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Abstract

The worker/wrapper transformation is a general technique for improving the performance of re-
cursive programs by changing their types. The previous formalisation (Gill & Hutton, 2009) was
based upon a simple fixed point semantics of recursion. In this article we develop a more structured
approach, based upon initial algebra semantics. In particular, we show how the worker/wrapper
transformation can be applied to programs defined using the structured pattern of recursion captured
by fold operators, and illustrate our new technique with a number of examples.

1 Introduction

The worker/wrapper transformation is a general technique for changing the type of a
recursive program to improve its performance. The basic idea is simple and pervasive:
given a recursive program of some type, we aim to factorise it into a more efficientworker
program of a different type, together with awrapper program that acts as an interface
between the original program and the new worker.

Special cases of the worker/wrapper transformation have been used for many years,
particularly in optimizing compilers. For example, the technique has been used in the
Glasgow Haskell Compiler since its inception, to replace the use of boxed data structures
by more efficient unboxed data structures when safe to do so (Peyton Jones & Launchbury,
1991). However, it is only recently that the transformation has been formalised, proved
correct, and presented as a general technique for improving the performance of programs
by improving the choice of data structures (Gill & Hutton, 2009).

The previous formalisation was based upon a simple fixed point semantics of recursive
programs. In this article we take a more structured approach, based upon initial algebra
semantics. In particular, we develop a general worker/wrapper theory for changing the
type of recursive programs defined using fold operators, and show how it can be used in
practice as an equational reasoning technique for improving the performance of programs.
More precisely, the article makes the following contributions:
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• We show how the worker/wrapper transformation applies to programs defined using
folds, by generalising to a categorical view of types as initial algebras.

• We identify four conditions for the correctness of the transformation, and show that
these conditions form a simple lattice structure.

• We illustrate our technique with a number of examples, including a correctness proof
for a new approach to implementing substitution efficiently (Voigtländer, 2008).

The use of initial algebras also means that our worker/wrapper technique for folds is
generic in the underlying recursive type to which it applies (Backhouseet al., 1999). That
is, the technique is defined and proved once, for an arbitrary recursive type, and can then
simply be instantiated as required for each new type.

The article is aimed at readers who are familiar with the basics of initial algebra seman-
tics (in particular, the concepts of categories, functors, products, co-products, and initial
algebras), say to the level of chapter two of Bird & de Moor (1997), but no previous
experience with the worker/wrapper transformation is assumed.

2 Initial algebra semantics

The recursion operatorfold encapsulates a common pattern for defining functions that
process values of a recursively defined type (Hutton, 1999). In this section we review
the categorical treatment offold, and introduce our notation. For further details, see for
example (Malcolm, 1990; Meijeret al., 1991; Bird & de Moor, 1997).

Suppose that we fix a categoryC and a functorF : C → C on this category. Then
the notion of analgebra is defined as a pair(A, f ) comprising an objectA and an arrow
f : FA→ A. In turn, ahomomorphism h: (A, f )→ (B,g) from one such algebra to another
is an arrowh : A→ B such that the following diagram commutes:

FA
Fh //

f

��

FB

g

��
A

h
// B

Algebras and homomorphisms themselves form a category, with composition and iden-
tities inherited fromC. An initial algebra is an initial object in this new category, and we
write (µF, in) for an initial algebra, andfold f for the unique homomorphismh : (µF, in)→
(A, f ) from the initial algebra to any other algebra(A, f ). That is,fold f is defined as the
unique arrow that makes the following diagram commute:

FµF
F (fold f) //

in

��

FA

f

��
µF

fold f
// A
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In the literature,fold f is sometimes written using the banana brackets notation(| f |), and
termed acatamorphism. The above definition forfold f can also be expressed as the
following equivalence, known as theuniversal propertyof fold:

h = fold f ⇔ h ◦ in = f ◦ Fh

The⇒ direction states thatfold f is a homomorphism from the initial algebra(µF, in) to
another algebra(A, f ), while the⇐ direction states that any other such homomorphismh
must be equal tofold f . Taken as a whole, the universal property expresses in an equational
manner the fact thatfold f is the unique homomorphism from(µF, in) to (A, f ).

The universal property can be used to verify the well-knownfusionproperty offold,
which states that the composition of a function and afold can always be re-expressed as a
singlefold, provided the function is a homomorphism of the appropriate type:

h ◦ f = g ◦ Fh ⇒ h ◦ fold f = fold g

Proof:

h ◦ fold f = fold g
⇔ { universal property offold }

h ◦ fold f ◦ in = g ◦ F (h ◦ fold f)
⇔ { F is a functor}

h ◦ fold f ◦ in = g ◦ Fh ◦ F (fold f)
⇔ { fold f is a homomorphism}

h ◦ f ◦ F (fold f) = g ◦ Fh ◦ F (fold f)
⇐ { extensionality}

h ◦ f = g ◦ Fh
ut

As a simple example of initial algebra semantics, suppose that we define a functorF on the
categorySET by FA = 1+ A. ThenF has an initial algebra, given by the setN of natural
numbers, together with a function[zero,succ] : 1+N→ N comprising two constructors
zero: 1→ N andsucc: N→ N for this set. In turn, given any other setA and functions
v : 1→ A and f : A→ A, the functionfold [v, f ] : N→ A is uniquely defined by:

h (zero()) = v ()
h (succ n) = f (h n)

That is, fold [v, f ] processes a natural number by replacing thezero constructor by the
functionv, and eachsuccconstructor by the functionf . For example, a doubling function
can be defined bydouble= fold [zero,succ◦ succ], and fusion can then be used to show
thatdouble◦ double= fold [zero,succ◦ succ◦ succ◦ succ].

3 Worker/wrapper for folds

Consider the problem of changing the return type of afold to improve its performance.
More precisely, suppose we are given a functionfold f : µF → A for some f : FA→ A,
and we wish to change the return type fromA to some other typeB. The worker/wrapper
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approach to this problem is based upon the use of conversion functions

A

rep
**
B

abs

jj

with the property that

abs◦ rep= idA

This equation states thatabs is a left inverse (or retraction) ofrep, or in more practical
terms that converting a value of the original type into the new type and then back again
does not change the value. In the terminology of data representation (Hoare, 1972), this
means that theabstracttype A can be faithfully represented by theconcretetype B. For
example, in the case of the categorySET, the equation ensures that the setA is isomorphic
to the subset ofB given by the image ofrep. Given the above assumptions, we now seek
conditions under which the following diagram commutes:

µF

fold f

~~~~~~~~~~~~~~~
fold g

  @@@@@@@@@@@@@

A B
abs

oo

That is, in worker/wrapper terminology, we seek conditions that allow the original recur-
sive functionfold f that produces a result of typeA to be factorised as the composition of
a recursiveworker functionfold g that produces a result of typeB, and awrapperfunction
absthat converts the result back to the original typeA.

One approach to solving this problem is to simply apply fusion. Even though this prop-
erty is normally viewed as being concerned with combining a function with afold, it
can also be viewed in the opposite direction as providing a sufficient condition for the
factorisation orfission(Gibbons, 2006) of afold in the manner above, namely thatf ◦
F abs= abs◦ g. However, given the assumption thatabs◦ rep= idA, we can in fact identify
four relevant conditions, given by the four possible ways of completing the following
commuting diagram that relates the argument algebrasf andg

FA

f

��

F?
FB

g

��
A

?
B

by replacing each ? in the diagram with eitherrep : A→ B or abs: B← A:

(1) g = rep◦ f ◦ F abs

(2) rep◦ f = g ◦ F rep

(3) f ◦ F abs = abs◦ g

(4) f = abs◦ g ◦ F rep
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What do these conditions express, and how do they relate? Equation (1) provides an explicit
definition forg in terms of f ; (2) states thatrep is a homomorphism fromf to g; (3) states
that abs is a homomorphism fromg to f (the condition that directly arises from the use
of fusion); and (4) provides a definition forf in terms ofg. Together, they form a simple
lattice, with (1) as the strongest condition and (4) as the weakest:

(4)

(2)

:B||||
||||

(3)

\dBBBB
BBBB

(1)

\dBBBB
BBBB

:B||||
||||

Proof: (1)⇒ (2)

g ◦ F rep = rep◦ f
⇔ { identities}

g ◦ F rep = rep◦ f ◦ idFA
⇔ { F is a functor}

g ◦ F rep = rep◦ f ◦ F idA
⇔ { abs◦ rep= idA }

g ◦ F rep = rep◦ f ◦ F (abs◦ rep)
⇔ { F is a functor}

g ◦ F rep = rep◦ f ◦ F abs◦ F rep
⇐ { extensionality}

g = rep◦ f ◦ F abs
ut

Proof: (1)⇒ (3)

abs◦ g = f ◦ F abs
⇔ { identities}

abs◦ g = idA ◦ f ◦ F abs
⇔ { abs◦ rep= idA }

abs◦ g = abs◦ rep◦ f ◦ F abs
⇐ { extensionality}

g = rep◦ f ◦ F abs

ut

Proof: (2)⇒ (4)

f = abs◦ g ◦ F rep
⇔ { identities}

idA ◦ f = abs◦ g ◦ F rep
⇔ { abs◦ rep= idA }

abs◦ rep◦ f = abs◦ g ◦ F rep
⇐ { extensionality}

rep◦ f = g ◦ F rep
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ut

Proof: (3)⇒ (4)

f = abs◦ g ◦ F rep
⇔ { identities}

f ◦ idFA = abs◦ g ◦ F rep
⇔ { F is a functor}

f ◦ F idA = abs◦ g ◦ F rep
⇔ { abs◦ rep= idA }

f ◦ F (abs◦ rep) = abs◦ g ◦ F rep
⇔ { F is a functor}

f ◦ F abs◦ F rep = abs◦ g ◦ F rep
⇐ { extensionality}

f ◦ F abs = abs◦ g
ut

It is now straightforward to verify that each of the first three conditions implies the
desired factorisation result, namely thatfold f = abs◦ fold g. In particular, we already
know that (1) implies (3) using the lattice diagram, and that (3) implies the desired result
using fusion, hence it only remains to verify that condition (2) is also sufficient:

fold f = abs◦ fold g
⇔ { identities}

idA ◦ fold f = abs◦ fold g
⇔ { abs◦ rep= idA }

abs◦ rep◦ fold f = abs◦ fold g
⇐ { extensionality}

rep◦ fold f = fold g
⇐ { fusion property offold }

rep◦ f = g ◦ F rep
ut

The situation regarding (4) is more involved, and we will return to this shortly. In the
meantime, let us consider how the first three conditions are used in practice.

For some applications, the definition for the functiong that forms the body of the worker
fold g will already be given, and our aim then is toverify that one of the three conditions
is satisfied, to ensure that the worker/wrapper factorisation holds. For many applications,
however, our aim will be toconstructa suitable functiong. In such cases, condition (1)
provides an explicit definitiong = rep◦ f ◦ F absfor the body of the worker in a similar
manner to (Gill & Hutton, 2009), and our aim then is tosimplify the definition. This
simplification process is typically driven by the desire to fuse together instances ofrepand
abs, to eliminate the overhead of repeatedly converting between the concrete and abstract
types. In contrast, conditions (2) and (3) provide a specification forg, and our aim is then to
calculatea definition that satisfies the specification, again with the desire to fuse together
instances of the conversion functions between the two types.

Given that (1) is the strongest condition and provides an explicit definition forg as a
starting point, why would we ever wish to use the other conditions? In our experience,
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using one of the weaker conditions often results in a simpler verification or calculation
process. In combination with the fact that (3) corresponds to the familiar case of fusion,
for the purposes of examples we will primarily focus on (2). Nonetheless, it is interesting
to consider the other conditions, and their relationships.

Let us now return to the remaining condition in our lattice:

(4) f = abs◦ g ◦ F rep

Unfortunately, in general this condition does not imply thatfold f = abs◦ fold g, and is
only sufficient to ensure the following more specialised worker/wrapper factorisation in
which the bodyg of the worker is composed with an additional term:

fold f = abs◦ fold (g ◦ F (rep◦ abs))

Proof:

fold f = abs◦ fold (g ◦ F (rep◦ abs))
⇐ { fusion property offold }

abs◦ g ◦ F (rep◦ abs) = f ◦ F abs
⇔ { F is a functor}

abs◦ g ◦ F rep◦ F abs = f ◦ F abs
⇐ { extensionality}

abs◦ g ◦ F rep = f
ut

The additional termF (rep◦ abs) in the worker plays the role of anormalisationfunction
that is applied after each recursive call. In general,rep ◦ abs 6= idB, but we can think of
rep ◦ abs as normalising a value of typeB by first converting to the typeA, which is
typically a ‘smaller’ type, and then converting back toB. It is natural to ask when (4) does
imply fold f = abs◦ fold g. The answer is given by the following condition, which states
thatrep◦ absis a homomorphism fromg to itself:

(5) rep◦ abs◦ g = g ◦ F (rep◦ abs)

In particular, we then have the following equivalence:

(4)∧ (5) ⇔ (2)∧ (3)

That is, the combination of (4) and (5) is equivalent to the combination of (2) and (3), either
condition of which implies the worker/wrapper factorisation. To verify the⇒ direction of
the above equivalence, we first show that(4)∧ (5)⇒ (2):

rep◦ f
= { (4) }

rep◦ abs◦ g ◦ F rep
= { (5) }

g ◦ F (rep◦ abs) ◦ F rep
= { F is a functor}

g ◦ F (rep◦ abs◦ rep)
= { abs◦ rep= idA }

g ◦ F rep



8 G. Hutton, M. Jaskelioff and A. Gill

ut

And similarly for (4)∧ (5)⇒ (3):

f ◦ F abs
= { (4) }

abs◦ g ◦ F rep◦ F abs
= { F is a functor}

abs◦ g ◦ F (rep◦ abs)
= { (5) }

abs◦ rep◦ abs◦ g
= { abs◦ rep= idA }

abs◦ g
ut

For the⇐ direction, we have already shown that(2)⇒ (4) and (3)⇒ (4), so all that
remains to verify is(2)∧ (3)⇒ (5), which proceeds as follows:

g ◦ F (rep◦ abs)
= { F is a functor}

g ◦ F rep◦ F abs
= { (2) }

rep◦ f ◦ F abs
= { (3) }

rep◦ abs◦ g
ut

We conclude this section by noting that condition (5) also implies the following property,
which is precisely the worker/wrapper fusion property from (Gill & Hutton, 2009) for the
special case when the worker is defined usingfold:

(6) rep◦ abs◦ fold g = fold g

That is, even thoughrep◦ abs= idB does not always hold, given (5) this identity does hold
for the special case of values of typeB that are produced by the worker itself. The proof of
worker/wrapper fusion is now a simple application of fusion:

rep◦ abs◦ fold g = fold g
⇐ { fusion property offold }

rep◦ abs◦ g = g ◦ F (rep◦ abs)
ut

4 Worker/wrapper for lists

To illustrate our new worker/wrapper technique, we now move from the abstract world of
category theory to the concrete world of Haskell1 (Peyton Jones, 2003). Our first example

1 Technically, we view Haskell as a meta-language for the categorySET, which admits simple
equational reasoning without the need to consider⊥. However, using the ‘fast and loose’ approach
of (Danielssonet al., 2006), our reasoning is also valid for the total fragment ofCPO.



Factorising Folds for Faster Functions 9

concerns lists, for which thefold operator in Haskell is defined as follows:

fold :: (a→ b→ b)→ b→ [a]→ b
fold f v [ ] = v
fold f v(x : xs) = f x (fold f v xs)

That is, the functionfold f v processes a list by replacing the empty list[ ] by the valuev,
and each constructor(:) within the list by the functionf . For example, the function that
sums a list of numbers can be defined bysum= fold (+) 0. The Haskell definition above
is equivalent to the categorical definition offold for lists, except that it uses two arguments
f andv rather than combining these as a single argument.

Now suppose we are given a functionfold f v:: [a]→ b for somef :: a→ b→ b and
v :: b, and that we wish to change the return type of thefold from b to some other typec.
Moreover, we also assume that we are given conversion functionsrep::b→ c andabs::c→
b satisfying the equationabs◦ rep = idb. Then instantiating our general theory from the
previous section, we find that any of the three conditions

(1) g x y= rep(f x (abs y))

(2) rep(f x y) = g x(rep y)

(3) f x (abs y) = abs(g x y)

is sufficient to justify the following factorisation of the originalfold that produces a result
of type b into the composition of a workerfold that produces a result of typec, and a
wrapper function that converts the result back to the original typeb:

fold f v = abs◦ fold g(rep v)

4.1 Example: fast reverse

Consider the problem of transforming a simple function that reverses a list into a more
efficient version that uses accumulation. This transformation is normally achieved using
more elementary techniques (Hutton, 2007), but we now show that it also fits naturally
into our worker/wrapper paradigm based uponfold, and leads to a simpler derivation than
the previous worker/wrapper approach based uponfix.

Using explicit recursion, a reverse function can be defined by

rev :: [a]→ [a]
rev [ ] = [ ]
rev(x : xs) = rev xs++[x]

or equivalently, using thefold operator for lists:

rev :: [a]→ [a]
rev = fold snoc[ ]

snoc :: a→ [a]→ [a]
snoc x xs = xs++[x]
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However, because of the use of append (++), this definition forrev takes quadratic time.
We now show how our worker/wrapper technique forfold can be used to derive a more
efficient worker that uses an extra argument to accumulate the result, together with a
wrapper that takes care of the initial setup. Using the notion of currying, the introduction
of an accumulator argument corresponds to changing the return type ofrev from a list to
a function on lists, i.e. changing from the original return type[a] to the new return type
[a]→ [a]. The necessary conversion functions between the two types, the latter of which
is sometimes calledHughes lists(Hughes, 1986), are defined as follows:

type H a = [a]→ [a]

rep :: [a]→ H a
rep xs = (xs++)

abs :: H a→ [a]
abs h = h [ ]

Note thatrep is just a synonym for(++). It is straightforward to verify the worker/wrapper
assumptionabs◦ rep= id[a]. We also have the important property thatrep forms a monoid
homomorphism from lists to Hughes lists, in the sense that:

rep(xs++ys) = rep xs◦ rep ys

rep [ ] = id[a]

In the case of reverse, it turns out that the most convenient condition to use as the basis
for constructing the worker function is condition (2):

rep(snoc x xs) = g x(rep xs)

We calculate a functiong satisfying this equation as follows:

rep(snoc x xs)
= { applyingsnoc}

rep(xs++[x])
= { rep is a homomorphism}

rep xs◦ rep [x]
= { applyingrep}

rep xs◦ (x:)
= { defineg x h= h ◦ (x:) }

g x(rep xs)

Now that we have satisfied the necessary preconditions, applying the worker/wrapper
transformation forfold gives the following new definitions:

rev :: [a]→ [a]
rev = abs◦ work

work :: [a]→ H a
work = fold g(rep [ ])
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Finally, if we make the list arguments explicit, and expand out the component functions,
we obtain the expected linear time version of reverse that uses an accumulator:

rev :: [a]→ [a]
rev xs = work xs[ ]

work :: [a]→ [a]→ [a]
work [ ] ys = ys
work (x : xs) ys = work xs(x : ys)

We conclude with a number of observations about the above derivation. First of all, in
common with the previous derivation of fast reverse using the worker/wrapper technique
for fix (Gill & Hutton, 2009), once we have made the decision to use Hughes’ representa-
tion of lists, the rest of the derivation proceeds using simple equational reasoning, without
the need for induction. However, in contrast to the previous derivation, the additional
structure made explicit by usingfold avoids the need for the additional functionswrap
andunwrap, the use of worker/wrapper fusion, and the need to expand out the worker as
an essential step in the derivation, resulting in a simpler derivation.

4.2 Example: fast reverse revisited

It is interesting now to return to our earlier question of why we don’t always use condi-
tion (1), which provides an explicit definition forg as a starting point. In the case of the
reverse example, the initial definition would then be as follows:

g x y = rep(snoc x(abs y))

The problem comes when we try and simplify this definition:

g x y
= { applyingg }

rep(snoc x(abs y))
= { applyingsnoc}

rep(abs y++[x])
= { rep is a homomorphism}

rep(abs y) ◦ rep [x]
= { applyingrep}

rep(abs y) ◦ (x:)

Now we appear to be stuck. We would like to fuse togetherrep and abs in the final
expression to give the definitiong x y= y ◦ (x:), but unfortunately it is not the case that
rep◦ abs= idH a. In order to make progress, we begin by rewriting the worker

work = fold g(rep [ ])

by making the first list argument explicit, expanding out thefold, and using the above
simplification ofg to give the following definition using explicit recursion:

work [ ] = rep [ ]
work (x : xs) = rep(abs(work xs)) ◦ (x:)
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While rep ◦ abs= idH a is not true in general, for the special case of values produced by
worker itself we do haverep◦ abs◦ work= work, the worker/wrapper fusion property (6),
which allows use to rewrite the worker as

work [ ] = rep [ ]
work (x : xs) = work xs◦ (x:)

which can then be expanded to give the expected definition:

work [ ] ys = ys
work (x : xs) ys = work xs(y: ys)

However, an unsatisfactory aspect of the above derivation is the need to rewrite the
worker using explicit recursion in order to make progress by applying worker/wrapper
fusion. Can the derivation also be performed at thefold level, without expanding out the
recursion? The key to achieving this is to observe that in this context the second argument
of g will always be of the formrep z for some listz, since both the base and recursive
case for the worker have an application ofrepat the outer level. Using this assumption, the
definition forg can then be simplified as follows:

g x y
= { previous simplification}

rep(abs y) ◦ (x:)
= { assumingy = rep z}

rep(abs(rep z)) ◦ (x:)
= { abs◦ rep= id }

rep z◦ (x:)
= { assumingy = rep z}

y ◦ (x:)

Avoiding the need for this kind of ad-hoc additional reasoning is precisely the benefit
that we obtain by starting from condition (2) rather than (1). In particular, usingrep(f x y) =
g x(rep y) as our specification forg makesexplicit from the outset that we can assume the
second argument tog is always of the formrep y.

5 Worker/wrapper for expressions

For our next example we move from the type of lists to a simple language of expressions
comprising integers and addition, together with its associatedfold operator:

data Expr = Val Int | Add Expr Expr

fold :: (a→ a→ a)→ (Int→ a)→ Expr→ a
fold f v(Val n) = v n
fold f v(Add x y) = f (fold f v x) (fold f v y)

Now suppose that we wish to change the return type of a functionfold f v:: Expr→ a
from the original typea to some other typeb, and that we are given conversion func-
tions rep:: a→ b andabs:: b→ a such thatabs◦ rep = ida. In this context, our general
worker/wrapper theory states that any of the three conditions
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(1) g x y= rep(f (abs x) (abs y))

(2) rep(f x y) = g (rep x) (rep y)

(3) f (abs x) (abs y) = abs(g x y)

is sufficient to justify the following factorisation of the originalfold that produces a result
of type a into the composition of a workerfold that produces a result of typeb, and a
wrapper function that converts the result back to the original typea:

fold f v = abs◦ fold g(rep◦ v)

Now consider the problem of transforming an evaluator for expressions into continuation-
passing style, the typical first step in deriving an efficient abstract machine (Hutton &
Wright, 2006). Using explicit recursion, an evaluation function can be defined by

eval :: Expr→ Int
eval(Val n) = n
eval(Add x y) = eval x+eval y

or equivalently, using thefold operator for expressions:

eval :: Expr→ Int
eval = fold (+) id

Rewriting this definition in continuation-passing style involves taking a function on inte-
gers (the continuation) as an extra argument, which using currying corresponds to changing
from the original return typeInt to the new return type(Int→ Int)→ Int. The necessary
conversion functions between the two types are defined as follows:

type Cint = (Int→ Int)→ Int

rep :: Int→ Cint
rep n = λc→ c n

abs :: Cint→ Int
abs f = f id

It is easy to show thatabs◦ rep= idInt. As with fast reverse, the appropriate starting point
for constructing the worker in this case is condition (2),

rep(x+y) = g (rep x) (rep y)

from which we calculate a functiong satisfying this equation as follows:

rep(x+y) c
= { applyingrep}

c (x+y)
= { abstracting overx }

(λn→ c (n+y)) x
= { unapplyingrep}

rep x(λn→ c (n+y))
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= { abstracting overy }
rep x(λn→ (λm→ c (n+m)) y)

= { unapplyingrep}
rep x(λn→ rep y(λm→ c (n+m)))

= { defineg a b= a (λn→ b (λm→ c (n+m))) }
g (rep x) (rep y)

Now that we have satisfied the necessary preconditions, applying the worker/wrapper
transformation forfold gives the following definitions

eval :: Expr→ Int
eval = abs◦ work

work :: Expr→ Cint
work = fold g(rep◦ id)

which expand out to give the expected continuation-passing evaluator:

eval :: Expr→ Int
eval e = work e id

work :: Expr→ (Int→ Int)→ Int
work (Val n) c = c n
work (Add x y) c = work x(λn→ work y(λm→ c (n+m)))

Once again, note that the derivation proceeds using simple equational reasoning and does
not require induction. Moreover, in contrast to our previous derivation of such an evaluator
using more elementary techniques (Hutton & Wright, 2006), using worker/wrapper condi-
tion (2) as the starting point results in a derivation whose goal is made explicit from the
outset, namely to construct a functiong such thatrep(x+y) = g (rep x) (rep y), rather than
this property being implicit in the structure of the derivation itself.

6 Efficient substitution

For our final example, we consider a more challenging problem: improving the perfor-
mance of monadic substitution on trees. The example is taken from (Voigtländer, 2008),
but whereas the author only sketches a proof of correctness and conjectures that a formal
proof may require sophisticated techniques, we show that a simple proof is possible using
our worker/wrapper technique forfold. We begin by generalising the typeExpr from the
previous section to the typeTree aof binary trees with leaves of typea:

data Tree a = Leaf a| Node(Tree a) (Tree a)

Now recall that in Haskell, the categorical notion of amonadis captured by the following
class declaration, which states that a parameterised typem is a member of the classMonad
of monadic types if it is equipped withreturnand>>= functions of the specified types:

classMonad mwhere
return :: a→m a
(>>=) :: m a→ (a→m b)→m b
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The two functions must also satisfy identity and associativity properties:

return x>>= f = f x

e>>= return = e

(e>>= f )>>=g = e>>=(λx→ f x>>=g)

It is straightforward to makeTreeinto a monadic type by the following instance decla-
ration, and to verify that the required monad laws are satisfied:

instanceMonad Treewhere
return :: a→ Tree a
return x = Leaf x

(>>=) :: Tree a→ (a→ Tree b)→ Tree b
(Leaf x)>>= f = f x
(Node l r)>>= f = Node(l>>= f ) (r>>= f )

This declaration implements the well-known idea that substitution is monadic. In particu-
lar, if we view values of typeTree aas terms with variables of typea, thenreturnconverts
a value into the corresponding term, andt>>= f is the term that results from applying the
substitutionf to every variable in the termt. For example, given the tree of characters

t = Node(Leaf ’a’) (Leaf ’b’)

and the substitution

f :: Char→ Tree Int
f ’a’ = Leaf 1
f ’b’ = Node(Leaf 2) (Leaf 3)

then the expressiont>>= f produces the following tree of integers:

Node(Leaf 1) (Node(Leaf 2) (Leaf 3))

Now consider the following recursive function on natural numbers, which uses substitu-
tion to produce a tree of integers of a specified depth:

fullTree :: Int→ Tree Int
fullTree1 = return1
fullTree(n+1) = fullTree n>>= λ i→

Node(return(n− i)) (return(i +1))

That is, a tree of depth 1 is produced by returning a leaf, and a tree of depthn+ 1 by
recursively building a tree of depthn, and then using substitution to replace each leaf
value i by a tree of depth two with leaf valuesn− i and i + 1. For example, the first four
trees produced by applyingfullTreecan be pictured as follows:

1 ·
��� ...

0 2

·
���� >>>>

·
��� ... ·

��� ...

2 1 0 3

·
ppppppp

OOOOOOO

·
���� >>>> ·

���� >>>>

·
��� ... ·

��� ... ·
��� ... ·

��� ...

1 3 2 2 3 1 0 4
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As we would expect from these examples,fullTree takes exponential time. Now consider
the functionzigzagthat follows a path down a tree that alternates between moving left (zig)
and right (zag), and returns the resulting leaf value:

zigzag :: Tree a→ a
zigzag = zig

where
zig(Leaf x) = x
zig(Node l r) = zag l
zag(Leaf x) = x
zag(Node l r) = zig r

In a lazy language such as Haskell, evaluatingzigzag(fullTree n) only builds as much of the
intermediate tree as necessary to produce the final result, which in this case is a single path.
However, due to the iterative nature offullTree, in which the complete tree is potentially
traversed at each step in order to increase the depth by one, such an evaluation still requires
quadratic time, even in a lazy language. How can this be reduced to linear time?

6.1 The codensity monad

Voigtländer’s solution (2008) is based upon changing the representation of trees, using
the notion of continuations. Recall that a continuation can be viewed as a function that
is applied to the result of another computation. Using this idea, we can represent a value
x as the functionλc→ c x that takes a continuationc, and applies this function tox in
order to produce the final result. This representation gives rise to the type(a→ r)→ r of
continuation computations of typea that return results of typer:

type Cont r a = (a→ r)→ r

It is easy to show thatCont r is a monadic type. Moreover, we can also parameterise the
declaration by another monadm to give amonad transformer(Lianget al., 1995):

type ContT r m a = (a→m r)→m r

For the purposes of improving the efficiency offullTree, we will use the following variant,
known as thecodensitymonad transformer (Jaskelioff, 2009):

type CodT m a = ∀r. ((a→m r)→m r)

That is, the result typer is moved from the the left-side of the declaration to the right-side,
by exploiting Haskell’s notion ofrank 2 types (Peyton Joneset al., 2007). Moving the
quantification in this manner means that whereas the continuation monadContT r mhas a
fixed result typer, the codensity monadCodT mhas a variable (polymorphic) result type.
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MakingCodT into a monad transformer proceeds as follows:

instanceMonad m⇒Monad(CodT m) where
return :: a→ CodT m a
return x = λc→ c x

(>>=) :: CodT m a→ (a→ CodT m b)→ CodT m b
f >>=g = λc→ f (λx→ g x c)

Using the codensity monad transformer, we now define a new representation for trees,
together with the necessary conversion functions between the original and new types:

type Coden a = CodT Tree a

rep :: Tree a→ Coden a
rep t = (t >>=)

abs :: Coden a→ Tree a
abs c = c return

It is interesting to note the similarity to the definitionsrep xs= (xs++) andabs f = f [ ]
given earlier for lists. The above definitions for trees have the same structure, except that
the monoid operations++ and[ ] are generalised to the monad operations>>= andreturn.
A simple calculation verifies the worker/wrapper assumptionabs◦ rep= idTreea:

abs(rep t)
= { applyingrep}

abs(t >>=)
= { applyingabs}

t>>= return
= { monad laws}

t
ut

6.2 The term type

To improve the performance offullTree, our aim now is to factorise this function into the
composition of a more efficient worker that produces a result in the codensity monad, and
a wrapper that converts the result back into the tree monad. That is, we seek to define a
functionfullCodenthat makes the following diagram commute:

Int
fullTree

��

fullCoden

��
Tree Int Coden Int

abs
oo

Following the lead of our previous examples, we might expect to proceed by defining
fullTreeas afold over the type of natural numbers, and then applying our worker/wrapper
technique to derive the required worker. For this example, however, it turns out to be
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preferable to begin by reformulating the problem in terms of a more structured type than
the natural numbers. Consider once again the definition forfullTree:

fullTree :: Int→ Tree Int
fullTree1 = return1
fullTree(n+1) = fullTree n>>= λ i→

Node(return(n− i)) (return(i +1))

In this definition, the resulting trees are built using three functions:

return :: a→ Tree a
(>>=) :: Tree a→ (a→ Tree b)→ Tree b
Node :: Tree a→ Tree a→ Tree a

Based upon this observation, we can define the following type oftree termswhose values
represent trees that are built using these functions:

data Term awhere
Return :: a→ Term a
Bind :: Term a→ (a→ Term b)→ Term b
Branch :: Term a→ Term a→ Term a

Reifying functions as data in this manner is sometimes called a deep embedding. Note that
becauseBind involves terms of two different types,Term ais a GADT (Peyton Joneset al.,
2006). Categorically, defining afold for such types requires moving to a functor category,
in which objects are functors and arrows are natural transformations (Johann & Ghani,
2008). In Haskell, thefold for terms can be defined as follows:

fold :: (∀a. a→ f a)→
(∀ab. f a→ (a→ f b)→ f b)→
(∀a. f a→ f a→ f a)→
(∀a. Term a→ f a)

fold r b n(Return x) = r x
fold r b n(Bind t g) = b (fold r b n t) (fold r b n◦ g)
fold r b n(Branch t u) = n (fold r b n t) (fold r b n u)

The use of quantifiers in the type forfold reflects the use of natural transformations, which
in Haskell correspond to polymorphic functions. To ensure the expected universal property
we also require thatTermandf are functors, but we omit the details here.

Using thefold operator for terms, the fact that terms represent trees can now be for-
malised by defining an evaluation function that simply replaces the syntactic constructors
on terms by the corresponding semantic operations on trees:

eval :: Term a→ Tree a
eval = fold return(>>=) Node
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In turn, we can define a version offullTree that produces a term rather than a tree, by
replacing the use of the tree operations by the appropriate term constructors:

fullTerm :: Int→ Term Int
fullTerm1 = Return1
fullTerm(n+1) = fullTerm n ‘Bind‘ λ i→

Branch(Return(n− i)) (Return(i +1))

A simple inductive proof shows thatfullTree= eval◦ fullTerm.

Base case:

eval(fullTerm1)
= { applyingfullTerm}

eval(Return1)
= { applyingeval}

return1
= { applyingreturn}

Leaf 1
= { unapplyingfullTree}

fullTree1

Inductive case:

eval(fullTerm(n+1))
= { applyingfullTerm}

eval(fullTerm n‘Bind‘ λ i→ Branch(Return(n− i)) (Return(i +1)))
= { applyingeval}

eval(fullTerm n)>>= λ i→ Node(return(n− i)) (return(i +1))
= { induction hypothesis}

fullTree n>>= λ i→ Node(return(n− i)) (return(i +1))
= { applyingreturn}

fullTree n>>= λ i→ Node(Leaf (n− i)) (Leaf (i +1))
= { unapplyingfullTree}

fullTree(n+1)
ut

6.3 Applying worker/wrapper

Having reformulatedfullTree using an intermediate type of tree terms, we now seek to
complete the following expanded version of our commuting diagram from the previous
section, by defining appropriate functionswork andfullCoden:
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Int

fullTerm

��fullTree





fullCoden

��

Term Int

eval

~~|||||||||||
work

!!DDDDDDDDDDD

Tree Int Coden Int
abs

oo

Commutativity of the upper left triangle was established in the previous section. The
following definition ensures the upper right triangle also commutes, by construction:

fullCoden :: Int→ Coden Int
fullCoden = work ◦ fullTerm

In turn, we define the functionworkusingfold for terms, by simply supplying thereturn
and>>= operations for our codensity monad, and a suitablenodeoperation:

work :: Term a→ Coden a
work = fold return(>>=) node

node :: Coden a→ Coden a→ Coden a
node f g = λc→ Node(f c) (g c)

To verify that this definition makes the lower triangle in the diagram commute, i.e.eval=
abs◦ work, we begin by expanding out the definitions forevalandwork to give:

fold return(>>=) Node = abs◦ fold return(>>=) node

Note thatreturnand>>= on the left-side of the equation are for the tree monad, and on the
right-side are for the codensity monad. We then apply the worker/wrapper technique for
fold. In particular, condition (2) for this example expands to give three equations that are
together sufficient to justify the above factorisation:

(2.1) rep(return x) = return x

(2.2) rep(t>>= f ) = rep t>>= rep◦ f

(2.3) rep(Node l r) = node(rep l) (rep r)

The first two equations state thatrep preserves thereturn and>>= operations and is hence
a monad morphism, while the last states thatrep preserves the node operation. Verifying
these equations is simply a matter of expanding definitions and using monad laws. We
include all three proofs below to emphasise their simplicity.

Proof: (2.1)

rep(return x) g
= { applyingrep}
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return x>>=g
= { monad law}

g x
= { unapplyingreturn for Coden}

return x g
ut

Proof: (2.2)

rep(t>>= f ) g
= { applyingrep}

(t>>= f )>>=g
= { monad law}

t>>=(λx→ f x>>=g)
= { unapplyingrep}

t>>=(λx→ rep(f x) g)
= { unapplyingrep}

rep t (λx→ rep(f x) g)
= { unapplying>>= for Coden}

(rep t>>= rep◦ f ) g
ut

Proof: (2.3)

rep(Node l r) g
= { applyingrep}

Node l r>>=g
= { applying>>= for Tree}

Node(l>>=g) (r>>=g)
= { unapplyingrep}

Node(rep l g) (rep r g)
= { unapplyingnode}

node(rep l) (rep r) g
ut

Finally, because the three internal triangles in the diagram commute, the external triangle
also commutes, which verifies the desired worker/wrapper factorisation:

fullTree :: Int→ Tree Int
fullTree = abs◦ fullCoden

Proof:

fullTree
= { upper left triangle}

eval◦ fullTerm
= { lower triangle}

abs◦ work ◦ fullTerm
= { upper right triangle}
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abs◦ fullCoden
ut

Returning to our original problem of improving the efficiency ofzigzag(fullTree n),
if we now replace the original definition forfullTree by the new version obtained using
the worker/wrapper technique, the time complexity is reduced from quadratic to linear.
For example, in a simple experiment using the Glasgow Haskell Compiler the time for
n = 10000 was reduced from around 90 seconds to 0.2 seconds. If desired, the definition
fullCoden= work◦ fullTermcan also be fused to eliminate the use of the intermediate term
structure, further reducing the running time to under 0.1 seconds.

We conclude with a few remarks about this example. First of all, despite using a sophis-
ticated optimisation technique in the form of the codensity monad, the proof of correctness
of the efficient version offullTerm still only requires simple equational reasoning. Sec-
ondly, our proof of the worker/wrapper factorisationeval= work ◦ abs is not specific to
tree terms built usingfullTerm, but shows how to optimise the evaluation ofanysuch terms.
And finally, the use of tree terms also provides an explanation forwhy the optimisation is
correct, in the sense that it makes explicit the key idea of implementing thereturn, >>=,
andNodeoperations on expression trees using the codensity monad.

7 Conclusion and further work

In this article we developed a general worker/wrapper theory for changing the type of re-
cursive functions defined using fold operators, and showed how it can be used in practice as
an equational reasoning technique for improving the performance of functional programs.
The approach requires only basic categorical and equational reasoning principles, and
using fold operators results in simpler and more structured calculations than the previous
worker/wrapper theory based upon fixed point operators.

It is also interesting to recount how this work was developed. Initially we focused on
the special case offold for lists, and identified conditions (1) and (2) for the case of lists.
However, it was not clear how these conditions were related, nor how they related to fold
fusion (3), or worker/wrapper fusion (6). It was only when we generalised from lists to an
arbitrary type using initial algebra semantics that it became clear that there were in fact four
relevant properties, related by a simple lattice structure. Focusing on lists made it difficult
to “see the wood for the trees”, and the move to a categorical approach revealed the simple
underlying algebraic structure of the problem.

There are many interesting topics for further work, including mechanising the tech-
nique, other recursion operators such asunfold, weaker versions of the worker/wrapper
assumptionabs◦ rep= id, and other application areas. The monadic substitution example
also suggests a new approach to program optimisation that we are particularly keen to
explore, based upon a deep embedding of the operations to be optimised and the use of the
worker/wrapper technique to demonstrate correctness of the optimised program.



Factorising Folds for Faster Functions 23

Acknowledgements

We would like to thank Ralf Hinze and the four anonymous referees for their useful com-
ments. The last author would like to thank the Functional Programming Lab in Nottingham
for funding a one week research visit during June 2009.

References

Backhouse, Roland, Jansson, Patrik, Jeuring, Johan, & Meertens, Lambert. (1999). Generic
Programming: An Introduction. Pages 28–115 of:Swierstra, Doaitse, Henriques, Pedro, &
Oliveira, Jose (eds),Advanced Functional Programming. LNCS 1608. Springer-Verlag.

Bird, Richard, & de Moor, Oege. (1997).Algebra of Programming. Prentice Hall.

Danielsson, Nils Anders, Gibbons, Jeremy, Hughes, John, & Jansson, Patrik. (2006). Fast and Loose
Reasoning is Morally Correct.Principles of Programming Languages. ACM Press.

Gibbons, Jeremy. (2006). Fission for Program Comprehension.Pages 162–179 of:Uustalu, Tarmo
(ed), Mathematics of Program Construction. Lecture Notes in Computer Science, vol. 4014.
Springer-Verlag.

Gill, Andy, & Hutton, Graham. (2009). The Worker/Wrapper Transformation.Journal of Functional
Programming, 19(2), 227–251.

Hoare, Tony. (1972). Proof of Correctness of Data Representations.Acta Informatica, 1(4), 271–281.

Hughes, John. (1986). A Novel Representation of Lists and its Application to the Function Reverse.
Information Processing Letters, 22(3).

Hutton, Graham. (1999). A Tutorial on the Universality and Expressiveness of Fold.Journal of
Functional Programming, 9(4), 355–372.

Hutton, Graham. (2007).Programming in Haskell. Cambridge University Press.

Hutton, Graham, & Wright, Joel. (2006). Calculating an Exceptional Machine. Loidl, Hans-
Wolfgang (ed),Trends in Functional Programming volume 5. Intellect. Selected papers from
the Fifth Symposium on Trends in Functional Programming, Munich, November 2004.

Jaskelioff, Mauro. (2009). Modular Monad Transformers.Pages 64–79 of: Proceedings of the
European Symposium on Programming. LNCS, vol. 5502. Springer.

Johann, Patricia, & Ghani, Neil. (2008). Foundations for Structured Programming with GADTs.
Pages 297–308 of: Proceedings of the 35th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. ACM Press.

Liang, Sheng, Hudak, Paul, & Jones, Mark. (1995). Monad Transformers and Modular Interpreters.
Pages 333–343 of: Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. ACM Press.

Malcolm, Grant. (1990). Algebraic Data Types and Program Transformation.Science of Computer
Programming, 14(2-3), 255–280.

Meijer, Erik, Fokkinga, Maarten, & Paterson, Ross. (1991). Functional Programming with Bananas,
Lenses, Envelopes and Barbed Wire. Hughes, John (ed),Proceedings of the Conference on
Functional Programming and Computer Architecture. LNCS, no. 523. Springer-Verlag.

Peyton Jones, Simon. (2003).Haskell 98 Language and Libraries: The Revised Report. Cambridge
University Press. Also available on the web fromwww.haskell.org/definition.

Peyton Jones, Simon, & Launchbury, John. (1991). Unboxed Values as First Class Citizens in a
Non-strict Functional Language.Proceedings of the Conference on Functional Programming and
Computer Architecture. Cambridge, Massachussets: Springer-Verlag.

Peyton Jones, Simon, Vytiniotis, Dimitrios, Weirich, Stephanie, & Washburn, Geoffrey. (2006).
Simple Unification-Based Type Inference for GADTs.Pages 50–61 of: Proceedings of the 11th
ACM SIGPLAN International Conference on Functional Programming. ACM Press.



24 G. Hutton, M. Jaskelioff and A. Gill

Peyton Jones, Simon, Vytiniotis, Dimitrios, Weirich, Stephanie, & Shields, Mark. (2007). Practical
Type Inference for Arbitrary-Rank Types.Journal of Functional Programming, 17(1), 1–82.

Voigtländer, Janis. (2008). Asymptotic Improvement of Computations over Free Monads.Pages
388–403 of: Proceedings of the 9th International Conference on Mathematics of Program
Construction. LNCS, vol. 5133. Marseille, France: Springer-Verlag.


