (4,w), (4,q), (2,q), (7,x)}

But also check out this example:

{(5,a), (4,w), (4,q), (7, e), (2,q)}◁+ {(4,y)}
= (dom({(4,y)})−◁ {(5,a), (4,w), (4,q), (7, e), (2,q)})∪ {(4,y)}
= ({4}−◁ {(5,a), (4,w), (4,q), (7, e), (2,q)})∪ {(7,x)}
= {(5,a), (7, e), (2,q)} ∪ {(4,y)}
= {(5,a), (7, e), (2,q), (4,y)}

where the final relation has fewer elements than the initial relation.

B defines many other powerful set and relational operators such as ◁+ and −◁. The following

table lists some of them; B textbooks provide complete lists of them.
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Name Parameters Definition

Range of a relation R ∈ X↔ Y ranR = {y | y ∈ Y ∧ ∃x.(x ∈ X ∧ (x,y) ∈ R)}
Domain restric-

tion

R ∈ X↔ Y; A ∈ PX A◁R = {(x,y) | (x,y) ∈ R ∧ x ∈ A}

Range restriction R ∈ X↔ Y; B ∈ PY R▷B = {(x,y) | (x,y) ∈ R ∧ y ∈ B}
Range anti-

restriction

R ∈ X↔ Y; B ∈ PY R−▷B = {(x,y) | (x,y) ∈ R ∧ y ∉ B}

Relational image R ∈ X↔ Y; A ∈ PX R[A] = ran(A◁R)

Set and relational operators must be preferred over complex logical predicates including

universal and existential quantifiers. The collection of operators provided by B can

express many complex specifications. Logical formulas can be avoided most of the times.

Whenever you’re about to write a specification including an universal quantifier, think

twice: most of the times there’s a B operator that can do the job.

We now come back to the specification of the other operations on savings accounts.

3.2.3 Withdraw money from an account (state transition)

Withdrawing money from an account is almost the same than depositing it. The operation,

called withdraw, receives the same two input parameters, an and amt. The functional precon-

ditions for the normal behavior are those of deposit plus the following one:

• amt must be less than or equal to the current balance of an. Formally:

amy ≤ sa(an)

The postconditions for the normal behavior are similar to those of deposit except that amt
must be subtracted from the current balance. Formally:

sa := sa◁+ {an ↦→ sa(an)− amt)}

Concerning the abnormal behaviors we have to add one more due to the new precondition.

The complete specification of withdraw is shown in Figure 2.

Evaluating partial a function outside its domain. Note that in the last branch of the SELECT
statement of the withdraw operation we added an ∈ dom(sa) as a precondition to the assignment

msg := insufficientFunds. In general, the precondition of an abnormal behavior is usually only the

negation of the precondition we are considering. However, in that branch we have the negation

of an ≤ sa(an) and an ∈ dom(sa). The reason for adding an ∈ dom(sa) as a precondition is that

we need to be sure that sa(an) is defined because otherwise the predicate sa(an) < amt will have

an undefined value. In other words, sa(an) < amt is true or false if sa(an) is a number and sa(an)
is a number if an belongs to the domain of sa. If an ∉ dom(sa), what is the value of sa(an)? Put

it in another way, if an ∉ dom(sa), what is the balance of an according to sa? If an ∉ dom(sa), it
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Machine Bank
Sets NIC; MSG = {ok,nicExists,nicNotExists,amountError, insufficientFunds}
Variables sa
Invariant sa ∈ NIC ↦→ N
Initialization sa := {}
Operations

msg← open(an) =̂
PRE an ∈ NIC
THEN IF an ∉ dom(sa) THEN sa,msg := sa∪{an ↦→ 0},ok ELSE msg := nicExists END
END;

msg← deposit(an,amt) =̂
PRE an ∈ NIC ∧ amt ∈ N
THEN

SELECT an ∈ dom(sa) ∧ 0 < amt THEN sa,msg := sa◁+ {an ↦→ sa(an)+ amt},ok
WHEN an ∉ dom(sa) THEN msg := nicNotExists
WHEN amt = 0 THEN msg := amountError
END

END;

msg←withdraw(an,amt) =̂
PRE an ∈ NIC ∧ amt ∈ N
THEN

SELECT an ∈ dom(sa) ∧ 0 < amt ∧ amt ≤ sa(an)
THEN sa,msg := sa◁+ {an ↦→ sa(an)− amt},ok

WHEN an ∉ dom(sa) THEN msg := nicNotExists
WHEN amt = 0 THEN msg := amountError
WHEN an ∈ dom(sa) ∧ sa(an) < amt THEN msg := insufficientFunds
END

END
End

Figure 2: Specification of the withdraw operation

means that an isn’t an account in sa so, can we say what its balance is? Therefore, to be sure that

sa(an) < amt is a well-defined predicate we must ensure that sa(an) is defined and so we must

require an ∈ dom(sa).
The same situation arises in mathematics. For example, the division function over the real

numbers, that is x/y with x,y ∈ R, is defined only if y ≠ 0. Then / can be defined as a (total)

function:

/ : R×(R\ {0}) → R

or as a partial function:

/ : R×R ↦→ R
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Hence, for example, the expression:

1

x2−4

is a real number if x2−4 ≠ 0. If x = 2 the expression reduces to 1/0 which is undefined because

(1,0) ∉ dom(/) (note that the domain of / are ordered pairs). In mathematics this problem is

solved by forcing the definition of x/0 to be ∞. However ∞ ∉ R, that is ∞ isn’t a real number

(that’s why we write ∞ and not a number formed with digits). Therefore, in mathematics the

function is ‘totalized’ by extending its range:

/ : R×R→ (R∪{∞})

where R∪{∞} is some times noted as R∞.

Actually, the same situation arises in programming, too. Every time we forget to check if

the denominator of a division isn’t zero our program crashes. In programming,∞ corresponds

to an abnormal termination (crashing) of the program (for example, with a message such as

division by zero or null pointer exception or segmentation fault). Programming is

plenty of partial functions. For example, arrays can be seen as partial functions. Indeed, if

a is an array of 20 components, then trying to access a[35] is undefined and could make the

program crash. That is, an expression such as a[ ] waits for an integer expression but it’s

defined only within the bounds of the array (from 1 to 20 in our example).

B is plenty of partial functions because programming is plenty of partial functions, too. In

B we solve the problem of evaluating a partial function outside its domain by defining two

behaviors:

1. We conjoin x ∈ dom(f ) to any predicate where f (x) is included, for every partial function

f ; and then

2. We specify another behavior for the case x ∉ dom(f ). For example, we state that the system

doesn’t transition to another state and shows an error message.

3.2.4 Query the current balance of an account (state query)

This is the first operation of our system that is not a state transition. Nevertheless, in B state

queries and state transition are almost the same. The only significant difference is that state

queries don’t use assignment to state variables.

The operation to check the balance of an account, called checkBalance, receives an account

identifier, an, and outputs the balance in bal. The functional precondition for the normal

behavior is that an must be a valid account, i.e. an ∈ dom(sa). There are two postconditions for

the normal behavior:

1. bal := sa(an), that is the output is exactly the balance of an in the current state.

2. msg := ok, that is the operation executed successfully.

There’s only one abnormal behavior given by the negation of the functional precondition

an ∈ dom(sa). The operation is specified in Figure 3
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Machine Bank
Sets NIC;

MSG = {ok,nicExists,nicNotExists,amountError, insufficientFunds,balanceNotZero}
Variables sa
Invariant sa ∈ NIC ↦→ N
Initialization sa := {}
Operations

msg← open(an) =̂
PRE an ∈ NIC
THEN IF an ∉ dom(sa) THEN sa,msg := sa∪{an ↦→ 0},ok ELSE msg := nicExists END
END;

msg← deposit(an,amt) =̂
PRE an ∈ NIC ∧ amt ∈ N
THEN

SELECT an ∈ dom(sa) ∧ 0 < amt THEN sa,msg := sa◁+ {an ↦→ sa(an)+ amt},ok
WHEN an ∉ dom(sa) THEN msg := nicNotExists
WHEN amt = 0 THEN msg := amountError
END

END;

msg←withdraw(an,amt) =̂
PRE an ∈ NIC ∧ amt ∈ N
THEN

SELECT an ∈ dom(sa) ∧ 0 < amt ∧ amt ≤ sa(an)
THEN sa,msg := sa◁+ {an ↦→ sa(an)− amt},ok

WHEN an ∉ dom(sa) THEN msg := nicNotExists
WHEN amt = 0 THEN msg := amountError
WHEN an ∈ dom(sa) ∧ sa(an) < amt THEN msg := insufficientFunds
END

END;

bal,msg← checkBalance(an) =̂
PRE an ∈ NIC
THEN IF an ∈ dom(sa) THEN bal,msg := sa(an),ok ELSE msg := nicNotExists END
END;

msg← close(an) =̂
PRE an ∈ NIC ∧ amt ∈ N
THEN

SELECT an ∈ dom(sa) ∧ sa(an) = 0 THEN sa,msg := {an}−◁ sa,ok
WHEN an ∉ dom(sa) THEN msg := nicNotExists
WHEN an ∈ dom(sa) ∧ sa(an) ≠ 0 THEN msg := balanceNotZero
END

END
End

Figure 3: Specification of the checkBalance and close operations
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3.2.5 Close an account (state transition)

The last operation we need to specify is closing an account, called close. It waits for the account

to be closed, an. The functional preconditions for the normal behavior are the following:

1. an must be a valid account, i.e. an ∈ dom(sa).
2. The balance of an must be zero. Formally:

sa(an) = 0

In turn, the postcondition for the normal behavior is that the value of sa in the next-state

must be equal to the value in the before-state minus the account identified with an. We can’t do

this:

sa := sa\ {an}

because it’s not type-correct. Recall that sa is a set of ordered pairs but {an} is not. We can do

this instead:

sa := sa\ {an ↦→ 0}

which is now type-correct and we know for sure that the balance of an is zero because it’s in

our preconditions. However, B offers a more convenient operator to state what we want:

sa := {an}−◁ sa

Recall that−◁ is called domain anti-restriction. The expression {an}−◁sa returns a partial function

equal to sa except that the ordered pair whose first component is an has been removed. This is

exactly what we wanted to say when we wrote sa := sa\ {an}, unless the formula based on −◁ is

type-correct. In other words, {an}−◁ sa removes from sa the ordered pair whose first component

is an regardless of which is its second component. Obviously, if an ∉ dom(sa), then {an}−◁sa= sa.

In turn, we have two abnormal behaviors given by the negation of the two functional

preconditions. Hence, we specify the as is shown in Figure 3.

4 Machine parameters and constraints

Let’s assume we have a new requirement for our savings account system:

• Every time a deposit of 10 000 euros or more is made in an account, the bank must report

the amount and the account identifier to the central bank.

As we are writing a specification, we will abstract away the mechanism used to report such

an event to the central bank. In order to do that, we will simply specify an operation that

outputs the amount and account ID to the environment when the event occurs.

Secondly, we need to think how the number 10 000 will be included in the specification. We

can think this number is part of the state of the bank and thus we need to define a new state

variable. However, this number isn’t set by the bank; it’s set by an external system. Then, it

makes no sense to include it as part of the state of the bank. Actually, at the implementation

level, we can think this number is stored in a configuration file that’s read by the system every
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time it’s executed; or else, the central bank may offer a public interface where banks can query

what the current limit to report deposits is.

For things that we think are external to our system but which are nonetheless needed by

it, B offers a construct called machine parameters. We use a machine parameter to configure the

Bank machine as follows:

Machine Bank(depRepLim)
. . . the machine description goes here. . .

End

Then, depRepLim is a parameter for our Bank machine. In spite that the central bank stated

that this limit is equal to 10 000 we know it can change over time but, at the same time, we

know as that it’s always going to be a positive number. We can specify this condition in the

CONSTRAINTS section as follows:

Machine Bank(depRepLim)
CONSTRAINTS depRepLim ∈ N ∧ 0 < depRepLim

. . . the machine description continues here. . .
End

Now we can use depRepLim to specify the deposit operation including the report to the

central bank in case the deposit limit is exceeded.

rn, ra,msg← deposit(an,amt) =̂
PRE an ∈ NIC ∧ amt ∈ N
THEN

SELECT an ∈ dom(sa) ∧ 0 < amt THEN
IF depRepLim ≤ a?

THEN sa, rn, ra,msg := sa◁+ {an ↦→ sa(an)+ amt},an,amt,ok
ELSE sa,msg := sa◁+ {an ↦→ sa(an)+ amt},ok
END

WHEN an ∉ dom(sa) THEN msg := nicNotExists
WHEN amt = 0 THEN msg := amountError
END

END

As we have said, the report is abstracted by outputting the account number (rn) and the deposit

amount (ra).

We can include all the parameters we need in the specification of a B machine.

Machine MyMachine(P1 , . . . ,Pn ,p1 , . . . ,pm)
. . . the machine description goes here. . .

End

Parameters that are intended to be types are written in uppercase (i.e. P1 , . . . ,Pn); parameters

of other types are written in lowercase (i.e. p1 , . . . ,pm). If present, the CONSTRAINTS section

goes right after the Machine line. CONSTRAINTS is used to describe conditions or restrictions



26

on the machine parameters. Machine parameters can be used in the Invariant and Operations

sections.

An important use for machine parameters is to leave some requirements underspecified or

subspecified. In this context, underspecification means to write a specification more abstract than

normally needed; to write a specification with even less details. Underspecification originates

mainly for three reasons:

1. At present time you don’t know exactly how the system should behave under some

conditions.

2. Because you’re specifying an aspect of the system that isn’t interesting enough and so you

don’t want to spend time and effort on it.

3. You want to specify a system as general as possible.

By stating 0 < depRepLim we’re underspecifying the system because we want to specify a system

as general as possible. The system will behave the same regardless of the specific value of

depRepLim; that is, it will report all deposits of depRepLim or more euros regardless of the value

of depRepLim. In this way our specification is a good model for any value of depRepLim.

As an example of the second reason to leave something underspecified, consider a system

where you need to compute the checksum of a list of bytes. For now, you don’t want to get into

the details of this algorithm, so you want to leave it underspecified. So you define a machine

receiving two parameters: BYTE, which is the type of bytes (that’s why we write it in uppercase);

and checksum, which is intended to be the checksum function. Formally, we have the following:

Machine CommSystem(BYTE,checksum)
CONSTRAINTS checksum ∈ seq(BYTE) → BYTE

. . . the machine description continues here. . .
End

That is, the CommSystem machine is going to be consistent only if checksum is a function taking a

sequence of BYTE and returning a BYTE. And that’s it. checksum somewhat magically computes

the checksum of any list of bytes. We’re not interested in the details of the checksum algorithm.

We don’t need to specify that algorithm. Nevertheless, we can use checksum in the definition of

operations:

Machine CommSystem(BYTE,checksum)
CONSTRAINTS checksum ∈ seq(BYTE) → BYTE
. . . . . . . . .

Operations

. . . . . . . . .

add(msg) =̂
PRE msg ∈ seq(BYTE)
THEN checks := checks∪{checksum(msg)}
END;

. . . . . . . . .

End
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5 Introduction to machine consistency

Is the specification correct? How can we know whether or not the specification is correct? We

write a specification mainly for two reasons: to understand the problem before attempting an

implementation, and to to be used by programmers as the recipe from where the implementation

is produced. But, what if the specification is not correct? Is this possible? Yes, the specification

can have errors. If we handle an erroneous specification to the programmers the resulting

implementation will be erroneous as well. Even worse, those errors will be detected only by

the client or the user during acceptation testing or when it is in production.

A specification can contain errors. Normally, the specification will contain much less errors

than the implementation. At the same time, these errors are usually much easier to find than

errors in the implementation. Besides, detecting errors in the specification is less costly than

detecting the same errors during testing or when the system has already been delivered to the

client.

There are two main ways of finding errors in the specification:

1. By running sort of tests on the specification.

2. By mathematically proving that the specification is free of certain classes of errors. Or,

put it in another way, by mathematically proving that the specification enjoys some

mathematical properties.

As we have said, the specification is written from the requirements, which are an informal

statement of the system’s functionality. Hence, in the process of formalizing the require-

ments one may make mistakes or may misunderstand or misinterpret the requirements,

thus obtaining a wrong specification. Actually, one of the reasons to write a specification is

to understand the requirements. As a consequence, if we can prove that the specification

enjoys some properties, that are obvious from the requirements, then we can increase our

confidence in that the specification is a faithful formalization of the requirements. Many

times these properties are easier to formalize than the operations of the state machine. So

there are fewer chances to make a mistake during the formalization of the properties.

We will work on the first technique when {log} is introduced. Now, we are going to introduce

the second technique. In general all formal specification languages are prepared to perform

mathematical proofs on their specifications. The B-Method is no exception and proposes a

technique called machine consistency to check that a specification enjoy some important mathe-

matical properties. If the specification is machine consistent then some classes of errors will not

be present in it. In this section we will provide an introduction to machine consistency—and

we will see it in action when {log} is introduced.

The core of machine consistency is to mathematically prove that each operation of a machine

preserves the state invariant. The state invariant is the predicate written in the Invariant section.

Conceptually, a state invariant, or just invariant, is a property that is true of every state of the

machine. In other words, a state invariant is a predicate, depending only on state variables,

which is true of every state of the state machine. State invariants are important because they

can be used to gain confidence on the correctness of the specification.

Recall the state invariant we have for the Bank machine (see Figure 3):

sa ∈ NIC ↦→ N (2)
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Clearly, this property must be verified by the system and is obvious from the requirements. If

we manage to prove that this property is true in every state of the bank, we are sure the following

always hold:

• Each savings account has only one balance

• The balance of any savings account is never below zero

Both properties are important for the client. The bank officials will be sure that no customer can

own many to the bank and that customers won’t complain about the balance of their accounts.

That is, by writing a very short formula we capture important properties of a bank system.

We can make mistakes writing the invariant but it’s easier to be formalized than the collection

of operations of the system. At the same time, if we ask the programmer to implement a system

verifying (2), (s)he doesn’t have a clear description of what (s)he has to do because we aren’t

telling her or him what the operations of the system are. On the other hand, if we give her or him

a specification of the operations which fails to verify that property, then (s)he will implement a

system that will be incorrect from the user perspective. And we can’t blame the programmer.

This is not because the program doesn’t verify the specification but because the specification

isn’t a faithful formalization of the requirements.

Therefore, before handling the specification to the programmer we should try to verify the

specification by proving properties it should meet. The more properties we can prove, the

better. Below we will show some of the properties that the B-Method requires to prove of every

machine plus one more added by us. But first we recall the following concept of first-order

logic.

Substitution

Let P be a predicate depending on variable v, written as P(v). Let e be an expression of

the same type of v. We write P[v ↦→ e] to denote the substitution of v by e in P. That is,

P[v ↦→ e] is equal to P except that v has been substituted by e.

As an example of substitution consider:

• sa ∈ NIC ↦→ N[sa ↦→ {}] which reduces to {} ∈ NIC ↦→ N
• sa ∈ NIC ↦→ N[sa ↦→ sa◁+ {an ↦→ sa(an)+ amt}] which reduces to sa◁+ {an ↦→ sa(an)+ amt} ∈

NIC ↦→ N
Now we present the rules of machine consistency. Each rule is called verification condition

or proof obligation. When we prove one of these proof obligations we say that we discharge the

proof obligation. Assume we have the following machine.

Machine M
Variables v
Invariant Inv
Initialization v := Init
Operations

y← op(x) =̂ PRE Pre THEN v := Post ∥ y := Out END;

. . . . . . . . .

End
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1. The initial state satisfies the invariant.

Inv[v ↦→ Init]

2. Each state transition is satisfiable and can change the state.

∃v,x,y.(Pre ∧ v ≠ Post ∧ y = Out)

3. Each state query is satisfiable:

∃v,x,y.(Pre ∧ y = Out)

4. Each state transition preservers the invariant (called invariance lemma).

∀x.(Inv ∧ Pre⇒ Inv[v ↦→ Post])

An invariance lemma states that if the invariant is true of some state and the

precondition of an operation is true of the same state, then the invariant is true of

the next state as defined by the operation.

This is why we say that the operation preserves the invariant.

Inv[v ↦→ Post] can be read as “the invariant evaluated in the next state”.

State queries trivially preserve the invariant.

The most important verification conditions are the invariance lemmas. However, if the

operation or the invariant are unsatisfiable the invariance lemma will trivially hold. Hence, we

also require the other two satisfiability verification conditions.

Here are some examples of the verification conditions with respect to the specification of

Figure 3.

• The initial state satisfies the invariant.

sa ∈ NIC ↦→ N[sa ↦→ {}] [by def. substitution]

⇔ {} ∈ NIC ↦→ N [by empty set is partial function]

⇒ true

Therefore, we have discharged the proof obligation.

• deposit is satisfiable and can change the state. By applying (1) we get:

∃ sa,an,amt,msg.
(an ∈ NIC ∧ amt ∈ N
∧ (an ∈ dom(sa) ∧ 0 < amt⇒ sa ≠ sa◁+ {an ↦→ sa(an)+ amt} ∧msg = ok)
∧ (an ∉ dom(sa) ⇒msg = nicNotExists)
∧ (amt = 0⇒msg = amountError))

This is satisfied with sa = {an ↦→ 0} ∧ amt = 1 ∧msg = ok.
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• checkBalance is satisfiable.

∃ sa,an,bal,msg.
(an ∈ NIC
∧ (an ∈ dom(sa) ⇒ bal = sa(an) ∧msg = ok)
∧ (an ∉ dom(sa) ⇒msg = nicNotExists))

This is satisfied with sa = {an ↦→ 0} ∧ bal = 0 ∧msg = ok.

• withdraw preserves the invariant. By considering only the case when sa is changed we

get:

∀an,amt.
(sa ∈ NIC ↦→ N [invariant]

∧ an ∈ NIC ∧ amt ∈ N ∧ n ∈ dom(sa) ∧ 0 < amt ∧ amt ≤ sa(an) [precondition]

⇒ sa◁+ {an ↦→ sa(an)− amt} ∈ sa ∈ NIC ↦→ N) [invariant in the next state]

Usually we won’t write the leading universal quantification leaving it implicit. So the

invariance lemma would be:

sa ∈ NIC ↦→ N
∧ an ∈ NIC ∧ amt ∈ N ∧ n ∈ dom(sa) ∧ 0 < amt ∧ amt ≤ sa(an)
⇒ sa◁+ {an ↦→ sa(an)− amt} ∈ sa ∈ NIC ↦→ N

We leave the proof of this lemma as Exercise 43.

Recall that all these verification conditions must be proved for all operations.

As we have said, the abstract assignment isn’t a predicate but represents a predicate. The

invariance lemma shows how this hidden predicate can be calculated. More precisely, if P is

a predicate depending on variable v and we want to know if P is true after v := expr has been

executed, then all we have to do is to compute P[v ↦→ expr]. This is used in general to determine

if a predicate is true of the next state. And this predicate is usually an invariant.

Recall that whenever possible, quantifiers should be avoided in specifications. One of

the reasons to do that is, precisely, because proving properties of quantified formulas is, in

general, more complex than proving properties of quantifier-free formulas. So if we write our

specifications without quantifiers the invariance lemmas for those specifications will tend to be

simpler to prove than those of specifications where we use quantifiers. You may already know

that propositional logic (i.e. logic without quantifiers) is much simpler than predicate logic (i.e.

logic with quantifiers). Furthermore, it can be said that universal quantifiers are ‘worse’ than

existential quantifiers.

On the other hand, it isn’t unusual to find out that it’s easier and more obvious to write a

quantified formula than a quantifier-free one. When writing software specifications the first

and foremost option should always be to write down the most obvious formula; the formula

that is most obviously correct. Writing formal specifications is always about making something

obviously correct, because programs are (almost) never such a thing. Then, we can start with

an obviously correct quantified formula ant then we can try to rewrite it without quantifiers.
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Along that path we can prove the equivalence of both formulas to be sure that the quantified

formula can be substituted by the quantifier-free one.

The whole discussion on avoiding quantified formulas in formal specifications is really

important when some form of computer assisted verification is going to be applied. That is,

avoiding quantified formulas in specifications is of most importance when the verification

conditions of these specifications are going to be proved using software tools that are capable

of helping or assisting during the proof process. Due to theoretical reasons, these tools are

more effective and efficient when the properties they have to prove have the less quantified

formulas as possible. Later on this course we’ll use the {log} tool to automatically discharge

proof obligations.

In any case, the mere fact of writing a specification, like the one we wrote in this notes,

it’s enough to uncover errors, ambiguities and incompleteness in the requirements. Proving

properties true of the specification is an added value that would yield marginal gains compared

with the gain got by writing the specification itself.

6 Types and sets

In B types and sets aren’t clearly distinguished. In this course, however, we will define what

sets are types and what aren’t. The following sets are types.

• Any set declared in the Sets section is a type.

• Any set declared as a machine parameter is a type.

• The set Z is a type.

• If X and Y are types then the set X×Y is a type.

The elements of this type are ordered pairs.

• If X is type then the set PX is a type.

The elements of this type are sets.

Sets that can’t be built as described above aren’t types. By following those rules we can

conclude the following:

• N is not a type.

• If X and Y are types, then X↔ Y is a type (because X↔ Y = P(X×Y)).
• If X and Y are types, then X ↦→ Y is not a type.

• If X and Y are types, then X→ Y is not a type.

• If X is a type, then seq(X) is not a type .

The sets defined as types are so because they are closed under certain operations. For

example, Z is a type because if n,m ∈ Z then we have that x+ y,x ∗ y,x− y,x div y,x mod y ∈ Z.

Hence, Z is closed under +, ∗,−,div,mod. Instead, N isn’t a type because if n,m ∈ N then x−y ∈ N
isn’t necessarily true. Hence, N isn’t closed under subtraction. So it can’t be a type (unless we

remove subtraction from its operations).

A variable declaration such as:

n ∈ N
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is said to be non-normalized because N is not a type but a set. The declaration can be normalized
by declaring n ∈ Z and conjoining n ∈ N or 0 ≤ x in the Invariant section. For example, if we

have:

Machine M
. . . . . . . . .

Variables v
Invariant v ∈ N ∧ . . .

. . . . . . . . .

End

we can normalize the machine by writing it as:

Machine M
. . . . . . . . .

Variables v
Invariant v ∈ Z ∧ 0 ≤ v ∧ . . .

. . . . . . . . .

End

The above normalization is preferred over the following:

Machine M
. . . . . . . . .

Variables v
Invariant v ∈ Z ∧ v ∈ N ∧ . . .

. . . . . . . . .

End

because we got rid of an infinite set (N) that’s not a type.

Therefore, a variable declaration x : A isn’t normalized if A isn’t a type but a set. The

normalized declaration of x is obtained by substituting A by its container type and by conjoining

x ∈ A in the Invariant section. Below we give the container type of some sets frequently used

in specifications. Whenever possible avoid the introduction of infinite sets that aren’t types.

Set Container Type

N, N1, m . .n Z
X ↦→ Y, X→ Y X↔ Y

seqX Z↔ X

Then, the declaration of sa in our specification of the savings accounts isn’t normalized:
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Machine Bank
Sets . . .

Variables sa
Invariant sa ∈ NIC ↦→ N
. . . . . . . . .

End

We can normalize it as follows:

Machine Bank1
Sets . . .

Variables sa
Invariant sa ∈ NIC↔ Z ∧ sa ∈ NIC ↦→ N
. . . . . . . . .

End

but we still have N in the invariant. We can eliminate it as follows:

Machine Bank2
Sets . . .

Variables sa
Invariant sa ∈ NIC↔ Z ∧ sa ∈ NIC ↦→ Z ∧ ∀x,y.(x ↦→ y ∈ sa⇒ 0 ≤ y)
. . . . . . . . .

End

where we change an infinite set by a universally quantified formula. However, we have ‘over-

lapping’ constraints: sa ∈ NIC↔ Z ∧ sa ∈ NIC ↦→ Z. In effect, both constraints state that the

domain of sa is NIC and the range is Z. Let’s assume there’s a predicate, namely pfun, which

is true only if its argument is a partial function. Hence, we can further rewrite the invariant as

follows:

Machine Bank3
Sets . . .

Variables sa
Invariant sa ∈ NIC↔ Z ∧ pfun(sa) ∧ ∀x,y.(x ↦→ y ∈ sa⇒ 0 ≤ y)
. . . . . . . . .

End

In this way, we have decomposed the original invariant into a type invariant (sa ∈NIC↔ Z) and

two restrictions (pfun(sa) and ∀x,y.(x ↦→ y ∈ sa⇒ 0 ≤ y)) that can’t be enforced by a typechecker.

Normalization and verification conditions. Normalizing declarations is important when dis-

charging proof obligations. In what concerns to the specification, non-normalized declarations

tend to be easier to read and understand. But when the verification conditions of that specifica-

tion have to be discharged, non-normalized declarations tend to make the process harder and
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less automatic. For instance, in {log} x ∈N can’t be written but 0 ≤ x will in general be equivalent

and will make {log} to automatically discharge more proof obligations. Same happens with

Bank1, Bank2 and Bank3 above. Bank1 can’t be written in {log} but the other two can be written

and {log} will tend to automatically discharge more proof obligations.

Furthermore, normalized declarations can be statically typechecked meaning that part of

the proof obligations are simply discharged by a typechecker. For instance, sa ∈ NIC↔ Z can

be typechecked in Bank2 and Bank3. Then, we have easily removed a verification condition.

We’ll see this technique in action when {log} is introduced.
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7 Exercises

1. Consider the state machine with state variables x and y given in Section 1. Write the

transitions that connect the 2nd and 3rd states, the 3rd and 4th and the 4th and 1st.

2. Explain why a set of the form {1 ↦→ 3} is a binary relation. What is its type? Is it a partial

function? If it is, what is its type?

3. Write all the elements of the type PSTATUS where STATUS is defined in Section 1.

4. Write a binary relation that is not a partial function.

5. Write three elements of each of the following types or sets, that don’t belong to other types

or sets in the list.

(a) Z
(b) Z×Z
(c) PZ
(d) Z↔ Z
(e) Z ↦→ Z
(f) seq(Z)

6. Assume T is a type and x ∈ T ∧ a ∈ PT. Determine what of the following are type correct.

Justify.

(a) x = ∅
(b) a = ∅
(c) x ∈ a
(d) x ∉ a
(e) x ⊆ a
(f) {x} ⊆ a
(g) x = a
(h) {x,x} = a
(i) {x} = a∪{x}
(j) {x} = {a}

(k) {{x}} = {a}
(l) If U is another type and b ∈ PU, a = b = ∅

7. Prove that if T is a type then A ∈ PT⇔ A ⊆ T.

8. Prove that the union of two binary relations is a binary relation.

9. Prove that the union of two partial functions is not necessarily a partial function.

10. Prove that the intersection of two partial functions is a partial function.

11. What is the set corresponding to the following sequence according to the definition of

seq(X) given in Section 1? What type is X in this case?

[3,54,12,3]

12. If possible, calculate the following; if not, justify.
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(a) dom∅
(b) dom{1 ↦→ a}
(c) dom{1 ↦→ a,1 ↦→ b}
(d) {1 ↦→ a,2 ↦→ b}(2)
(e) {1 ↦→ a,2 ↦→ b}(3)
(f) {1 ↦→ a,2 ↦→ b}(a)

13. Why the following set isn’t a partial function?

{nic1 ↦→ 100,nic2 ↦→ 230,nic1 ↦→ 529}

14. Why if the bank arrives to a state where n ↦→ b ∈ sa ∧ b < 0 we’re in trouble? Same with:

n ↦→ b1 ,n ↦→ b2 ∈ sa ∧ b1 ≠ b2.

15. Prove that if sa ∈ NIC ↦→ N ∧ n ∈ NIC and n ∉ domsa, then sa∪{n? ↦→ 0} ∈ NIC ↦→ N.

16. Complete the definition of the MSG type by adding all the messages not initially covered.

17. Prove that if x ∉ domR then R◁+ {x ↦→ y} is equal to R∪{x ↦→ y}. After that, prove that if

domS∩domR = ∅ then R◁+ S = R∪S.

18. Prove that if f : X ↦→ Y; x : X; y : Y then f ◁+ {x ↦→ y} : X ↦→ Y.

19. Determine the conditions under which R◁+ S is a function.

20. Prove that if R : X↔ Y and x ∉ domR, then {x}−◁R = R.

21. Prove that if R : X↔ Y and A : PX then (A◁R)∩ (A−◁R) = ∅.
22. Prove that if R : X↔ Y and A : PX then R = (A◁R)∪ (A−◁R).
23. Replace the following IF-THEN-ELSE with a SELECT statement.

IF an ∉ dom(sa) THEN sa,msg := sa∪{an ↦→ 0},ok ELSE msg := nicExists END

24. Explain why we have included an ∈ dom(sa) as a precondition in the third branch of close.

25. The postcondition of checkBalance in the ELSE branch doesn’t set a value for bal. Is it

necessary? If so, what could be that value?

26. Let’s say the bank requires that when an account is opened the customer must deposit at

least 200 euros. Specify this requirement.

27. Specify an operation that outputs a listing of the balances of a group of savings accounts.

28. Specify an operation that closes more than one account.

29. In the specification of deposit developed in Section 4, there are branches where no value

for ra and rn is defined. What does it mean? What would be the correct behavior in those

branches?

30. In relation to the previous exercise, modify the specification of deposit as to output a set

of pairs of the form rn ↦→ ra. What is the value for the new output parameters in the

branches analyzed in the previous problem?
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31. Study the Constants and Properties sections of a B machine. Define a constant of type NIC
whose informal meaning is “no account number”. Rewrite the specification of deposit as

to output this constant when no report should be sent to the central bank. What value for

ra would you use in this case?

32. In relation to the previous exercise, what if deposit outputs -1 in ra when no report should

be sent to the central bank? Is it necessary to define a value for rn in those cases?

33. Continuing with the same problem, do the following:

(a) Underspecify a function that converts NIC into strings.

(b) Underspecify a function that converts Z into strings.

(c) Underspecify the empty string

(d) Redefine deposit as to output two strings instead of a NIC and a N.

(e) Redefine deposit as to output the empty string in every other case.

(f) Complete the specification of deposit with the abnormal behavior that is missing.

34. Redo the above problem as follows:

(a) Declare the set-type REPORT.

(b) Declare empty as a constant of type REPORT.

(c) Underspecify a function that converts NIC×N into REPORT.

(d) Redefine deposit as to output a REPORT.

35. In the above two exercises we asked you underspecify some functions. Is it enough

with functions? Don’t you need more? What if one of these functions is defined as

{n1 ↦→ ‘n1’,n2 ↦→ ‘n1’} (i.e. the function mapping NIC onto strings)?

36. Analyze what is the best solution for outputting a report to the central bank. What should

be the criterion to decide what is the best solution?

37. Assume the central bank forbids withdrawals of more than 200 000 euros. Specify this

requirement.

38. Specify an operation transferring an amount of money from one account in the bank to

another (different) account in the same bank.

39. Extend the specification of the savings account system where a history of the transactions

(deposits and withdrawals) made on every account must be recorded. Keep the state

variable sa defined in the specification developed in these notes. The specification must

include the following operations: open an account, deposit, withdraw and check balance.

40. Concerning problem 39, can you write an operation showing the transactions made on an

specific account between two dates? If you can, do it; if not, rewrite the model having this

requirement in mind.

41. Extend the specification of the savings account system where a customer may have more

than one savings account. The specification must include the following operations: open

and account, deposit, withdraw, check balance, close an account and close all accounts of

a given customer.
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42. Check that sa= {an ↦→ 0} ∧ amt= 1∧msg= ok satisfies the following verification condition.

∃ sa,an,amt,msg.
(an ∈ NIC ∧ amt ∈ N
∧ (an ∈ dom(sa) ∧ 0 < amt⇒ sa ≠ sa◁+ {an ↦→ sa(an)+ amt} ∧msg = ok)
∧ (an ∉ dom(sa) ⇒msg = nicNotExists)
∧ (amt = 0⇒msg = amountError))

43. Discharge the following invariance lemma.

sa ∈ NIC ↦→ N
∧ an ∈ NIC ∧ amt ∈ N ∧ n ∈ dom(sa) ∧ 0 < amt ∧ amt ≤ sa(an)
⇒ sa◁+ {an ↦→ sa(an)− amt} ∈ sa ∈ NIC ↦→ N

44. Explain why X ↦→ Y can’t be a type.

45. Prove the following:

(∀x,y.(x ↦→ y ∈ sa • 0 ≤ y)) ⇔ (∃k.(k ∈ Z ∧ ran(sa) ⊆ 0 ↦→ k))

46. Prove that withdraw preserves the invariant.

47. Write and prove all the remaining proof obligations concerning the specification of the

savings account system.

48. Write a state invariant for the specification developed in 39 relating the current balance

and the history of transactions of every account.

49. Write and prove all the proof obligations for the specification developed in 39.

50. Write a Java program implementing open.

51. Concerning exercise 50, what are the differences between the program and the specifica-

tion? How did you implement NIC? Can you guarantee that your implementation verifies

the specification? How would you do that?
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