
Modular Monad Transformers

Mauro Jaskelioff

Functional Programming Laboratory—University of Nottingham

Abstract. During the last two decades, monads have become an indis-
pensable tool for structuring functional programs with computational
effects. In this setting, the mathematical notion of a monad is extended
with operations that allow programmers to manipulate these effects.
When several effects are involved, monad transformers can be used to
build up the required monad one effect at a time. Although this seems to
be modularity nirvana, there is a catch: in addition to the construction
of a monad, the effect-manipulating operations need to be lifted to the
resulting monad. The traditional approach for lifting operations is non-
modular and ad-hoc. We solve this problem with a principled technique
for lifting operations that makes monad transformers truly modular.

1 Introduction

Since monads were introduced by Moggi [13, 14] to model computational effects,
they have proven to be extremely useful to structure functional programs [20, 19,
9]. Monads are usually accompanied with operations that manipulate the effects
they model. For example, an exception monad may come with operations for
throwing an exception and for handling it, and a state monad may come with
operations for reading and updating the state. Consequently, the structure one
is really working with is a monad and a set of operations associated to it.

In order to combine computational effects, one must combine monads. There
are many ways of combining monads: distributive laws [2], coproduct of mon-
ads [11], and monad transformers [10, 15, 3]. However, these technologies fall
short in combining monads with operations, as they only provide means to com-
bine monads. Liang et al. [10] identified this problem more than a decade ago
and proposed a workaround, which is not modular. In fact, they have to lift
operations associated to a monad through a monad transformer in an ad-hoc
manner, and therefore the number of liftings of operation grows like the product
of the number of monad transformers and operations involved (see Section 3.)

More recently, Plotkin et al. [17, 7] have proposed to look at monads induced
by algebraic theories, and to address the problem of combining monads (and
associated operations) as a problem of combining algebraic theories. Their ap-
proach works very smoothly, but can only deal with monads induced by algebraic
theories (and lifting is limited to algebraic operations).

Of all the techniques for combining monads, monad transformers are the
most popular among functional programmers, as they are easy to implement
and capture all the desired combinations for standard effects1. We show that for
1 We take as standard the monads and operations described in [10].

monad transformers with a functorial behaviour there is a uniform definition of
lifting for a class of operations, which includes (after some minor repackaging)
all the operations described in [10]. The main contributions of this article are:

– Identifying a class of operations associated to a monad, called algebraic Σ̂-
operations, that are easy to lift along any monad morphism (Section 4).

– Showing that all Σ̂-operations for a monad can be lifted (through any func-
torial monad transformer) by interpreting them as algebraic Σ̂-operations
for a related monad (Section 5).

– Comparing our uniform lifting to more ad-hoc liftings found in the literature
or in Haskell’s libraries. This has revealed a mismatch with one definition in
Haskell’s monad transformer library (as discussed in Section 4).

Our approach extends both the traditional monad transformer approach [10]
with the addition of uniform liftings, and the algebraic approach [7], since alge-
braic operations are a special case of algebraic Σ̂-operations.

Remark 1. This article is aimed at researchers and programmers interested in
using monads to structure functional programs with computational effects. For-
mally we work with system Fω. In examples and remarks we may freely use
extensions of Fω or idioms that are customary in functional languages.

Much of the terminology we introduce is borrowed from Category Theory.
Usually, there is not an exact correspondence between category-theoretic no-
tions and their formalization in a calculus. For instance, monads expressible in
the simple typed lambda calculus correspond to strong monads in a CCC [14].
In what follows, when we say monad we mean expressible monad in Fω (and
similarly for other category-theoretic notions).

2 Preliminaries

We work with system Fω and its equational theory induced by βη-equiva-
lence (for details, see [1, 5]). One may replace Fω with a weaker system, like
HML [6] (which distinguishes types from type schemas), or a stronger system,
like CC [4]. To fix the notation, we recall the syntax of Fω

kinds k ::= ∗ | k → k

type constuctors U ::= X | U → U | ∀X : k. U | ΛX : k. U | U U
terms e ::= x | λx :X. e | ΛX : k. e | eU

We write eU for eU (polymorphic instantiation) and we often write definitions
gX(x :A) =̂ t when we mean g =̂ ∀X : ∗. λx :A. t. We often write term application
using a tuple, that is, we write t (z1, . . . , zn) for t z1 . . . zn.

Following [18] we express in the setting of Fω several category-theoretic
notions, such as functors, natural transformations, monads, monad transformers.
Familiarity with these notions is not needed to understand the rest of the paper,
but interested readers may want to look at [16, 3].

Definition 2 (Functor [18]). The set Functor of functors consists of pairs
F̂ = (F,mapF), where F : ∗ → ∗ is a type constructor and

mapF : Map(F) =̂ ∀X,Y : ∗. (X → Y)→ FX → FY

is a term such that for all f : A→B and g : B→C

mapFA,A idA = idFA (1)

mapFA,C (g · f) = mapFB,C g ·mapFA,B f (2)

where, id =̂ ΛX : ∗. λx :X. x and g · f is function composition λx : A.g(f x).
The composite functor F̂ ◦ Ĝ is the pair (F ·G,map) where

mapA,B (f :A→ B) =̂ mapFGA,GB(mapGA,Bf).

Definition 3 (Natural transformation). Given two functors F̂ and Ĝ, the
set Nat(F̂ , Ĝ) of natural transformations from F̂ to Ĝ consists of terms τ : F •→
G =̂ ∀X : ∗. FX→GX, such that for all f : A→ B

mapGA,B f · τA = τB ·mapFA,B f (3)

The term ι =̂ Λ(M : ∗ → ∗)(X : ∗). λm :MX. m is the identity natural trans-
formation, σ◦τ =̂ ΛX : ∗. σX ·τX is composition of natural transformations, and
Σ̂(τ : F •→ G) :Σ · F •→ Σ · G =̂ ΛX : ∗. mapΣFX,GX(τX) is the application of a
functor Σ̂ to a natural transformation τ from F̂ to Ĝ.

Definition 4 (Monad). The set Monad of monads consists of triples M̂ =
(M, retM , bindM), where M : ∗ → ∗ is a type constructor and

retM : Ret(M) = ∀X : ∗. X →MX

bindM : Bind(M) = ∀X,Y : ∗. MX → (X →MY)→MY

are terms such that for every a :A, f :A→MB, m :MA and g :B →MC:

bindMA,B(retMA a, f) = f a (4)

bindMA,A(m, retMA) = m (5)

bindMA,C(m,λa :A. bindMB,C(f a, g)) = bindMB,C(bindMA,B(m, f), g) (6)

Every monad M̂ = (M, retM , bindM) has an underlying functor (M,mapM),
denoted by M̂ , where mapMA,B (f :A→ B) (m :MA) =̂ bindMA,B(m, retMB · f).

Example 5 (State Monad). The monad for modelling side-effects on a state of
type S is Ŝ = (S, retS, bindS), where S (X : ∗) =̂ S→X × S and

retS
X(x :X) : SX =̂ λs :S. (x, s)

bindS
X,Y (m : SX, f :X→SY) : SY =̂ λs :S. let (a, s′) = m s in f a s′

Intuitively, a computation SX takes an initial state and produces a value of type
X and a final state, retS does not change the state, and bindS threads the state.
A simple calculation shows that equations 4–6 hold. ut

Example 6 (Continuation Monad). The monad for modelling continuations of
result type R is Ĉ = (C, retC, bindC), where C (X : ∗) =̂ (X→R)→R and

retC
X (x :X) : CX =̂ λk :X→R. k x

bindC
X,Y (m : CX, f :X→CY) : CY =̂ λk :Y →R. m (λx :X. f x k)

Intuitively, CX is a computation that given a continuation X → R returns a
result in R, retC simply runs a continuation, and bindC(m, f) runs m with a
continuation constructed by running f in the current continuation. ut

Definition 7 (Monad Morphism). Given two monads M̂ and N̂ , the set
MM(M̂, N̂) of monad morphisms from M̂ to N̂ consists of terms ξ : M •→ N ,
such that for every a :A, m :MA and f :A→MB

retNA a = ξA(retMA a) (7)

ξB(bindMA,B(m, f)) = bindNA,B(ξAm, ξB · f) (8)

Remark 8. A simple consequence of equations 7–8 is that a monad morphism is
also a natural transformation between the underlying functors.

In order to combine effects, instead of writing a monad from scratch, one can
add more effects to a pre-existing monad using monad transformers.

Definition 9 (Monad Transformer). The set MT of monad transformers
consists of tuples T̂ = (T, retT , bindT , liftT), where T : (∗→∗)→(∗→∗) and

retT : ∀M : ∗ → ∗. Ret(M)→ Bind(M)→ Ret(TM)

bindT : ∀M : ∗ → ∗. Ret(M)→ Bind(M)→ Bind(TM)

liftT : ∀M : ∗ → ∗. Ret(M)→ Bind(M)→ ∀X : ∗. MX → TMX

are terms such that for every monad M̂ , the tuple T̂ M̂ =̂ (TM, retT
M̂
, bindT

M̂
) is

a monad and liftT
M̂

is a monad morphism from M̂ to T̂ M̂ , where

retT
M̂

=̂ retTM (retM , bindM), bindT
M̂

=̂ bindTM (retM , bindM),

liftT
M̂

=̂ liftTM (retM , bindM).

From now on we will drop type information of kind ∗ from examples, in order
to make them more readable.

Example 10. The state monad transformer Ŝ = (S, retS , bindS , liftS) adds side-
effects to an existing monad, where S (M : ∗→∗)(X : ∗) =̂ S→M(X × S), and

retS
M̂

(x :X) :SMX =̂ λs. retM (x, s)

bindS
M̂

(t :SMX, f :X→SMY) :SMY =̂ λs. bindM (t s, λ(x, s′). f x s′)

liftS
M̂

(m :MX) :SMX =̂ λs. bindM (m,λx. retM (x, s))

A simple calculation shows that equations 4–6 hold for ŜM̂ and equations 7–8
hold for liftS

M̂
, whenever equations 4–6 hold for M̂ . ut

Example 11. The exception monad transformer X̂ = (X , retX , bindX , liftX) adds
exceptions to an existing monad, where X (M : ∗→∗)(X : ∗) =̂ M(Z +X) (here
Z is the type of exceptions), and

retX
M̂

(x :X) :XMX =̂ retM (inr x)

bindX
M̂

(t :XMX, f :X→XMY) :XMY =̂

bindM (t, λc. case c of | inl z ⇒ retM (inl z)

| inr x⇒ f x)

liftX
M̂

(m :MX) :XMX =̂ bindM (m, retX
M̂
x)

A simple calculation shows that equations 4–6 hold for X̂ M̂ and equations 7–8
hold for liftX

M̂
whenever equations 4–6 hold for M̂ . ut

3 Operations and lifting

We seek a general technique for lifting operations associated to a monad M̂ to
another monad N̂ . In this section we make precise what kind of operations our
technique will be able to handle, and what lifting means.

Definition 12 (Σ̂-operation). If Σ̂ is a functor and M̂ is a monad, then a
Σ̂-operation for M̂ is a natural transformation op in Nat(Σ̂ ◦ M̂, M̂).

Example 13. The standard operations for the state monad are

get (k :S→SX) : SX =̂ λs. k s s

set (s : S,m : SX) : SX =̂ λ .ms.

The operation get applies the current state to its argument, and set sets runs
a stateful computation in the provided state. They are Σ̂-operations for the
following functors

Σget X =̂ S→X mapΣ
get

(f :X → Y , t :ΣgetX) :ΣgetY =̂ λs. f (t s)

Σset X =̂ S ×X mapΣ
set

(f :X → Y , (s, x) :ΣsetX) :ΣsetY =̂ (s, f x).

In Fig. 1, we show some Σ̂-operations (all the monads and Σ̂-operations are
presented along the paper, except for the list monad and its operations for which
the reader may consult [19]). Interestingly, all the operations considered in [10]
for these monads are definable in terms of Σ̂-operations. For example, we can
use the Σ̂-operations in Example 13 to define the more usual operations

get : SS =̂ getS(retS
S) = λs. (s, s)

set :S→S 1 =̂ λs. set1(s, retS
1(•)) = λs s′. (•, s)

where • is the sole inhabitant of the unit type 1. In the same manner, we can
define

ask : RE =̂ askE(retR
E) = λe. e

Monad Signature Σ̂-operations

List ΣemptyX=̂ 1 emptyX : 1→LX
LX =̂ [X] ΣappendX=̂ X ×X appendX : LX × LX→LX

Output ΣoutputX=̂ [A]×X outputX : [A]× OX→OX
OX =̂ X × [A] Σflush X=̂ X flushX : OX→OX

State ΣgetX=̂ S→X getX : (S→SX)→SX
SX =̂ S→X × S ΣsetX=̂ S ×X setX : S × SX→SX

Environment ΣaskX=̂ E→X askX : (E→RX)→RX
RX =̂ E→X Σ localX=̂ (E→E)×X localX : (E→E)× RX→RX

Exception ΣthrowX=̂ 1 throwX : 1→XX
XX =̂ Z +X ΣhandleX=̂ X × (Z→X) handleX : XX × (Z→XX)→XX

Continuation ΣabortX=̂ R abortX : R→CX
CX =̂ (X→R)→R ΣcallccX=̂ (X→R)→X callccX : ((CX→R)→CX)→CX

Fig. 1. Σ̂-operations for the standard monads.

for the environment monad, and

output : [A]→ O1 =̂ λw. output1(w, retO
1 (•)) = λw. (•, w)

for the output monad. The usual call-with-current-continuation callcc and the
Σ̂-operation callcc are defined as:

callcc (f : (X→CY)→CX) : CX =̂ λk. f (λx . k x) k
callcc (f : (CX→R)→CX) : CX =̂ λk. f (λm.mk) k

The operation callcc can be defined from callcc as:

callcc f =̂ callcc (λk. f (λx . k (retCx))) (9)

Definition 14 (Lifting). Let op be a Σ̂-operation for M̂ and ξ be a monad
morphism from M̂ to N̂ . A lifting of op to N̂ along ξ is a Σ̂-operation opN for
N̂ such that for all X : ∗,

ξX · opX = opNX · (mapΣMX,NX ξX) (10)

or equivalently, such that the following diagram commutes:

Σ(NX)
opNX // NX

Σ(MX)
opX

//

mapΣξX

OO

MX

ξX

OO

This definition can be specialised to the case of a monad transformer T̂ by taking
N̂ =̂ T̂ M̂ and ξ =̂ liftT

M̂
. In this case we call opN a lifting of op through T̂ .

In the absence of a general technique, the only way to lift an operation is
to do it in an ad-hoc manner, for each monad transformer [10]. Although this
works, the approach has significant shortcomings:

– The number of liftings grows like the product of the number of operations
and monad transformers. This is clearly non-modular: adding a new monad
transformer with some operations involves showing how to lift every existing
operation through the new monad transformer, and showing how to lift the
new operations through every existing monad transformer.

– Without a uniform definition of lifting, one could have different ad-hoc lift-
ings of the same operation through a monad transformer, and no clear criteria
to choose among them.

– There is no division of concerns: defining a lifting involves understanding the
intended semantics of both the transformer and the operation.

We show that for well-behaved Σ̂-operations, called algebraic, there is a unique
way to lift them among a monad morphism. Moreover, for all Σ̂-operations (not
necessarily algebraic) there is a uniform way to lift them through a wide class
of monad transformers, called functorial monad transformers.

4 Unique Lifting of Algebraic Operations

We characterize operations that interact well with bind.

Definition 15 (Algebraic Σ̂-operation). A Σ̂-operation op for M̂ is alge-
braic provided that for every f :A→MB and t :Σ(MA)

bindMA,B(opA t, f) = opB(mapΣMA,MB(λm :MA. bindMA,B(m, f)) t) (11)

or equivalently, that the following diagram commutes:

Σ(MA)
opA //

mapΣbindM (−,f)

��

MA

bindM (−,f)

��
Σ(MB)

opB
// MB

Remark 16. The notion of algebraic operation given in [17] corresponds to alge-
braic Σ̂-operations for functors Σ̂ of the form ΣX = A× (B → X).

As examples of algebraic Σ̂-operations we have all the operations in Fig.1,
except for flush, local and handle, for which equation 11 does not hold. Remark-
ably, callcc is an algebraic Σ̂-operation despite not being algebraic in the sense
of [17] and hence, not tractable in that approach. With our generalization, callcc
is not only tractable, but also well-behaved.

The following proposition presents a bijection between algebraic operations
and natural transformations of a particular type. It provides an alternative way
of verifying that an operation is algebraic and it will play a crucial role in showing
how to lift algebraic operations.

Proposition 17. There is a bijection between algebraic Σ̂-operations for M̂ and
natural transformations from Σ̂ to M̂ given by:

φ(op : Σ ·M •→M) : (Σ •→M) =̂ ΛX : ∗. opX · (mapΣX,MX retMX)

ψ(op′ : Σ •→M) : Σ ·M •→M =̂ ΛX : ∗. joinMX · op′MX

where joinMX =̂ λm :M(MX). bindMMX,X(m, idMX) :M(MX)→MX is the mul-
tiplication of M̂ . We call op′ the natural transformation corresponding to the
algebraic Σ̂-operation op.

Remark 18. When ΣX = A × (B → X) there is a further bijection between
algebraic Σ̂-operations op for M̂ and maps op′′ :A→MB, namely

op′′(a :A) =̂ opB(a, retMB).

Theorem 19 (Algebraic Lifting). Given an algebraic Σ̂-operation op for M̂
and a monad morphism ξ from M̂ to N̂ , define the term opN : Σ ·N •→ N as

opNX =̂ joinNX · ξNX · opNX · (mapΣNX,M(NX) retMNX)

opN is an algebraic Σ̂-operation for N̂ and a lifting of op along ξ. Moreover,
opN is the unique lifting of op which is algebraic.

Proof. The operation opN is a lifting since the following diagram commutes:

Σ(NX)
opNX //

mapΣ retMNX

((RRRRRRRRRRRRR

(def)

NX

(3) Σ(M(NX))
opNX //

(3)

M(NX)

joinNX ·ξNX
66mmmmmmmmmmmmmm

(8)

Σ(M(MX))

mapΣ (mapM ξX)

OO

opMX
// M(MX)

mapM ξX

OO

joinMX ((RRRRRRRRRRRRRR

Σ(MX)

mapΣ ξX

OO

opX
//

mapΣ retMMX

66mmmmmmmmmmmmm
(Prop. 17)

MX

ξX

OO

By Prop. 17, opN is algebraic and, by the same proposition, it must be the
unique lifting of op which is algebraic. ut

For example, when N̂ = X̂ Ŝ and ξ = liftX
Ŝ

, thus NX = S → ((Z +X)× S),
then the algebraic lifting of the algebraic Σ̂-operation get yields the operation

getXX(k :S → XSX) :XSX =̂ λs. k s s.

Since callcc is an algebraic Σ̂-operation, we can apply the algebraic lifting and
obtain for every monad morphism ξ from C to N̂ a lifted algebraic operation

callccN : ∀X : ∗. ((NX → R) → NX) → NX. For example, for N̂ = ŜĈ and
ξ = liftS

Ĉ
, thus NX = S → ((X × S) → R) → R, then the operation simplifies

to:

callccS (f : (SCX→R)→SCX) : SCX = λs k. f (λm.m (s, k)) s k.

We can define a lifted version of callcc in terms of callccS in the same manner
as equation 9 and obtain:

callccS (f : (X→SCY)→SCX) : SCX = λs k. f (λx s′ . k (x, s)) s k.

The author has used the uniform lifting of callcc to verify the ad-hoc liftings
of callcc in Haskell’s monad transformer library (mtl). This verification revealed
that the uniform lifting above coincided with all of the library’s liftings, except
for one: the library’s lifting of callcc through the state monad transformer is not
consistent with the rest of the liftings.2 The ad-hoc lifting of callcc in mtl is:

callcc−mtlS (f : (X→SCY)→SCX) : SCX = λs k. f (λx s′ . k (x, s′)) s k.

The difference is that the ad-hoc lifted operation preserves changes in the
state produced during the construction of the new continuation even when the
current continuation is used. However, all the other liftings of callcc in the library
do not preserve produced effects when using the current continuation.

5 Lifting of Operations

We now show how to lift Σ̂-operations. To achieve this, we need to refine the
definition of monad transformer. All the standard monad transformers fit into
this refined definition, except the monad transformer for continuations.

Definition 20 (Functorial Monad Transformer). The set FMT of func-
torial monad transformers consists of tuples T̂ = (T, retT, bindT, liftT, hmapT),
where the first four components give a monad transformer (see Def. 9), and

hmapT :∀M,N : ∗ → ∗. Map(M)→ Map(N)→ (M •→ N)→ (TM •→ TN)

is a term such that for all monads M̂ , N̂ and P̂ ,

– hmapT preserves natural transformations and monad morphisms, i.e.
• τ : Nat(M̂, N̂) implies hmapT

M̂,N̂
τ : Nat(T̂ M̂ , T̂ N̂)

• ξ : MM(M̂, N̂) implies hmapT
M̂,N̂

ξ : MM(T̂ M̂ , T̂ N̂)

– hmapT respects identities and composition of natural transformations, i.e.
• hmapT

M̂,M̂
ιM = ιTM

2 In another monad transformer library by Iavor S. Diatchki, called MonadLib, all the
liftings correspond to the uniform lifting obtained above.

• τ : Nat(M̂, N̂) and σ : Nat(N̂ , P̂) imply

(hmapT
N̂,P̂

σ) ◦ (hmapT
M̂,N̂

τ) = hmapT
M̂,P̂

(σ ◦ τ)

– liftT is natural, i.e.

τ : Nat(M̂, N̂) implies (hmapT
M̂,N̂

τ)X · liftTM̂,X
= liftT

N̂,X
· τX (12)

where hmapT
M̂,N̂

=̂ hmapTM,N (mapM ,mapN).

Example 21. The monad transformer Ŝ becomes functorial with hmapS given
by

hmapS
F̂ ,Ĝ

(τ :F •→ G)(X : ∗)(t :SFX) : SGX =̂ λs :S. τ(t s)

Some tedious calculations show that it satisfies all the required properties. ut

Example 22. The monad transformer X̂ becomes functorial with hmapX given
by

hmapX
F̂ ,Ĝ

(τ :F •→ G)(X : ∗)(t :XFX) : XGX =̂ τ(t)

ut

In order to lift Σ̂-operations we will exploit impredicative polymorphism of
system Fω to define a monad transformer K (which is not functorial) such that
every Σ̂-operation op for M̂ induces an algebraic Σ̂-operation opK for K̂M̂ , and
op can be recovered from opK by pre- and post-composition of opK with two nat-
ural transformations. The unique algebraic lifting allows to lift opK through any
monad transformer T̂ , and obtain an algebraic Σ̂-operation opK,T for T̂ (K̂M̂).
Finally, when T̂ is functorial, one recovers from opK,T a lifting of op through T̂ ,
in the same way as one recovers op from opK.

Definition 23 (Codensity). K̂ is the monad transformer (K, retK, bindK, liftK)
such that for every monad M̂

KMX =̂ ∀Y : ∗. (X →MY)→MY

retK
M̂,X

(x :X) :KMX =̂ ΛY : ∗.λk :X→MY . k x

bindK
M̂,X,Y

(c :KMX, f :X→KMY) :KMY =̂

ΛZ : ∗. λk :Y →MZ. cZ (λx :X. (f x)Z k)

liftK
M̂,X

(m :MX) :KMX =̂ ΛY : ∗.λk :X→MY.bindMX,Y (m, k)

Remark 24. The monad transformer K̂ is related to the construction of the con-
density monad for an endofunctor (see [12]). In what follows, we use only some
properties of K̂, which are provable by simple calculations in system Fω. Thus,
we do not exploit in full the universal property of the codensity monad.

Definition 25. Let M̂ be a monad. Then, we define the terms

κ(τ :Σ ·M •→M) :Σ •→ KM =̂ ΛX : ∗. λs :ΣX.

ΛY : ∗. λk :X →MY . τY (mapΣ k s)

fromM̂ : KM •→M =̂ ΛX : ∗. λc :KMX. cX (retMX)

and for every Σ̂-operation op for M̂ we define

opK :Σ · KM •→ KM =̂ ψ(κ op)

where ψ is defined in Prop. 17.

Proposition 26. Given a monad M̂ and a Σ̂-operation op for M̂ , then

a) fromM̂ is a natural transformation from K̂M̂ to M̂ such that

ιM = fromM̂ ◦ liftK
M̂

b) opK is an algebraic Σ̂-operation for K̂M̂ such that

op = fromM̂ ◦ opK ◦ (Σ̂ liftK
M̂

) (13)

where ι and ◦ are the identity and composition of natural transformations, and
Σ̂ is the application of a functor to a natural transformation (see Definition 3).

Theorem 27 (Lifting). Given a Σ̂-operation op for a monad M̂ and a func-
torial monad transformer T̂ , let opT : Σ · (TM) •→ TM be the term

opT = (hmapTK̂M̂,M̂
fromM̂) ◦ opK,T ◦ (Σ̂(hmapT

M̂,K̂M̂ liftK
M̂

)) (14)

where opK,T is the algebraic lifting of opK through T̂ , then opT is a lifting of op
through T̂ .

Proof. The following diagram commutes:

Σ(TMX)
opTX //

Σ̂(hmapT liftK
M̂

)X

((QQQQQQQQQQQQ

(def)

TMX

(2,12) Σ(TKMX)
opK,TX //

(10)

TKMX

(hmapT fromM̂)X

66mmmmmmmmmmmmmm
(12)

Σ(KMX)

Σ̂(liftTK̂M)X

OO

opKX

// KMX

liftTKM,X

OO

fromM̂,X ((QQQQQQQQQQQQQQ

Σ(MX)

Σ̂(liftT
M̂

)X

OO

opX
//

Σ̂(liftK
M̂

)X

66mmmmmmmmmmmm
(13)

MX

liftTM,X

OO

ut

When op is an algebraic Σ̂-operation for M̂ , there is a simpler way to lift op
through T̂ . The following result says that when both liftings are defined, they
yield the same result.

Proposition 28. If op is an algebraic Σ̂-operation for M̂ and T̂ a functorial
monad transformer, then the algebraic lifting of op along liftT

M̂
given by Theo-

rem 19 coincides with the lifting of opT given by Theorem 27.

Example 29. We specialize the lifting in Theorem 27 to several concrete functo-
rial monad transformers and an arbitrary Σ̂-operation op for a monad M̂ .

– When T̂ = Ŝ, thus SMX = S →M(X×S), the lifting simplifies to:

opSX (t :Σ(SMX)) : SMX = λs. opX×S(mapΣ τs t)

where τs(f :S →M(X×S)) = f s.
– When T̂ = X̂ , thus XMX = M(Z +X), the lifting simplifies to:

opXX(t :Σ(XMX)) : XMX = opZ+X t.

– When T̂ is R̂, the functorial monad transformer for environments of type
E [10], thus RMX = E →MX, the lifting simplifies to:

opRX (t :Σ(RMX)) : RMX = λe. opX(mapΣ τe t)

where τe(f :E →MX) = f e.
– When T̂ is Ô, the functorial monad transformer for output of type [A] [10],

thus OMX = M(X × [A]), and the lifting simplifies to:

opOX(t :Σ(OMX)) : OMX = opX×[A] t.
ut

The example above shows that Theorem 27 subsumes the incremental ap-
proach in [15, 3]. In the following, we apply the lifting theorem to the remaining
non-algebraic operations local, handle, and flush. Because of Proposition 28, for
algebraic operations it makes more sense to use the simpler algebraic lifting.

Example 30. The monad for environments of type E and its operations for read-
ing the environment and performing a computation in a modified environment
are shown below.

R(X : ∗) =̂ E→X

retR (x :X) : RX =̂ λ . x

bindR(m : RX, f :X→RY) : RY =̂ λe. f (me) e

ask (f :E→RX) : RX =̂ λe. f e e

local (f :E→E,m : RX) : RX =̂ λe.m (f e)

Applying Theorem 27 to the non-algebraic, Σ̂-operation local we obtain the
following lifted operation for any functorial monad transformer T̂ :

localT (f :E→E, t :TRX) :TRX =̂ hmapTK̂R̂,R̂
fromR̂ (localK,T (f, t′))

where t′ :TKRX =̂ hmapT
R̂,K̂R̂

liftK
R̂
t

localK,T (f :E→E, t :TKRX) :TKRX =̂ joinTK̂R̂
(liftTK̂R̂

(ΛY. λk. local (f, k t)))

– When T̂ = Ŝ, thus SRX = S → E → (X×S), the lifting simplifies to:

localS (f :E→E, t :SRX) :SRX = λs e. t s (f e).

– When T̂ = X̂ , thus XRX = E → (Z +X), the lifting simplifies to:

localX (f :E→E, t :XRX) :XRX = λe. t (f e).

– When T̂ = R̂, thus RRX = E → E → X, the lifting simplifies to:

localR (f :E→E, t :RRX) : RRX = λe e′. t e (f e′)

– When T̂ = Ô, thus OMX = E → (X × [A]), the lifting simplifies to:

localO (f :E→E, t :ORX) :ORX = λe. t (f e)
ut

Note that we can arrive at the concrete liftings above—where both T̂ and op
are fixed—by either Example 29 (where we first fix T̂) or the definition of localT

above (where we first fix op), but only by fixing the monad transformer we get
a significant simplification of the lifting.

Example 31. The monad for exceptions of type Z and its operations for throwing
and handling exceptions are shown below.

X(X : ∗) =̂ Z +X

retX(x :X) : XX =̂ inr x

bindX(m : XX, f :X→XY) : XY =̂ case m of | inl z ⇒ inl z | inr x⇒ f x

throw (z :Z) : XX =̂ inl z

handle (m : XX,h :Z→XX) : XX =̂ case m of | inl z ⇒ h z | inr x⇒ inr x

We obtain the following liftings for the non-algebraic Σ̂-operation handle.

– When T̂ = Ŝ, thus SXX = S → Z + (X×S), the lifting is:

handleS (t :SXX,h :Z→SXX) :SXX = λs. case t s of | inl z ⇒ h z s

| inr x⇒ inr x

– When T̂ = X̂ , thus XXX = Z + (Z +X), the lifting is:

handleX (t :XXX,h :Z→XXX) :XXX = case t of | inl z ⇒ h z

| inr x⇒ inr x.

– When T̂ = R̂, thus RXX = E → (Z +X), the lifting is:

handleR (t :RXX,h :Z→RXX) :RXX = λe. case t e of | inl z ⇒ h z e

| inr x⇒ inr x

– When T̂ = Ô, thus OXX = Z + (X × [A]), the lifting is:

handleO(t :OXX,h :Z→OXX) :OXX = case t of | inl z ⇒ h z

| inr x⇒ inr x.
ut

Example 32. The monad for output of a type [A] and its operations for out-
putting a list, and flushing the output are shown below.

O (X : ∗) =̂ X × [A]

retO (x :X) : OX =̂ (x, empty(•))
bindO(m : OX, f :X→OY) : OX =̂ let (x,w) = m in

let (x′, w′) = f x in (x′, append(w,w′))

output ((w,m) : W × OX) : OX =̂ let (x,w′) = m in (x, append(w′, w))
flush (m : OX) : OX =̂ let (x,) = m in (x, empty(•))

where empty(•) is the empty list, and append appends two lists. We obtain the
following liftings for the non-algebraic Σ̂-operation flush.

– When T̂ = Ŝ, thus SOX = S → ((X×S)× [A]), the lifting is:

flushS (t :SOX) :SOX = λs. let (x,) = t s in (x, empty(•))

– When T̂ = X̂ , thus XOX = (Z +X)× [A], the lifting is:

flushX ((c, w) :XOX,h :Z→XOX) :XOX = (c, empty(•))

– When T̂ = R̂, thus ROX = E → (X × [A]), the lifting is:

flushR (t :ROX) :ROX = λe. let (x,) = t e in (x, empty(•))

– When T̂ = Ô, thus OOX = (X × [A])× [A], the lifting is:

flushO ((p, w) :OOX,h :Z→OOX) :OOX = (p, empty(•))
ut

6 Conclusion

Monad transformers allow programmers to modularly construct a monad, but
for their potential to be fully realized, the lifting of operations should also be
modular. We have defined a uniform lifting through any monad transformer
with a functorial behaviour. This lifting is applicable to a wide class of operations
which includes all operations considered in [10] and all the operations in Haskell’s
mtl, except for listen. Through several examples, we have given evidence that our
uniform lifting subsumes the more or less ad-hoc definitions of lifting that could
be found in the literature.

Our initial focus on algebraic operations is inspired by Plotkin et al. [7],
where a monad is constructed from an algebraic theory presented by algebraic
operations and equations, and combined monads are obtained by combination
of theories. This approach is appealing, but it can cope only with monads cor-
responding to algebraic theories and with algebraic operations.

The current design of monad transformer libraries is based on the traditional
approach to operation lifting which has other problems besides non-modularity.
The experimental library Monatron [8] implements a new design which not only
lifts operations uniformly, but also avoids many of these problems.

There are several possible directions for further research:

– The lifting of Σ̂-operations assumes functorial monad transformers. In order
to accomodate the continuation monad transformer, we plan to extend the
results in the article to mixed-variant functorial monad transformers.

– Instead of assuming an operation Σ ·M •→ M , we can consider operations
HM •→ M , where H is a functor in an endofunctor category. This allows
us to model the mtl operation listen and obtain a lifting for it. However,
in general, obtaining a lifting seems to depend on the operation inducing
an algebraic Σ̂-operation for another monad. General techniques for finding
such a lifting need to be investigated.

– Given a Σ̂-operation for M̂ , we can obtain its lifting through any functo-
rial monad transformer. However, its general formulation is rather involved,
and we would like to obtain a simpler lifting (perhaps under certain extra
assumptions, as in Proposition 28).

Since the traditional non-modular solution for lifting operations through
monad transformers was introduced, there has been little progress in this area.
We hope that the new approach developed in this article leads to new and ex-
citing ways of designing structured effectful functional programs.

Acknowledgments. I would like to thank Nils Anders Danielsson, Neil Ghani,
Graham Hutton, Peter Morris, Wouter Swierstra, and the anonoymous referees
for their detailed and insightful comments. Finally, I would like to specially thank
Eugenio Moggi for his generous assistance in significantly improving this article.

References

1. Henk Barendregt. Lambda calculi with types. In S. Abramsky, D. M. Gabbay,
and T. S. E. Maibaum, editors, Handbook of Logic in Computer Science, pages
117–309. Oxford University Press, 1992.

2. M. Barr and C. Wells. Toposes, Triples and Theories, volume 278 of Grundlehren
der mathematischen Wissenschaften. Springer-Verlag, New York, 1985.

3. N. Benton, J. Hughes, and E. Moggi. Monads and effects. In International Summer
School On Applied Semantics APPSEM2000, pages 42–122. Springer-Verlag, 2000.

4. Thierry Coquand and Gérard P. Huet. The calculus of constructions. Inf. Comput.,
76(2/3):95–120, 1988.

5. Neil Ghani. Eta-expansions in F-omega. In Proceedings of CSL’96, number 1258
in Lecture Notes in Computer Science, pages 182–197. Springer-Verlag, 1996.

6. Robert Harper, John C. Mitchell, and Eugenio Moggi. Higher-order modules and
the phase distinction. In POPL, pages 341–354, 1990.

7. Martin Hyland, Gordon D. Plotkin, and John Power. Combining effects: Sum and
tensor. Theor. Comput. Sci., 357(1-3):70–99, 2006.

8. Mauro Jaskelioff. Monatron: an extensible monad transformer library. Available
at http://www.cs.nott.ac.uk/~mjj/pubs/monatron.pdf. Submitted for publica-
tion., 2008.

9. Simon L. Peyton Jones and Philip Wadler. Imperative functional programming.
In POPL, pages 71–84, 1993.

10. Sheng Liang, Paul Hudak, and Mark Jones. Monad transformers and modular
interpreters. In POPL, pages 333–343, 1995.

11. Cristoph Lüth and Neil Ghani. Composing monads using coproducts. In ICFP,
pages 133–144, 2002.

12. Saunders Mac Lane. Categories for the Working Mathematician. Number 5 in
Graduate Texts in Mathematics. Springer-Verlag, 1971. Second edition, 1998.

13. Eugenio Moggi. Computational lambda-calculus and monads. In LICS, pages
14–23. IEEE Computer Society, 1989.

14. Eugenio Moggi. Notions of computation and monads. Information and Computa-
tion, 93(1):55–92, 1991.

15. Eugenio Moggi. Metalanguages and applications. In Semantics and Logics of
Computation, Publications of the Newton Institute. CUP, 1997.

16. Benjamin C. Pierce. Basic Category Theory for Computer Scientists (Foundations
of Computing). The MIT Press, August 1991.

17. Gordon D. Plotkin and John Power. Semantics for algebraic operations. ENTCS,
45, 2001.

18. John C. Reynolds and Gordon D. Plotkin. On functors expressible in the poly-
morphic typed lambda calculus. Inf. Comput., 105(1):1–29, 1993.

19. Philip Wadler. Comprehending monads. MSCS, 2(4):461–493, 1992.
20. Philip Wadler. The essence of functional programming. In POPL, pages 1–14,

1992.

