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This document is a summary of the work I have done during my �rst year
whilst researching on the modularity of structural operational semantics. I dis-
cuss why modularity is important in semantics and the shortcomings of struc-
tural operational semantics in this regard. I review the related literature and
explain what I have achieved so far. Also, I outline some possible directions for
future work.

1 Introduction

1.1 Modularity in semantics

Formal semantics of programming languages are an indispensable tool. Com-
puter scientists and programmers use them to communicate, reason about, and
guide the design and implementation of programming languages. However, in
any real modern programming language, one expects to �nd advanced features
like support for concurrency, communication between processes, exceptions and
the like. As the complexity of a language increases, providing formal semantics
for such a language can be a very laborious and error-prone task.

The usual way to tackle the building of a complex construction is to divide it
into smaller, more manageable pieces, and then assemble those pieces together
to obtain the composite whole. But, how can we do this for semantics? Can
we really separate the components of the di�erent features in a programming
language?

In denotational semantics, it was shown by Moggi [26] that a concept from
category theory �monads� is useful for structuring semantics. This idea was
so successful that the programming language Haskell actually provides a special
syntax for structuring programs with the help of monads. Liang, Hudak and
Jones [22] use monads and monad transformers to structure interpreters. They
present a myriad of features of programming languages and interpreters that
can be de�ned by combining any of these features. While monads and monad
transformers do not solve every possible problem of modularity, they are widely
accepted and have been successfully applied to real problems.

On the other hand, for operational semantics [30], the di�erent existent
approaches to modularity have not been that successful. The most widely spread
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approach is that of Modular SOS [27], which although inspired by monads, takes
a more concrete approach. The main contribution of MSOS is providing a new
syntax for writing rules. Each rule is written only specifying the particular side-
e�ect that one is interested in; the other side-e�ects are left unspeci�ed. The
side-e�ects are limited to input, output and state (non-determinism is intrinsic
to the SOS approach so it does not need to be explicitly considered). One of the
goals of Mosses was to improve modularity of SOS without losing its intuitive
appeal, hence the concrete approach: the focus on the syntax for writing the
rules and the �xed choice of e�ects. While one could argue that more e�ects
could be added to the theory if they were needed, in MSOS there is a single way
two languages can be put together. In the monad transformers approach, we
obtain di�erent e�ects if we compose monad transformers in a di�erent order
(for example, local versus global state), whereas in MSOS this order is �xed.

Another approach is that of Lämmel's Rule Evolution Kit [19], but this work
is unsatisfactory for our purposes since it manipulates the rules that conform a
structural operational semantics without taking into account its semantic con-
tent, focusing exclusively on the syntax of the rules. As it is stated in its name,
this is a tool for rule manipulation, not semantic manipulation. Hence, it does
not give us any insight on how to reason modularly about SOS.

If we want to not only de�ne operational semantics, but also reason about
them in a modular way, we need some formal relation between the properties of
the components and the combined language. Neither of the previous approaches
provides any support for this, except for the notion of conservative operational
extension [1], which only ensures that a program in a language L1 is not going
to change its behaviour if considered with the semantics of language L1 ∪ L2.
Clearly, there is much room for improvement.

All this evidence suggests that obtaining a theory of modularity in oper-
ational semantics, with enough �exibility to encompass real languages, and
enough semantic content to be able reason to about them, is a much desir-
able and hard to obtain goal. For achieving this goal, it is essential to work
with an adequate framework.

1.2 A Mathematical Operational Semantics

Plotkin [31] mentions that the original SOS notes had deliberately not been
written in a theoretical framework, the idea was that theory would come later.
He also mentions that Robin Milner produced some (unpublished) notes on a
general approach to operational semantics for a given algebraic signature, and
that his ideas were close to the De Simone format [6], a syntactic format on
SOS rules for ensuring certain properties in the de�ned language.

As the years passed, more formats were discovered. Some of those formats
were aimed at ensuring that a notion of equivalence associated to a SOS was a
congruence. A relevant example of such a format is GSOS [5], which guarantees
that strong bisimulation is a congruence for SOS written in that format. Partic-
ularly interesting was the introduction of the bialgebraic framework [36, 35], a
categorical abstraction of GSOS. This framework, not only provides a new tool
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for obtaining rule formats, but also, since it is expressed in categorical terms,
it provides a strong metatheory. Category theory [23] pervades denotational
semantics [33, 38, 18, 34], so this framework also provides a connection between
these di�erent approaches to semantics: it has made possible to speak about
denotational and operational semantics in the same language.

Since the introduction of the bialgebraic framework by Turi, many research
papers have been published on the subject, expanding and clarifying its under-
lying theory and con�rming its usefulness. Section 2 provides an overview of
the bialgebraic framework as introduced by Turi and Plotkin, and a summary
of the ideas in the aforementioned papers that may be relevant to our research.

1.3 Objectives

If we want the de�nition and maintenance of semantics of programming lan-
guages of considerable size to be manageable, modularity is essential. Structural
operational semantics is a widespread approach but its modularity is rather
poor, and the available solutions fall short in their support for formal reasoning
and automation. The objective of this research is to:

• Obtain techniques for improving modularity of SOS that are based on a
solid theory.

• Analyse how to use these techniques for the calculation of modular ab-
stract machines.

• Apply these techniques to the construction of a modular compiler which
would allow us to selectively combine di�erent features of programming
languages, emulating what Liang et. al. [22] did with monad transformers
for constructing modular interpreters.

2 Literature on the bialgebraic framework

Operational semantics are a popular and intuitive way of specifying semantics,
particularly in the area of process algebra, where concurrency, communication
between processes and more recently, mobility are fundamental aspects.

For each operational semantics there is an associated notion of process equiv-
alence, where two processes are regarded as equal if their observable behaviour
is the same. Since we may have di�erent notions of what is observable and what
is not, there are also di�erent notions of process equivalence.

For a notion of equivalence to be useful, it should be respected by the op-
erations of the language. That is, we would like to not be able to distinguish
equivalent processes when we plug them in some arbitrary context. We want
the notion of equivalence to be a congruence.

Verifying that equivalence is a congruence is usually di�cult, so many re-
searchers started looking for general criteria under which this can be guaranteed.
This criteria is usually expressed as some syntactic restriction on the format of
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the operational rules. GSOS is a well-known rule format which guarantees that
behavioural equivalence (in this case, bisimulation) is a congruence.

2.1 Towards a Mathematical Operational Semantics

In [36], Turi provided a category-theoretic abstract formulation of well-behaved
structural operational semantics. This presentation was revised and simpli�ed
by Turi and Plotkin in [35] and is known as bialgebraic semantics1. Every
bialgebraic semantics guarantees that bisimulation is a congruence. Bialgebraic
semantics can be obtained from abstract operational rules, natural transforma-
tions of the form

Σ(Id×B)→ BT

for signature Σ, terms generated by the signature T , and behaviour B. They
proved that there is a one-to-one correspondence between �nitely-branching
GSOS rules and abstract operational rules for the behaviour BX = Pf (Act×X)
on Set, corresponding to �nitely branching trees with labels drawn from Act on
the transitions (here Pf is the �nite powerset functor and Act is a �xed set of
labels).

This abstract construction has several advantages over concrete rule formats.
By generalising to other categories and other behaviour endofunctors, other rule
formats can be discovered. Moreover, just by dualising abstract GSOS rules,
another rule format was found: safe tree rules. This connection between two
di�erent rule formats probably would not have been noticed if we had kept
insisting on working with concrete rules. By abstracting from irrelevant details
more connections come to light. As the example of safe tree rules shows, using
category theory as a metatheory gives us a powerful and concise way of reasoning
about our abstractions.

From abstract operational rules one obtains a distributive law between a
monad and a comonad. It's precisely this distributive law which informs the
de�nition of bialgebraic semantics, which we give in section 2.1.2. If we forget
about abstract operational rules, and work at the level of abstraction of dis-
tributive laws, there is even more room for generalisation. We can regard the
syntax as being any monad, and not just a freely-generated one, and behaviours
can be any comonad, and not just a cofreely generated one. Then, we may con-
sider adding equations to the signature (terms are interpreted as before but
quotiented by some set of equations) and working with timed processes, whose
behaviours are not, in general, cofreely generated by an endofunctor.

1In [36], two equivalent formulations were given: functorial operational semantics and
functorial denotational semantics, although none of them were more �operational� or �deno-
tational� than the other. In [35] the name universal semantics was suggested, but the name
that caught on is the one presented here.
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2.1.1 Adequacy and bisimulation as a congruence

Bisimulation is a congruence in bialgebraic semantics as a corollary of a stronger
result: every bialgebraic semantics coinduces a denotational model that is ade-
quate, in the following sense:

If Σ is the functor corresponding to the signature of a language, a denota-
tional model can be seen as a Σ-algebra J−K : ΣM →M . The initial Σ-algebra
is given by the programs of the language (closed terms T0) and the unique
homomorphism from the initial Σ-algebra to the denotational model yields the
initial algebra semantics.

ΣT0

∼=
��

Σ(fold(J−K)) // ΣM

J−K
��

T0
fold(J−K)

//________ M

On the other hand, if we consider the operational model of closed programs
〈|− |〉 : T0→ BT0 for a behaviour B, the abstract behaviour of programs will be
given by coinduction, that is, by the corresponding �nal coalgebra semantics.

T0

〈|−|〉
��

unfold(〈|−|〉) //_________ νB

∼=
��

BT0
B(unfold(〈|−|〉))

// B(νB)

If we consider denotational models on the carrier of the �nal coalgebra νB,
we arrive to the following de�nition of adequacy.

De�nition 1 A denotational model is adequate2 with respect to an operational
one when its initial algebra semantics fold(J−K) : T0 → νB is equal to the �nal
coalgebra semantics unfold(〈| − |〉) : T0 → νB corresponding to the operational
model.

This notion of adequacy can be expressed diagrammatically as in �gure 1.

B-bisimulations

For every behaviour functor B we have an associated notion of behaviour equiv-
alence called B-bisimulation. Turi and Plotkin showed that under some mild
conditions on B, the �nal B-bisimulation is equivalent to the internal notion of
equality in the carrier of the �nal coalgebra.

2This notion of adequacy is stronger that the usual notion of adequacy found in the liter-
ature, which only requires the �nal coalgebra semantics to be `included' in the initial algebra
semantics.
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ΣT0

∼=
��

Σfold(J−K) // Σ(νB)

J−K

��
T0

fold(J−K)
=

//_________

〈|−|〉
��

unfold(〈|−|〉)
//_________ νB

∼=
��

BT0
B(unfold(〈|−|〉))

// B(νB)

Figure 1: Adequacy condition for bialgebraic semantics.

Lemma 1 If the behaviour functor B preserves weak pullbacks3 then, equality of
�nal coalgebra semantics is equivalent to equality of the greatest B-bisimulation.

unfold(〈|t|〉) = unfold(〈|t′|〉) ⇔ t ∼B t′

In theorem 5 in section 2.4.2, the condition that B should preserve weak
pullbacks is shown not to be necessary for ensuring that the greatest bisimulation
is a congruence.

Corollary 1 If the initial algebra semantics and the �nal coalgebra semantics
coincide, observational equivalence corresponding to the �nal coalgebra seman-
tics is a congruence.

Proof The proof just makes use of the fact that, by de�nition, every initial
algebra semantics is compositional. For details, see [35, �12]. �

Adequacy revisited

We can provide a more symmetric formulation of adequacy if we consider T -
algebras and D-coalgebras. If T is freely generated by Σ then T -algebras are
isomorphic to Σ-algebras, and we can move to the category of T -algebras.

De�nition 2 The Eilenberg-Moore category, or category of T -algebras of a
monad T = 〈T, η, µ〉 in a category C, denoted as CT , has as objects pairs 〈X, h〉,
with X an object of C and h : TX → X an arrow of C such that the following
diagrams commute

T 2X
Th //

µX

��

TX

h

��
TX

h
// X

TX

h

��

X
ηXoo

X

{{{{{{{{

{{{{{{{{

3A universal is said to be weak when only its existence is guaranteed, but not its uniqueness.
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The arrows of the category CT are those arrows f of C making the following
diagram commute

TX
Tf //

h

��

TY

k

��
X

f
// Y

Dually, we can de�ne the category of D-coalgebras of a comonad D.

Proposition 1 Σ-algebras are isomorphic to T -algebras, and dually, B-coalgebras
are isomorphic to D-coalgebras, where T is the free monad on Σ and D is the
cofree comonad on B.

Σ-Alg ∼=

UΣ
��8

88
88

88
T -Alg

UT

����
��

��
�

C

B-Coalg ∼=

UB ��=
==

==
==

D-Coalg

UD����
��

��
�

C

UΣ, UT , UB, UD, are the obvious forgetful functors.
The maps of the isomorphisms are:

Σ-algebra T -algebra

〈X, h : ΣX → X〉 7→ 〈X, fold(id + h) : TX → X〉
〈X, k ◦ inrX ◦ ΣηX : ΣX → X〉 ←[ 〈X, k : TX → X〉

B-coalgebra D-coalgebra

〈X, h : X → BX〉 7→ 〈X, unfold(id× h) : X → DX〉
〈X, BεX ◦ π2 ◦ k : X → BX〉 ←[ 〈X, k : X → DX〉

As a consequence of proposition 1, the initial Σ-algebra is equivalent to
the multiplication of the monad on the initial object µ0 : T 20 → T0 and the
�nal B-coalgebra is equivalent to the comultiplication of the comonad on the
�nal object δ1 : D1 → D21 (notice that D1 ∼= 1 × BD1 ∼= BD1, so we have
D1 ∼= νB.) Therefore, the diagram in �gure 1 is equivalent to the following
(more symmetric) diagram:

T 20

µ0

��

T fold(J−K) // TD1

J−K
��

T0
fold(J−K)

=
//________

〈|−|〉
��

unfold(〈|−|〉)
//________ D1

δ1

��
DT0

D(unfold(〈|−|〉))
// D21
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By some abuse of notation we maintain the names for the operational model
and the denotational model.

In this last diagram the duality of the algebraic and coalgebraic approaches
is made evident and hence, we can appreciate the elegant beauty of bialgebras.

2.1.2 Constructing Adequate Semantics

Following the de�nition of adequacy, to obtain adequate semantics we need to
construct a category with objects TX → X → DX, and as morphisms, arrows
which are both T -algebra and D-coalgebra morphisms, T0 should be the carrier
of the initial object of this category and D1 the carrier of the �nal object. As
we are about to see, for any lifting T̃ of the monad T to the D-coalgebras, the
category of the T̃ -algebras has exactly this structure.

In the following we make this statement more precise by providing the neces-
sary de�nitions and by spelling out the structure of the category of T̃ -algebras.

De�nition 3 Let T = 〈T, η, µ〉 be a monad and D an endofunctor on the same
category C. A monad 〈T̃ = T̃ , η̃, µ̃〉 lifts T to the D-coalgebras if the following
diagram

D-Coalg
T̃ //

UD

��

D-Coalg

UD

��
C

T
// C

commutes and UD preserves the operations of the monad. That is, the following
equations should hold.

UDT̃ = TUD : D-Coalg→ C
UDη̃ = ηUD

: UD → TUD

UDµ̃ = µUD
: T 2UD → TUD

According to these equations, we are asking the action of η̃ and µ̃ on the
carriers of the coalgebras to be the same as η and µ in the unlifted monad.
Diagrammatically,

X
ηX //

k

��

TX

T̃ (k)

��

T 2X
µXoo

T̃ 2(k)

��
DX

DηX

// DTX DT 2X
DµX

oo

Let's consider the structure h of an object in the category D-CoalgT̃ , of
T̃ -algebras. This object has as carrier a D-coalgebra 〈X, k〉 with k : X → DX.

So, in D-CoalgT̃ :
〈〈X, k〉, h〉
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By the �rst condition on the structure of T̃ -algebras, in D-Coalg we have
that the following diagram commutes.

T̃ 2〈X, k〉 T̃ h //

µ〈X,k〉

��

T̃ 〈X, k〉

h

��
T̃ 〈X, k〉

h
// 〈X, k〉

Since h is an arrow of D-Coalg, h is coalgebra homomorphism. Also, T̃ (k) : TX →
DTX. Then, the following diagram commutes.

TX

h

��

T̃ (k) // DTX

Dh

��
X

k
// DX

So, we have that if h is the structure of a T̃ -algebra then it is also a T -algebra.
One can prove that the converse also holds.

Therefore, the objects in D-CoalgT̃ are triples 〈X, k, h〉 with k : X → DX
and h : TX → X such that the previous diagram commutes.

The arrows in D-CoalgT̃ are arrows that preserve the commutativity of this
diagram. That is, they are arrows f such that

TY

l

��
TX

h

��

Tf
<<xxxxxxxx
Y

m // DY

X

f

<<xxxxxxxxx

k
// DX

Df

<<xxxxxxxx

commutes. Notice that this is the same as saying that f is both a D-coalgebra
arrow and a T -algebra arrow.

As we can see in the last diagram, adequate semantics live in a category of
algebras of a monad lifting a monad T to the D-coalgebras. Also, by duality,
one can interpret adequacy as living in a category of coalgebras of a comonad
lifting a D-comonad to the T -algebras. We should also prove that initiality and
�nality of the initial T -algebra and �nal D-coalgebra is preserved, but for this it
is su�cient to consider the adjunction splitting the monad and the adjunction
splitting the comonad. Since left (right) adjunctions preserve colimits (limits)
we obtain the desired result.

In order to obtain a symmetric de�nition of bialgebraic semantics, we intro-
duce the following
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De�nition 4 Given a monad T = 〈T, η, µ〉 and a comonad D = 〈D, ε, δ〉 on a
category C, a distributive law of the monad T over the comonad D is a natural
transformation λ : TD → DT such that the operations are preserved, in the
sense that the following diagrams commute.

DT

TD

λ

<<yyyyyyyy
DηD

oo

Dη
aaCCCCCCCC

T 2D
Tλ //

µD

��

TDT
λT // DT 2

Dµ

��
TD

λ
// DT

TD
λ

||yy
yy

yy
yy Tε

!!CC
CC

CC
CC

DT εT

// T

D2T DTD
Dλoo TD2

λDoo

DT

δT

OO

TD
λoo

Tδ

OO

Theorem 1 For any monad T and comonad D on the same category it is
equivalent to give:

• A distributive law λ : TD → DT of T over D

• A lifting T̃ of T to the D-coalgebras.

• A lifting D̃ of D to the T -algebras.

Proof Given a distributive law λ, we obtain the liftings as follows.

T̃ (k) = λX ◦ Tk D̃(h) = Dh ◦ λX

If we now start from a lifting T̃ , then UDT̃ = TUD. The comonad D is
split by the adjunction UD a GD, hence D = UDGD. Then, TD = TUDGD =
UDT̃GD. We consider the arrow TεD : TD → T , which by the previous argu-
ment is Tε : UDT̃GD → T . Transposing this arrow across the adjunction split-
ting D, we obtain an arrow λ : T̃GD → GDT . We de�ne λ = UDλ : TD → DT .

Dually, we obtain a distributive law λ from the lifting D̃. It can be proved
that these constructions are indeed distributive laws by proving that they re-
spect the operations in the monad and the comonad.

For details, see [35, �7.1] �

One important consequence of the previous theorem is the following propo-
sition:

Proposition 2 From a distributive law between a monad T and a comonad D
we can obtain

• a canonical operational model 〈|−|〉 = λX ◦ T (0D) where 0D : 0→ D0.

• a canonical denotational model J−K = D(1T ) ◦ λX where 1T : T1→ 1.
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Now we give the formal de�nition of bialgebraic semantics.

De�nition 5 A bialgebraic semantics is a distributive law between a monad T
that corresponds to syntax, and a comonad D that corresponds to the observable
behaviour.

Although the liftings mentioned in theorem 1 are equivalent to a distributive
law, we prefer using a distributive law as de�nition since, due to its symmetry,
it is self-dual. This means we do not need to consider the dual case.

We have de�ned bialgebraic semantics as a distributive law but we have not
explained how to construct such a distributive law. In [35] two ways to construct
bialgebraic semantics were given. The �rst one is by abstract operational rules,
and the second is by their dual.

2.1.3 Abstract Operational Rules

De�nition 6 An abstract operational rule is a natural transformation

ρ : Σ(Id×B)→ BT

where T is the monad freely generated by Σ.

Proposition 3 From an abstract operational rule ρ : Σ(Id×B)→ BT , we can
construct a monad Tρ lifting T to the B-coalgebras.

Proof See [35, �4]. �

De�nition 7 The operational monad T̃ induced by some abstract operational
rule ρ : Σ(Id×B)→ BT , is the monad Tρ corresponding to the construction in
proposition 3.

Abstract operational rules originated as an abstraction of rules in the GSOS
format [5].

De�nition 8 Let Ai and Bi range over subsets of A. A GSOS-rule is a rule of
the form

{xi
a−→ ya

ij}
16i6n,a∈Ai

16j6ma
i

{xi 6
b−→}16i6n

b∈Bi

σ(x1, . . . , xn) c−→ t

such that xi and ya
ij are all distinct, and those are the only variables that occur

in the term t.
If there are �nitely many rules for each operator σ in Σ and action c in A,

then the set of rules is said to be image �nite.

Proposition 4 Image �nite GSOS rules are in one-to-one correspondence with
abstract operational rules of the behaviour BX = (PfX)A, where Pf is the �nite
subset functor.
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2.1.4 Abstract denotational rules

De�nition 9 The dual of an abstract operational rule, called abstract denota-
tional rule, is a natural transformation

% : ΣD → B(Id + Σ)

By the construction dual to the one in proposition 3, we can construct a
comonad D% lifting D to the Σ-algebras (where D is again the comonad cofreely
generated by B.)

De�nition 10 Consider rules of the form

{zi
ai−→ yi}i∈I {vj 6

bj−→}j∈J

σ(x1, . . . , xn) c−→ t

where xk, yi, zi, and vj are all variables, and I and J are countable, possibly
in�nite sets. The xk and yi should be distinct variables, and the rule should
be well-founded in the sense that all backward chains in its variable dependency
graph are �nite.

If t is either a variable or of the form σ′(x′1, . . . , x
′
m) for some operator σ′

of the signature and some (not necessarily distinct) variables x′1, . . . , x
′
m, then

the rule is a safe tree rule.

Safe tree rules are more general than GSOS since they allow for lookahead
(given a transition x

a−→ y, we can also use y
b−→ z.) They are restricted in the

form of the term in the conclusion but, in practise, this restriction can usually
be sidestepped by adding auxiliary operators to the signature.

Proposition 5 Safe tree rules are in one-to-one correspondence with abstract
denotational rules.

2.1.5 Case Studies

Turi presents a variety of concrete structural operational semantics and their
bialgebraic models [37]. Two base categories are considered:

• Set, the same category considered in modelling GSOS, and

• SL(Set), the category of semi-lattices and join-preserving functions. In-
terestingly, by working on SL(Set), one can treat, for example, non-
determinism with side-e�ects and explicit termination by considering BX =
(S ·(1+X))S instead of using the behaviour BX = (P(S ·(1+X)))S . Also,
working in this category means that the notion of equivalence obtained is
trace-equivalence, instead of bisimulation.
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In Turi's previous work he focused on the behaviour BX = (PX)A of labelled
transition systems. In this work other behaviour functors are studied, more
precisely, he considers behaviours generated by the following grammar:

B ::= Id | 1 + B | S ·B | BS | PfB | PcfB

where Pf is the �nite power-set functor, Pcf is the commutative free semi-
lattice monad, and S is a parameter which can be interpreted as a set of states
or actions.

The examples in this paper are:

• A sequential composition operator in the presence of explicit termination
and state in an a�ne SMC category.

• A parallel composition operator and a choice operator, modelled in a cat-
egory C with powers and a commutative free semi-lattice monad Pcf .

Modularity

Modularity is analysed for the previous examples by de�ning the behaviours to
be parametric in some part of the behaviour B′. For the previous examples the
behaviour BX = B′(1+X) is considered. Another example is a loop construct,
for which the whole behaviour B can be given as a parameter, as long as an
operation ⊗ : X ×BX → X ⊗BX is given.

What we have here is a general schema for the de�nition of the semantics
of a given construct. We do not obtain a concrete semantics until we �x a
speci�c behaviour, so it is not an ideal solution. Nevertheless, this scenario is
similar to that of monad transformers in which the parameter is a monad, and
monad transformers have proven to be useful nonetheless. Consequently, we will
consider parameterised behaviours in section 3.1 as an approach to modularity.

Guarded Recursion

A system of equations

x0 = t0

x1 = t1
...

where xi is a variable in X and ti is a term in TX, can be seen as a coalgebra
Θ: X → TX s.t. xi 7→ ti.

A term is said to be guarded if its (one step) behaviour does not depend on
the behaviour of its variables. If every ti is guarded, then we have a guarded
system of equations. Notice that guarded systems of equations do not allow for
silly equations like x = x; every expansion of a variable corresponds to some
observable behaviour.
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Given a functor Σ freely generating the terms TX, we can obtain a sub-
functor of Σ, ΣG : C × C → C (with insertion map into Σ given by ΣG ◦ ∆)
which correspond to the signature of guarded terms. The guarded terms are
then given by a functor GX = µY.ΣG(Y, TX).

De�nition 11 A guard for some abstract operational rules ρ is a span

G
ξ

��~~
~~

~~
~

ζ

!!CC
CC

CC
CC

T BT

such that GU
ξU

||yy
yy

yy
yy ζU

##GG
GG

GG
GG

G

TU
Tρ

// BTU

commutes.

The left leg ξ tells how to obtain terms TX from guarded terms GX and
can be calculated by folding the insertion of ΣG into Σ. The right leg ζ tells
how to obtain the behaviour of guarded terms, and can be calculated by folding
some abstract operational rule on guarded terms ρ′ : ΣG〈Id × B, Id〉 → BT .
Summarising, to obtain a guard we need to provide the signature of guarded
terms ΣG, its insertion into Σ, and the semantics ρ′ for guarded terms.

Given a guard (G, ξ, ζ), and a system of guarded equations Θ: X → GX,
we can obtain the operational monad in a similar way to what we did in propo-
sition 3, only that now instead of considering coalgebras k : X → BX and the
composite Bη ◦ k : X → BTX, we consider the composite ζ ◦Θ: X → BTX.

2.1.6 Some Concluding Remarks

Structural Operational Semantics (SOS) might be more intuitive and more eas-
ily learnt than other semantic styles, but lacks a strong metatheory. Bialgebraic
semantics gives a mathematical model of well-behaved SOS semantics. By work-
ing in a category-theoretic setting, we are able to reason about SOS focusing
only on the fundamental notions of abstract syntax and behaviour.

Abstract operational rules and abstract denotational rules, are the counter-
part in the bialgebraic framework of two known syntactic format for rules, and
yield two constructions of bialgebraic semantics. More general syntactic formats
for rules arise from other formulations of abstract rules (for examples, see next
section and section 2.4.2). Consequently, when analysing modularity of SOS in
this framework, we should aim to work at the most abstract level possible, so
as to include in our analysis future formats that may appear.

2.2 Lenisa, Power and Watanabe

In the following we introduce the work of Lenisa, Power and Watanabe which
was �rst presented in [20], and then expanded in [21, 32].

Their main contribution is bringing up the fact that abstract operational
rules are equivalent to a distributive law TH → HT between the syntax monad
T and H, the cofree copointed endofunctor on B (section 2.2.1.) Working at
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this level of abstraction, they presented an abstract operation for joining two
languages with same behaviour (section 2.2.2), and started to analyse how to
add equations to the syntax (for example, to make an operator associative by
de�nition.) Lastly, they de�ned the meaning of a stream of transitions, by �rst
de�ning what a two-step transition is, and then generalising to n-step transitions
(section 2.2.3). They also suggested that by considering the limit of this last
construction we would obtain a big-step semantics, hence relating small-step
semantics and big-step semantics. The big-step semantics they construct in this
way from a small-step one is equal to the canonical distributive law of a monad
over a comonad.

2.2.1 Abstract rules as distributive laws

Abstract operational rules (see section 2.1.3) are equivalent to a distributive law
of a monad and a copointed endofunctor.

De�nition 12 A copointed endofunctor on a category C is an endofunctor
H : C → C together with a natural transformation ε : H → Id. An 〈H, ε〉-
coalgebra is an object X of C together with a map k : X → HX such that the
following diagram commutes.

X
k //

DD
DD

DD
DD

DD
DD

DD
DD

HX

εX

��
X

A map of 〈H, ε〉-coalgebra is a coalgebra map that preserves the ε operation.
With these de�nitions we obtain the category 〈H, ε〉-Coalg of 〈H, ε〉-coalgebras.

De�nition 13 A distributive law of a monad 〈T, η, µ〉 over a copointed endo-
functor 〈H, ε〉 is a natural transformation λ : TH → HT such that the following
diagrams commute.

TTH
Tλ //

µH

��

THT
λT // HTT

Hµ

��
TH

λ
// HT

H
ηH

||xxxxxxxx
Hη

��
TH

λ
// HT

TH
λ //

Tε

��

HT

εT
||xx

xx
xx

xx
x

T

For an endofunctor B on a category C, if C has �nite products, then the cofree
copointed endofunctor on B is given by 〈Id×B, π1〉. The cofree comonad D on
the endofunctor B agrees with the cofree comonad on the copointed endofunctor
〈Id×B, π1〉, because of the following isomorphisms:

〈Id×B, π1〉-Coalg ∼= B-Coalg ∼= D-Coalg

We also have that the cofree comonad on the cofreely generated endofunctor
exists i� the cofree comonad on B exists.
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The main result of this section is the following:

Theorem 2 To give an abstract operational rule ρ : Σ(Id×B)→ BT is equiv-
alent to giving a distributive law λ : T (Id×B)→ (Id×B)T of the free monad
T over the copointed endofunctor 〈Id×B, π1〉.

Distributive laws have the following advantages over abstract operational
rules:

• They provide a more uniform and elegant formulation.

• The operational monad is obtained in a more standard way.

• They lead to new ways of generalisation. We may now consider distributive
laws of any monad over any copointed endofunctor. Notice that, while
this is less general than considering a distributive law of a monad over
a comonad, it is also less demanding in the sense that we require less
structure on the behaviours.

2.2.2 Adding operations

Given two distributive laws over the same comonad, we can obtain a combined
distributive law.

Proposition 6 For monads T and T ′ on C, if the coproduct of monads T + T ′

exists, the category of algebras (T + T ′)-Alg is canonically isomorphic to the
pullback

P //

��

T -Alg

U

��
T ′-Alg

U ′
// C

Theorem 3 Given monads T and T ′ and a comonad D, and given distributive
laws λ : TD → DT and λ′ : T ′D → DT ′, there is a canonical distributive law of
T + T ′ over D if the coproduct of monads exists.

Proof By Theorem 1, from λ and λ′ we obtain liftings to the T -algebras. By
Proposition 6, this liftings yield a comonad on T + T ′. By Theorem 1 (in the
other direction), we obtain the distributive law of T + T ′ over D. �

The previous theorem was stated in [21] and [32] for distributive laws of mon-
ads over copointed endofunctors. Their proof carries over to the more general
case presented here.
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2.2.3 Dynamics

In order to analyse the dynamics of SOS, Lenisa, Power and Watanabe introduce
the idea of a two step transition. They argue that, while a transition is a
coalgebra x : X → BX, considering the composite

X
x //BX

Bx //BBX

is not enough since this does not record intermediate steps (It de�nes a transition
X → BBX, but we lose the path). Consequently, they consider steps based on
a distributive law λ : TH → HT , where one has the obvious composite

THH
λH //HTH

Hλ //HHT

This composite records intermediate steps but it is too general, as they
show for their lead example H = Id×P, where P is the powerset functor. They
introduce an equaliser in order to make the target of the �rst transition agree
with the source of the second one. They de�ne the behaviour of two steps to be
the the copointed endofunctor 〈H2, ε2〉, where H2X is the equaliser of the maps

HHX
HεX //

εHX

// HX

and ε2 : H2 → Id is de�ned by composition. Since X
x //HX

Hx //HHX is
an 〈H2, ε2〉-algebra, we have a process for constructing H2 from H. This process
is iterated to de�ne Hn.

Finally, they show how to obtain a distributivity law of T over Hn, the
behaviour of n steps, starting from λ : TH → HT . Under the condition that
certain limits exist, this process yields a distributive law of the monad T over
the cofree comonad D on 〈H, ε〉, which agrees with the canonical one.

2.3 Kick, Power

In [12, 11], Marco Kick used bialgebraic semantics to model timed processes.
Interestingly, he had to consider the comonad D and not a behaviour functor B,
since in systems for continuous time the comonad D is not cofreely generated.

In [13], Kick and Power introduce an operation for combining behaviours,
which is exactly the dual of the operation in section 2.2.2. We repeat the relevant
proposition and theorem in its dual form.

Proposition 7 For comonads D and D′ on C, if the product of comonads D×
D′ exists, the category of coalgebras (D × D′)-Coalg is canonically isomorphic
to the pullback

P //

��

D-Coalg

U

��
D′-Alg

U ′
// C
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Theorem 4 Given a monad T , comonads D and D′, and distributive laws
λ : TD → DT and λ′ : TD′ → D′T , there is a canonical distributive law of T
over D ×D′ if the product of the comonads D ×D′ exists.

This operation would allow them to separately specify the timing behaviour
and the action behaviour of a given system and then combine them. However, in
the leading examples of this kind of systems, the time information and the action
information interact with each other. To be able to represent these examples
as modularly as possible, they proved the following proposition, which does not
require a total independence between time and action information, but it is able
to split the semantics into two subproblems.

Proposition 8 Given comonads D and D′ on a category C such that the prod-
uct of D × D′ exists, and given a monad T on C, to give a lifting of T to
a monad on (D × D′)-Coalg is equivalent to giving natural transformations
λ : T (D×D′)→ DT and λ′ : T (D×D′)→ D′T such that the operations on the
monad and the di�erent comonads are respected. For details, see the original
paper [13].

Besides the separation of action and time information, no other application
for these operations has been suggested in the literature.

The dual of the operation in proposition 8, has not been mentioned else-
where, but seems to be useful. Given natural transformations TD → D(T +T ′)
and T ′D → D(T + T ′) which respect the operations of the monads and the
comonad, we can obtain a distributive law (T + T ′)D → D(T + T ′). A possi-
ble application is the following. Consider two constructs whose semantics are
mutually recursive. Using the operation, we could split the task of de�ning the
semantics of these two constructs into two smaller problems.

2.4 Other work on Bialgebraic Semantics

2.4.1 Klin

The core of Klin's PhD thesis [17] analyses how to incorporate other notions of
equivalence besides bisimulation in the bialgebraic framework. This part of the
thesis is summarised in [15] and the pragmatics explained in [16]. The other part,
which is also presented in [14] concerns describing recursion by equations, rather
than by structural rules. Klin follows Plotkin's suggestion [29] of considering
recursion as a matter of syntax. That is, a �xed-point operator is regarded
as syntactic sugar for the unwinding of a term. Since the kind of equations
considered can introduce divergence, the category Set has no longer enough
structure, and he needs to move to an order-enriched category. So, in this
development, all structural rules are non-recursive, and recursive constructs are
expressed by a class of equations which he calls regular unfolding rules.
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2.4.2 Bartels

Bartels analyses probabilistic systems in the bialgebraic framework, and the rule
formats that can be obtained [2, 4]. In previous work on bialgebraic semantics,
the relation between natural transformations (like abstract operational rules)
and rule formats was only sketched. In his work he makes this relation more
precise by a providing derivation process, which includes decomposing the natu-
ral transformation into simpler ones, and then deriving concrete representations.

Another of the contributions of his thesis [4], also published in [3], it's the
use of the bialgebraic framework for solving systems of equations.

Particularly relevant to our research is the following theorem, in which the
condition on behaviours for bisimulation to be a congruence is relaxed. Pre-
viously, the behaviour functor was required to preserve weak-pullbacks; in the
following theorem this restriction is lifted.

Theorem 5 Let λ be a distributive law of the monad T over the comonad D.
The greatest bisimulation R ⊆ P ×Q between any two λ-bialgebras 〈P, βP , αP 〉
and 〈Q, βQ, αQ〉 is a congruence.

2.4.3 Watanabe

Working in a 2-category setting, Watanabe [39] provides two di�erent de�nitions
of morphisms between distributive laws. He argues that one of the morphisms
can be useful to interpret conservative operational extensions, while the other
provides behaviour-preserving translations between languages.

2.4.4 Variable Binding

Fiore, Plotkin and Turi explained how to give initial algebra semantics to lan-
guages with variable binding [7] by working in a category of presheaves. Later,
Fiore and Turi [9] showed how this idea works for modelling the operational
semantics of languages with variable binding using abstract operational rules.

3 Operations on SOS

In the bialgebraic framework, operational semantics are given by well-de�ned
formal constructions: abstract operational rules or, alternatively, distributive
laws. We can approach the problem of modularity in SOS by considering oper-
ations on these formal constructions. This approach has several advantages:

• Generality. One can work at an abstract level, without having to rely on
speci�c sets of side-e�ects.

• Flexibility. There are di�erent ways of combining two di�erent semantics.
By choosing the operations and the order in which they are applied, the
language designer is in control of the way components are put together.
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• It provides a well-de�ned relation between the components and the com-
posed semantics, as given by the operations. One can prove preservation of
properties by proving that the operations involved preserve the property.

The operations can be de�ned at the level of abstract operational rules, distribu-
tive laws of monads over copointed endofunctors or distributive laws of monads
over comonads. It is not yet clear to us which of these levels of abstraction is
the best approach. In the following, I �rst consider the operations on abstract
operational rules, and give an example of a problem that can be solved with
these operations. Next, I do the same for distributive laws.

3.1 Operations on abstract operational rules

We will de�ne some operations on abstract operational rules, but �rst we will
de�ne an example problem that will serve as motivation. Then, we will analyse
what operations would be needed to solve the problem and de�ne them.

3.1.1 An example modularity problem

Consider the following language of arithmetic expressions

a ::= Con n | Add a a

where n ranges over Z.
The operational semantics of this language is

Con x ⇓ x

t ⇓ x u ⇓ y

Add t u ⇓ (x + y)

We want to extend this language with an exceptions language:

e ::= Throw | Catch e e

Throw ⇓ Nothing

t ⇓ Just x

Catch t u ⇓ Just x

t ⇓ Nothing u ⇓ y

Catch t u ⇓ y

The combined language is

ae ::= Con n | Add ae ae | Throw | Catch ae ae

Con x ⇓ x

t ⇓ x u ⇓ y

Add t u ⇓ (x + y)

Throw ⇑

t ⇓ x

Catch t u ⇓ x

t ⇑ u ⇓ y

Catch t u ⇓ y

t ⇑ u ⇑

Catch t u ⇑
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t ⇑

Add t u ⇑

u ⇑

Add t u ⇑

The semantics for the previous languages were given in big-step style. In
section 3.1.4 we present the semantics in small step style.

We see that the big-step relation of the extended language has to distinguish
between normal termination (with ⇓) and exceptional termination (with ⇑).
Also we need to add rules to specify the behaviour of the addition operator
when one of its subexpressions is an exception. The rules for the exceptions
sub-language do not su�er any changes; we will see that this takes a signi�cant
role later on.

While this new semantics looks similar to the previous ones, it is a di�erent
semantics. Nevertheless, it seems obvious that a connection must exist. What
we want to do is to expose this connection.

3.1.2 Transforming and combining operational semantics

We will focus just on the concepts of syntax and behaviour. A given SOS will
be characterised by its syntax (represented by a signature Σ) and behaviour B,
and we will write R(Σ, B).

We start with the operational semantics of the arithmetics languageR(ΣA, BA)
and the exceptions language R(ΣE , BE).

• The syntax of the combined language is the disjoint union of the syntax
of the two components, so we will need to join the two syntaxes R(ΣA +
ΣE , BAE).

• The behaviour of the arithmetics language is just the set of �nal values:
an integer Z = BA, while in the combined language the behaviour is
BAE = Maybe Z. We will need a lifting operation to go from R(ΣA, Z) to
R(ΣA,Maybe Z).

• We saw that in the combined language that rules for the exceptions sub
language did not change. This suggests that its behaviour can be combined
with any other behaviour B′: BE(B′) = Maybe B′. In particular, we are
interested in BE(Z) = BAE .

We can express the combined language as the result of applying the previous
operations to the arithmetics and exceptions semantics.

R(ΣA,KZ)
(B-lift)

R(ΣA,Maybe KZ)

R(ΣE ,Maybe(B))
(B-Inst)

R(ΣE ,Maybe(KZ))
(Σ-Join)

R(ΣA + ΣE ,Maybe KZ)
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3.1.3 De�nition of the operations

Having given the intuition on the operations we now proceed to de�ne them.
Here, operational semantics R(Σ, B) are considered to be abstract operational
rules Σ(Id×B)→ BTΣ.

• Joining syntax
This operation is the one described in section 2.2.2 on page 16, specialised
to abstract operational rules.
Given two abstract rules with the same behaviour functor,

ρ : Σ(Id×B)⇒ BTΣ and ρ′ : Σ′(Id×B)⇒ BTΣ′

we can join ρ and ρ′ into a new operational semantics :

ρ′′ : (Σ + Σ′)(Id×B)⇒ BTΣ+Σ′

We can express the operation as rule

R(Σ1, B) R(Σ2, B)
R(Σ1+2, B)

(Σ-join)

We obtain the new rule by calculating:

ρ′′ : (Σ + Σ′)(Id×B)
= {Coproduct of Functors}

Σ(Id×B) + Σ′(Id×B)
→ {ρ + ρ′}

BTΣ + BTΣ′

= {Functors}
B(TΣ + TΣ′)

↪→ { Embedding}
B(TΣ+Σ′)

Note that in Mon, the category of monads, TΣ+TΣ′ ∼= TΣ+Σ′ , but our co-
product in the calculation above is in the base category (i.e. is a coproduct
of functors, not of monads).

• Lifting a Rule
In the combined language AE we needed to write rules to propagate the
exceptions through the arithmetic operations. Those propagation rules
can be seen as going from a behaviour B to a behaviour FB. That is, we
want to lift an abstract rule ρ : Σ(Id×B)⇒ BTΣ to
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ρF : Σ(Id× FB)⇒ FBTΣ.

Given that F is strong, and that we have a distributive law ΣF ⇒ FΣ,
we can lift ρ.

ρF : Σ(Id× FB)
→ {strength of F}

ΣF (Id×B)
→ {distributive law}

FΣ(Id×B)
→ {Fρ}

FBTΣ

In rule format, for strong F :

R(Σ, B) ΣB → BΣ
R(Σ, FB)

(B-lift)

The distributive law can be obtained automatically in most cases as an
instance of the distributive law of traversable functors over applicative functors
[24]. Behaviours are usually applicative (in fact, they are usually monads), and
we expect the signature of a language to be traversable.

• Transforming behaviours
Sometimes, we can obtain abstract operational rules which are parame-
terised by a behaviour. They have some similarity to monads transformers
which are parameterised by a monad. The behaviour B used as parameter
is applied to a behaviour transformer B′ (a functor in a functor category)
which captures the interesting part of the observable behaviour of the
operations in Σ.

ΣB′(B)→ B′(B)TΣ

Applying a concrete behaviour to a behaviour transformer gives us an
instantiation rule:

R(Σ, B′(b))
R(Σ, B′(B))

(B-Inst)

• Obtaining abstract operational rules from big-step semantics.
Big-step semantics evaluate to a �nal value. Consequently, no more steps
are needed and we don't need all the structure in an abstract operational
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rule: it is su�cient to consider natural transformations ΣM →M . Given a
big-step semantics τ : ΣM →M , we can generate an abstract operational
rule parameterised by a behaviour.

ρτ : Σ(Id×MB)
→ {Σπ2}

ΣMB

→ {τB}
MB

→ {MBη}
MBTΣ

More examples The following examples can also be represented as abstract
operational rules parameterised by a behaviour, and could also be combined with
the arithmetics language A, or with the composed language AE, following the
same procedure that we used before: lift one of the languages to the combined
behaviour, instantiate the other language to the desired behaviour and then
apply the syntax joining operation.

• A State language.

s ::= Tick s

〈t, s〉 ⇓ 〈t′, s′〉
〈Tick t, s〉 ⇓ 〈t′, 1 + s′〉

� A Trace language.

t ::= Trace String t

t ⇓r t′

Trace s t ⇓s++r t′

Interestingly, all these examples are typically seen as examples of monad
transformers. The approaches are similar in the sense that both of them
stack up e�ects (monads or, in our case, behaviours), and the known
remarks about the order in which monad transformers are applied could
also be made here about the order in which the parameterised behaviours
are organised.
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3.1.4 Small step semantics

Consider the same languages as before, but now with small-step semantics.
The deterministic small-step operational semantics of the arithmetics lan-

guage are

Con x ↓ x

t ↓ x u ↓ y

Add t u ↓ (x + y)

t→ t′

Add t u→ Add t′ u

t ↓ x u→ u′

Add t u→ Add t u′

Here, the predicate t ↓ v means that t is a �nal value v. In the literature this
predicate is usually denoted by underlining a variable v. Here we have to chosen
this notation to make the translation to bialgebraic semantics more transparent.

The small-step semantics for exceptions are:

Throw ↑

t→ t′

Catch t u→ t′

t ↑

Catch t u→ u

t ↓ x

Catch t u ↓ x

Where the predicate t ↑ means that t throws an exception.

Bialgebraic semantics For the arithmetic language the behaviour is BA =
KZ+−, which means that in each step the computation either reachs a �nal value
or it has to do more computations. For the exception language the behaviour
paramterised by the �nal values: BE(V ) = 1 + KV + −, where a step is an
exception, a �nal value in V , or more computations.

To obtain the combined semantics, we take V = Z, lift the arithmetics be-
haviour with the functor Maybe = 1+−, and then join both abstract operational
rules.

R(ΣA, BA)
(B-lift)

R(ΣA,Maybe BA)

R(ΣE , BE(V ))
(B-Inst)

R(ΣE , BE(Z))
(Σ-join)

R(ΣA+E , BE(Z))

3.2 Operations on distributive laws

We can also de�ne operations at the level of distributive laws of monads over
copointed endofunctors.
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3.2.1 Joining syntax

The operation is the one described in section 2.2.2. If we consider, as with the
corresponding operation on abstract operational rules, monads freely generated
by a signature, the operation is trivial.

3.2.2 Composing behaviours

If we have two distributive laws with same syntax monad T , but di�erent co-
pointed endofunctors H and H ′, we can obtain a new distributive law by com-
posing behaviours

TH
λ−→ HT TH ′ λ′

−→ H ′T

THH ′ λH′−−→ HTH ′ Hλ′
−−→ HH ′T

There are problems with this rule, since we are not composing behaviours
but copointed endofunctors4 (possibly cofreely generated by a behaviour).

Take the example in section 3.1, where we wanted to compose Maybe and the
constant behaviour KZ. The cofreely generated copointed endofunctors for these
two behaviours and their composed behaviour Maybe ◦KZ are, respectively:

H = Id×Maybe

H ′ = Id×KZ

H◦ = Id× (Maybe◦KZ)

However HH ′ 6= H◦.

3.2.3 Lifting a Rule

The lifting rule which corresponds to the lifting rule for abstract operational
rules is just the application of the previous operation for composing behaviours,
with one of the operands being canonically generated.

For abstract operational rules we needed to provide a distributive law of the
signature Σ over the behaviour B, which we expected to be generated auto-
matically using the traversability of Σ. In this case we need to automatically
generate a distributive law of a monad over a copointed endofunctor.

3.3 Big-step versus small-step

When writing big-step operational semantics all behaviours are of the form
KV , where K is the constant functor and V are the values the big-step relation
evaluates to. This is true even if we have side-e�ects, because of the isomorphism

MKV
∼= KMV

4Composition of copointed endofunctors yields a copointed endofunctor.
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Notably, the constant functor is not pointed, hence it's not monadic nor
applicative. This may be problematic, as many of the previous operations rely on
the behaviour functor being applicative for automatically obtaining distributive
laws. Moreover, we may want to combine languages written in big-step style
with languages written in small-step style. For the former problem, we need to
obtain an abstract operational rule with an applicative functor. For the latter,
we need to make behaviours written in di�erent styles compatible.

One possible solution is to transform every big-step semantics into small-
steps. When mixing big-step and small-step styles this transformation is prefer-
able, rather than transforming small-step into big-step, since it is known that
small-step is more expressive than big-step. Also, is the only sensible direction
for obtaining applicative behaviours.

Papaspyrou [28] uses the free monad on a monad to obtain the resumptions
of that monad. Resumptions, in a non-deterministic context, allow him to
consider interleaving semantics. We were inspired by this into thinking that one
way to achieve the transformation from big-step to small-step is by calculating
the free monad on the behaviour. The free monad on a constant functor KV is
a functor X + KV , where the extra �X� accounts for the possibility of making
a small step without reaching a �nal value. The introduced variables stand for
values not yet calculated. We already had an idea of how to implement this
transformation, but the algorithm is not general enough, so there is more work
to be done in this regard.

4 Research Directions

In this �nal section, we outline some possible directions for deepening and ex-
tending the research done so far.

• We need to �nd more examples of modularity problems to test the use-
fulness and limitations of the operations on SOS. These limitations might
suggest the need for more expressive or di�erent operations. We are also
interested in �nding a minimal set of operations to take as our core theory.
Working with more examples might also shed some light on the right level
of abstraction for the operations.

• One of the features missing in the languages we have considered is variable
binding. It would be interesting to see how well our operations perform if
we work on Fiore's categories of presheaves [7, 9, 8]. This would imply an
added complexity which is not needed for non-binding constructs. Conse-
quently, another interesting question is to analyse if we can de�ne binding
constructs in a category of presheaves and combine them with not-binding
constructs de�ned in Set. In this way, the added complexity would only
be present where necessary.

• Recursion has been considered in [37] by means of guarded equations and
[14] by working in a CPO-enriched category. However, preliminary work
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based on coalgebraic solutions to recursion schemes [10, 25] suggest that
there is no need to add anything to bialgebras to handle recursion. Formal
proofs and examples are still needed to support this conjecture.

• Modularity of operational semantics can be applied to the construction of
modular compilers. So, the analysis of compilation to abstract machines
in a bialgebraic setting is of interest. Watanabe [39] did some research
on behaviour-preserving translation of languages which might be relevant
here.

• There is more work to be done on the transformation of big-step semantics
to small-step semantics. Also, it would be desirable to obtain a good
abstraction of evaluation order, so as to change from, say, left-to-right
evaluation order to non-deterministic evaluation. Papaspyrou [28] de�nes
an operation called exhaust, which evaluates a given term atomically. This
operation also appears when de�ning the semantics of STM, so it would
be appealing to be able to represent it in the bialgebraic framework.

• If we want to communicate the semantics obtained after the application
of several operations, we should be able to print it as a traditional SOS.
We might also want to execute a program step by step to test a given
semantics. This means that we can no longer represent our semantics as
functions in our implementation language (as in our current implementa-
tion).We should represent the semantics as a datatype and do a symbolic
evaluation.

• While the bialgebraic framework was developed for representing the dy-
namic semantics of programming languages, it may also be used to model
static semantics. So, we may �nd another source of examples and appli-
cations in static semantics, like type inference systems and secure infor-
mation �ow systems.
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A Implementation in Haskell

A.1 Free monad on a signature

data T s x = Var x
| Term{term :: s (T s x )}

tfold :: Functor s ⇒ (x → z )→ (s z → z )→ T s x → z
tfold f g (Var x ) = f x
tfold f g (Term x ) = g $ fmap (tfold f g) x
instance Functor s ⇒ Functor (T s) where

fmap f (Var x ) = Var $ f x
fmap f (Term fx ) = Term $ fmap (fmap f ) fx

instance Functor s ⇒ Monad (T s) where
return = Var
x >>= f = tfold f Term x

Canonical transformation from a signature to its free monad.
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sigma2monad :: Functor s ⇒ s a → T s a
sigma2monad = Term · fmap Var

A.2 Sum Functor

data Sum f g a = Inl (f a) | Inr (g a)
instance (Functor s1 ,Functor s2 )⇒ Functor (Sum s1 s2 ) where

fmap f (Inl a) = Inl (fmap f a)
fmap f (Inr a) = Inr (fmap f a)

copair :: (s1 a → b)→ (s2 a → b)→ Sum s1 s2 a → b
copair f g (Inl a) = f a
copair f g (Inr b) = g b

A.3 Copointed endofunctors

class Functor f ⇒ Copointed f where
copoint :: f a → a

Composition of copointed endofunctors is copointed.
instance (Copointed f ,Functor g ,Copointed g)⇒

Copointed (Comp f g) where
copoint = copoint · copoint · comp

A.3.1 Free Copointed endofunctors

newtype Freecop f a = Cop{decop :: (a, f a)}
instance Functor f ⇒ Functor (Freecop f ) where

fmap g (Cop (a, fx )) = Cop (g a, fmap g fx )
instance Functor f ⇒ Copointed (Freecop f ) where

copoint (Cop (x , fx )) = x

One projection is given by copoint. The other projection is
forgetcopoint (Cop (x , fx )) = fx

A.4 Abstract Operational Rules and Distributive Law

Abstract operational rules are
type OpRule s b = ∀ a · s (a, b a)→ b (T s a)

A CopRule should respect the copoint of h.
type CopRule s h = ∀ a · s (h a)→ h (T s a)

freecop translates from abstract operational rules to CopRules over a cofreely
generated copointed endofunctor on the behaviour b.

pair :: (a → b)→ (a → c)→ a → (b, c)
pair f g a = (f a, g a)
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freecop :: (Functor s,Functor b)⇒
OpRule s b → CopRule s (Freecop b)

freecop f = Cop · pair point (f · fmap decop)
where point = Term · fmap (Var · copoint)

op2dist , given a CopRule, it yields a distributive law of a monad over a
copointed endofunctor.

cop2dist :: (Functor h,Functor s)⇒
CopRule s h

→ (∀ a · T s (h a)→ h (T s a))
cop2dist op (Var ha) = fmap Var ha
cop2dist op (Term stha) = fmap join (op (fmap (cop2dist op) stha))

A.5 The operational monad

opmonad :: (Functor s,Functor h)⇒
CopRule s h → (a → h a)→ T s a → h (T s a)

opmonad op k = tfold (fmap Var · k) (fmap join · op)
opreturn :: (Functor s,Functor h)⇒

CopRule s h → (a → h a)→ T s a → h (T s a)
opreturn op k = opmonad op k
opmu :: (Functor s,Functor h)⇒

CopRule s h →
(T s (T s a)→ h (T s (T s a)))→
T s a → h (T s a)

opmu op tta ta = fmap join (tta (return ta))

A.6 Running programs

A Program is a closed term.
data Zero

type Program s = T s Zero

exec :: (Functor b,Functor s,Traversable s)⇒
OpRule s b → Program s → Program (Freecop b)

exec op = unfold (opmonad (freecop op) ⊥)
unfold :: Functor s ⇒ (b → s b)→ b → Program s
unfold g = Term · fmap (unfold g) · g

A.7 Operations

• Joining syntax
joinOS :: (Functor s1 ,Functor s2 ,Functor b)⇒

OpRule s1 b
→ OpRule s2 b
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→ OpRule (Sum s1 s2 ) b
joinOS op1 op2 = copair (extendR op1 ) (extendL op2 )
extendR :: (Functor s1 ,Functor b)⇒

OpRule s1 b
→ (∀ a · s1 (a, b a)→ b (T (Sum s1 s2 ) a))

extendR op = fmap (tfold Var (Term · Inl)) · op
extendL :: (Functor s2 ,Functor b)⇒

OpRule s2 b
→ (∀ a · s2 (a, b a)→ b (T (Sum s1 s2 ) a))

extendL op = fmap (tfold Var (Term · Inr)) · op

• Lift operation
liftOS :: ( Applicative fx ,Functor s,

Traversable s,Functor b)⇒
OpRule s b

→ OpRule s (Comp fx b)
liftOS op = Comp

· fmap op
· dist
· fmap strength
· fmap (pair fst (comp · snd))

A.8 Rule Transformers

type Model s b = ∀ a · s (b a)→ b a

Any model can be turned into an abstract operational rule.
model2aor :: (Functor s,Functor b)⇒ Model s b → OpRule s b
model2aor model = fmap Var ·model · fmap snd

We can lift a model to the right and to the left
liftModelR :: (Functor s,Functor h,Functor j )⇒

Model s h → Model s (Comp h j )
liftModelR bf = Comp

· bf
· fmap comp

liftModelL :: (Functor s,Traversable s,Applicative j )⇒
Model s h → Model s (Comp j h)

liftModelL ot = Comp · fmap ot · dist · fmap comp

A.9 Big-Step semantics

newtype Const b a = Const{deconst :: b}
instance Show b ⇒ Show (Const b a) where

show (Const b) = "Const " ++ show b
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instance Functor (Const b) where
fmap (Const b) = Const b

Moving e�ects out and into the constant functor
fxk2kfx :: Functor fx ⇒

Comp fx (Const b) a
→ Const (fx b) a

fxk2kfx = Const · fmap deconst · comp
kfx2fxk :: Functor fx ⇒

Const (fx b) a
→ Comp fx (Const b) a

kfx2fxk = Comp · fmap Const · deconst
extractFxs :: (Functor s,Functor fx )⇒

CopRule s (Freecop (Const (fx b)))
→ CopRule s (Freecop (Comp fx (Const b)))

extractFxs op = Cop · pair copoint (kfx2fxk · forgetcopoint)
· op
· fmap (Cop · pair copoint (fxk2kfx · forgetcopoint))

A.10 Applicative Functors

infixl 4 �
class Functor f ⇒ Applicative f where

pure :: a → f a
(�) :: f (a → b)→ f a → f b
strength :: (b, f a)→ f (b, a)
strength (b, fa) = pure (, ) � pure b � fa

class Traversable t where
traverse :: Applicative f ⇒ (a → f b)→ t a → f (t b)
dist :: Applicative f ⇒ t (f a)→ f (t a)
dist = traverse id

newtype Comp f g a = Comp{comp :: f (g a)}
instance (Applicative f ,Applicative g)⇒

Applicative (Comp f g) where
pure x = Comp $ pure $ pure x
Comp fs � Comp xs = Comp $ pure (�) � fs � xs

instance (Functor f ,Functor g)⇒
Functor (Comp f g) where

fmap h (Comp fga) = Comp $ fmap (fmap h) fga
instance (Traversable s1 ,Traversable s2 )⇒

Traversable (Sum s1 s2 ) where
traverse f (Inl s1 ) = pure Inl � traverse f s1
traverse f (Inr s2 ) = pure Inr � traverse f s2

instance Applicative f ⇒
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Applicative (Freecop f ) where
pure x = Cop (x , pure x )
Cop (f , fs) � Cop (x , xs) = Cop (f x , fs � xs)

instance Applicative Identity where
pure = return
(�) = ap

instance Applicative Maybe where
pure = return
(�) = ap

A.11 Showing �xpoints

class PreservesShow f where
preservesShow ′ :: (x → String)→ f x → String
preservesShow :: Show x ⇒ f x → String
preservesShow = preservesShow ′ show

instance (PreservesShow s1 ,PreservesShow s2 )⇒
PreservesShow (Sum s1 s2 ) where

preservesShow ′ show (Inl x ) = preservesShow ′ show x
preservesShow ′ show (Inr x ) = preservesShow ′ show x

instance Show Zero where

instance PreservesShow f ⇒ PreservesShow (Freecop f ) where
preservesShow ′ show (Cop (a, f )) = preservesShow ′ show f

instance (PreservesShow s,Functor s,Show a)⇒ Show (T s a) where
show (Var x ) = "Var (" ++ show x ++ ")"

show (Term sa) = "Term (" ++ preservesShow sa ++ ")"

instance (PreservesShow f ,Functor f ,PreservesShow g)⇒
PreservesShow (Comp f g) where

preservesShow ′ sh (Comp a) = preservesShow ′ (preservesShow ′ sh) a

A.12 Freely generated behaviours

The following code is a �rst attempt at the transformation from big-step to
small-step (it's not correct).

freebehaviour :: (Functor s,Functor h,Applicative h,Traversable s)⇒
(∀ a · s (h a)

→ h (s a))
→ (∀ a · s (T h a)
→ T h (s a))

freebehaviour op t
| gen_all isVar t = (Term · fmap return

· op · fmap change) t
| otherwise = (Term · fmap (freebehaviour op)
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· op · fmap extract_layer) t
where extract_layer (Var x ) = (pure · return) x

extract_layer (Term x ) = x
isVar (Var ) = True
isVar = False
change (Var x ) = pure x

And the machinery for a generic fold.

class Monoid o where
zero :: o
plus :: o → o → o

newtype Accy o a = Acc{acc :: o}
instance Functor (Accy o) where

fmap f (Acc x ) = Acc x
instance Monoid o ⇒ Applicative (Accy o) where

pure = Acc zero
Acc o1 � Acc o2 = Acc (plus o1 o2 )

accumulate :: (Traversable s,Monoid o)⇒
(a → o)→ s a → o

accumulate f = acc · traverse (Acc · f )
newtype Musty = Must{must :: Bool}
instance Monoid Musty where

zero = Must True
plus (Must x ) (Must y) = Must (x ∧ y)

gen_all :: Traversable s ⇒ (a → Bool)→ s a → Bool
gen_all p = must · accumulate (Must · p)

B Examples

B.1 A Small Arithmetics Language

data Arith a = Con Int | Add a a
type ArithVal = Int

instance Functor Arith where
fmap f (Con x ) = Con x
fmap f (Add t u) = Add (f t) (f u)

instance Traversable Arith where
traverse g (Con x ) = pure $ Con x
traverse g (Add t u) = pure Add � g t � g u

B.1.1 Behaviour for small step

The behaviour is either a (�nal) value or a computation.
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data VC value a = K value | C a
instance Functor (VC value) where

fmap f (K x ) = K x
fmap f (C c) = C (f c)

instance Monad (VC value) where
return = C
(K v) >>= f = K v
(C c) >>= f = f c

B.1.2 Small Step Semantics

detsmallArith :: OpRule Arith (VC ArithVal)
detsmallArith (Con x ) = K x
detsmallArith (Add t u) = case snd t of

K v → case snd u of
K v ′ → K (v + v ′)
C u ′ → C (Term (Add (Var (fst t)) (Var u ′)))

C t ′ → C (Term (Add (Var t ′) (Var (fst u))))

B.1.3 Big Step Semantics

modelArith :: Model Arith (Const ArithVal)
modelArith (Con x ) = Const x
modelArith (Add t u) = Const (deconst t + deconst u)
natopArith :: OpRule Arith (Const ArithVal)
natopArith = model2aor modelArith

B.2 Exceptions Language

data Exc a = Throw | Catch a a
instance Functor Exc where

fmap f Throw = Throw
fmap f (Catch a b) = Catch (f a) (f b)

instance Traversable Exc where
traverse g Throw = pure $ Throw
traverse g (Catch a b) = pure Catch � g a � g b

B.2.1 Small Step Semantics

detsmallExc :: OpRule Exc (Comp Maybe (VC v))
detsmallExc Throw = Comp Nothing
detsmallExc (Catch t u) = Comp $ Just $ case comp (snd t) of

Nothing → C $ Var (fst u)
Just (K v) → K v
Just (C t ′)→ C (Term (Catch (Var t ′) (Var (fst u))))
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B.2.2 Big Step Semantics

modelExc :: Model Exc (Comp Maybe b)
modelExc Throw = Comp Nothing
modelExc (Catch t u) = Comp (case (comp t) of

Nothing→ comp u
Just x → Just x )

natopExc :: Functor b ⇒ OpRule Exc (Comp Maybe b)
natopExc = model2aor modelExc

B.3 A language with state

newtype Tick a = Tick a
instance Functor Tick where

fmap f (Tick a) = Tick (f a)
instance Traversable Tick where

traverse g (Tick a) = pure Tick � g a
type MyState = Int

instance Applicative (State b) where
pure = return
(�) = ap

B.3.1 Big Step Semantics

modelState :: Model Tick (Comp (State MyState) b)
modelState (Tick t) = Comp (do s ← get

put (s + 1)
comp t

)
natopState :: Functor b ⇒ OpRule Tick (Comp (State MyState) b)
natopState = model2aor modelState

B.4 A Trace Language

newtype Trace a = Trace (a,String)
instance Functor Trace where

fmap f (Trace (a, o)) = Trace (f a, o)
instance Traversable Trace where

traverse g (Trace (a, o)) = pure Trace � fmap (flip (, ) o) (g a)
instance Applicative (Writer String) where

pure = return
(�) = ap

39



B.4.1 Big Step Semantics

modelTrace :: Model Trace (Comp (Writer String) b)
modelTrace (Trace (t , o)) = Comp (tell o >> comp t)
natopTrace :: Functor b ⇒ OpRule Trace (Comp (Writer String) b)
natopTrace = model2aor modelTrace

B.5 Some Test programs

We de�ne the semantics of arithmetics with exceptions, both for big-step and
small step semantics, and some test programs.

opAE = joinOS (liftOS natopArith) natopExc
opAE ′ = joinOS (liftOS detsmallArith) detsmallExc
testA1 :: Program Arith
testA1 = Term (Add (Term (Con 3))

(Term (Add (Term (Con 2))
(Term (Con 1)))))

testAE1 :: Program (Sum Arith Exc)
testAE1 = mycatch (add (con 3) throw)

(add (add (con 2) (con 2)) (con 5))
con = Term · Inl · Con
add x y = Term $ Inl $ Add x y
mycatch x y = Term $ Inr $ Catch x y
throw = Term $ Inr $ Throw

To execute a program in AE with opAE :
run = exec opAE testAE1

We de�ne the semantics of arithmetics with state.
opAS = joinOS (liftOS natopArith) natopState
testAS :: Program (Sum Arith Tick)
testAS = tick $ add (con 3) (tick $ add (con 4) (con 5))
tick = Term · Inr · Tick

Finally, we de�ne the semantics of arithmetics with a trace, and arithmetics
with a trace and exceptions.

opAO = joinOS (liftOS natopArith) natopTrace
opAEO = joinOS (liftOS opAE ) natopTrace
testAO1 :: Program (Sum Arith Trace)
testAO1 = trAdd " + " (trCon 3)

(trAdd " + " (trCon 4)
(trCon 5))

testAO2 :: Program (Sum Arith Trace)
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testAO2 = trAdd "a1" (trAdd "a2" (con 1)
(trAdd "a4" (con 4) (con 4)))

(trAdd "a3" (con 2) (con 6))
mytrace s x = Term $ Inr $ Trace (x , s)
trAdd s x y = mytrace s (add x y)
trCon x = mytrace (show x ) (con x )
testAEO1 :: Program (Sum (Sum Arith Exc) Trace)
testAEO1 = mycatch ′ (add ′ (con ′ 3) (mytrace "Argh!" throw ′))

(add ′ (add ′ (con ′ 2) (con ′ 2)) (con ′ 5))
con ′ = Term · Inl · Inl · Con
add ′ x y = Term $ Inl $ Inl $ Add x y
mycatch ′ x y = Term $ Inl $ Inr $ Catch x y
throw ′ = Term $ Inl $ Inr $ Throw

B.6 Many Show instances

instance PreservesShow Arith where
preservesShow ′ sh (Con i) = "Con " ++ show i
preservesShow ′ sh (Add a b) = sh a ++ " + " ++ sh b

instance PreservesShow Trace where
preservesShow ′ sh (Trace (a, s)) = "Trace (" ++ sh a ++ ", " ++ s ++ ")"

instance PreservesShow Exc where
preservesShow ′ sh Throw = "Throw"

preservesShow ′ sh (Catch t u) = "Catch " ++ sh t ++ " " ++ sh u
instance PreservesShow Maybe where

preservesShow ′ sh Nothing = "Nothing"

preservesShow ′ sh (Just x ) = "Just (" ++ sh x ++ ")"

instance Show a ⇒ PreservesShow (Const a) where
preservesShow ′ sh = show

instance Show a ⇒ Show (State MyState a) where
show f = "value: " ++ show x ++ ", count: " ++ show s

where (x , s) = runState f 0
instance PreservesShow (State MyState) where

preservesShow ′ sh f = "value: " ++ sh x ++ ", count: " ++ show s
where (x , s) = runState f 0

instance Show a ⇒ Show (Writer String a) where
show w = trace ++ show a where (a, trace) = runWriter w

instance Show s ⇒ PreservesShow (Writer s) where
preservesShow ′ sh (Writer (a,w)) = show w ++ " : " ++ sh a

instance Show val ⇒ PreservesShow (VC val) where
preservesShow ′ sh (K a) = "K " ++ show a
preservesShow ′ sh (C t) = "C (" ++ sh t ++ ")"
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