Factorising Folds for Faster Functions
(Extended Version)

GRAHAM HUTTON
University of Nottingham, UK

MAURO JASKELIOFF
Universidad Nacional de Rosario, Argentina

ANDY GILL
University of Kansas, USA

Abstract

The worker/wrapper transformation is a general technique for improving the performance of re-
cursive programs by changing their types. The previous formalisation (Gill & Hutton, 2009) was
based upon a simple fixed point semantics of recursion. In this article we develop a more structured
approach, based upon initial algebra semantics. In particular, we show how the worker/wrapper
transformation can be applied to programs defined using the structured pattern of recursion captured
by fold operators, and illustrate our new technique with a number of examples.

1 Introduction

The worker/wrapper transformation is a general technique for changing the type of a
recursive program to improve its performance. The basic idea is simple and pervasive:
given a recursive program of some type, we aim to factorise it into a more effiegrker
program of a different type, together withvarapper program that acts as an interface
between the original program and the new worker.

Special cases of the worker/wrapper transformation have been used for many years,
particularly in optimizing compilers. For example, the technique has been used in the
Glasgow Haskell Compiler since its inception, to replace the use of boxed data structures
by more efficient unboxed data structures when safe to do so (Peyton Jones & Launchbury,
1991). However, it is only recently that the transformation has been formalised, proved
correct, and presented as a general technique for improving the performance of programs
by improving the choice of data structures (Gill & Hutton, 2009).

The previous formalisation was based upon a simple fixed point semantics of recursive
programs. In this article we take a more structured approach, based upon initial algebra
semantics. In particular, we develop a general worker/wrapper theory for changing the
type of recursive programs defined using fold operators, and show how it can be used in
practice as an equational reasoning technique for improving the performance of programs.
More precisely, the article makes the following contributions:

2 G. Hutton, M. Jaskelioff and A. Gill

o \We show how the worker/wrapper transformation applies to programs defined using
folds, by generalising to a categorical view of types as initial algebras.

e We identify four conditions for the correctness of the transformation, and show that
these conditions form a simple lattice structure.

e We illustrate our technique with a number of examples, including a correctness proof
for a new approach to implementing substitution efficiently (V@igtler, 2008).

The use of initial algebras also means that our worker/wrapper technique for folds is
generic in the underlying recursive type to which it applies (Backhetis¢, 1999). That
is, the technique is defined and proved once, for an arbitrary recursive type, and can then
simply be instantiated as required for each new type.

The article is aimed at readers who are familiar with the basics of initial algebra seman-
tics (in particular, the concepts of categories, functors, products, co-products, and initial
algebras), say to the level of chapter two of Bird & de Moor (1997), but no previous
experience with the worker/wrapper transformation is assumed.

2 Initial algebra semantics

The recursion operatdold encapsulates a common pattern for defining functions that
process values of a recursively defined type (Hutton, 1999). In this section we review
the categorical treatment &6ld, and introduce our notation. For further details, see for
example (Malcolm, 1990; Meijest al,, 1991; Bird & de Moor, 1997).

Suppose that we fix a catego6/ and a functorF : C — C on this category. Then
the notion of arelgebrais defined as a paifA, f) comprising an objecA and an arrow
f : FA— A. In turn, ahomomorphism h(A, f) — (B, g) from one such algebra to another
is an arrowh : A — B such that the following diagram commutes:

FA—" ~FB

A——B

Algebras and homomorphisms themselves form a category, with composition and iden-
tities inherited fromC. An initial algebrais an initial object in this new category, and we
write (uF,in) for an initial algebra, antbld f for the unique homomorphishn: (uF,in) —

(A, f) from the initial algebra to any other algeh®, f). That is,fold f is defined as the
unique arrow that makes the following diagram commute:

fold f
FuF ~0 pa

Factorising Folds for Faster Functions 3

In the literaturefold f is sometimes written using the banana brackets notgtignand
termed acatamorphism The above definition fofold f can also be expressed as the
following equivalence, known as thumiversal propertyof fold:

h=foldf < hoin = foFh

The = direction states thdbld f is a homomorphism from the initial algebfaF,in) to
another algebréA, f), while the< direction states that any other such homomorpHism
must be equal téold f. Taken as a whole, the universal property expresses in an equational
manner the fact thdold f is the unigue homomorphism frofmF,in) to (A, f).

The universal property can be used to verify the well-kndusion property offold,
which states that the composition of a function arfdld can always be re-expressed as a
singlefold, provided the function is a homomorphism of the appropriate type:

hof = goFh = hofoldf = foldg

Proof:

hofold f = foldg
& { universal property ofold }
hofold foin = go F(hofold f)
& { F is a functor}
hofold foin = go Fho F (fold f)
& { fold f is a homomorphisn}
ho f o F(fold f) = goFho F(fold f)
<= { extensionality}
hof = goFh
O
As a simple example of initial algebra semantics, suppose that we define a farmidhe
categorySET by FA = 1+ A. ThenF has an initial algebra, given by the $&¢f natural
numbers, together with a functideergsucd : 1+ N — N comprising two constructors
zero: 1 — N andsucc: N — N for this set. In turn, given any other s&tand functions
v:1— Aandf:A— A the functionfold [v, f] : N — Ais uniquely defined by:

h(zero()) = V()
h(succn) = f(hn)

That is, fold [v, f] processes a natural number by replacing 28 constructor by the
functionv, and eactsuccconstructor by the functiom. For example, a doubling function
can be defined bgouble= fold [zerg succo sucd, and fusion can then be used to show
thatdoubleo double= fold [zerg succoe succo succo sucg.

3 Worker/wrapper for folds

Consider the problem of changing the return type débld to improve its performance.
More precisely, suppose we are given a funcfiold f : uF — A for somef : FA — A,
and we wish to change the return type frénto some other typ8. The worker/wrapper

4 G. Hutton, M. Jaskelioff and A. Gill

approach to this problem is based upon the use of conversion functions

with the property that

absorep=id,
This equation states thabsis a left inverse (or retraction) okp, or in more practical
terms that converting a value of the original type into the new type and then back again
does not change the value. In the terminology of data representation (Hoare, 1972), this
means that thabstracttype A can be faithfully represented by tlvencretetype B. For
example, in the case of the categ@¥ T, the equation ensures that the Aé$ isomorphic
to the subset oB given by the image ofep. Given the above assumptions, we now seek
conditions under which the following diagram commutes:

uF
fold f fold g

A B

abs

That is, in worker/wrapper terminology, we seek conditions that allow the original recur-
sive functionfold f that produces a result of tygeto be factorised as the composition of
a recursivevorkerfunctionfold gthat produces a result of tyf and awrapperfunction
absthat converts the result back to the original type

One approach to solving this problem is to simply apply fusion. Even though this prop-
erty is normally viewed as being concerned with combining a function witbld it
can also be viewed in the opposite direction as providing a sufficient condition for the
factorisation orfission (Gibbons, 2006) of dold in the manner above, namely that
F abs= abso g. However, given the assumption tl@ditso re p=id,, we can in fact identify
four relevant conditions, given by the four possible ways of completing the following
commuting diagram that relates the argument algebaamsig

FA— " FB

Ai? B
by replacing each ? in the diagram with eitihep: A — B or abs: B < A:
(1) g = repo f oFabs
(2) repof =goFrep
(3) foFabs= absog
(4) f = absogoFrep

Factorising Folds for Faster Functions 5

What do these conditions express, and how do they relate? Equation (1) provides an explicit
definition forg in terms off; (2) states thatepis a homomorphism fronfi to g; (3) states
thatabsis a homomorphism frong to f (the condition that directly arises from the use

of fusion); and (4) provides a definition fdrin terms ofg. Together, they form a simple
lattice, with (1) as the strongest condition and (4) as the weakest:

@
7N\
@ @)
N S
®

Proof: (1) = (2)

goFrep =repo f

& { identities}
goFrep = repo foidg,
= { F is a functor}
goFrep =repo foFid,
& {absorep=id, }
goFrep = repo f o F (abso rep)
= { F is a functor}
goFrep = repo f o Fabso Frep
= { extensionality}
g = repo f o Fabs
0
Proof: (1) = (3)
absog = foFabs
& { identities}
absog = idy o f o Fabs
& {absorep=id, }
abso g = absorepo f o Fabs
= { extensionality}
g = repo f o Fabs
O

Proof: (2) = (4)

f = absogoFrep
& { identities}
idyof = absogoFrep
& {absorep=id, }
absorepo f = absogoFrep
= { extensionality}
repof = goFrep

6 G. Hutton, M. Jaskelioff and A. Gill

Proof: (3) = (4)

f = absogoFrep
& { identities}
foide, = absogoFrep
& { F is a functor}
foFid, = absogoFrep
&= {absorep=id, }
f o F (absorep) = absogoFrep
& { F is a functor}
f o Fabso Frep = absogo Frep
= { extensionality}
f o Fabs = absog
O
It is now straightforward to verify that each of the first three conditions implies the
desired factorisation result, namely tHatd f = abso fold g. In particular, we already

know that (1) implies (3) using the lattice diagram, and that (3) implies the desired result
using fusion, hence it only remains to verify that condition (2) is also sufficient:

fold f = abso fold g

& { identities}
id, o fold f = abso fold g
= {absorep=id, }
abso repo fold f = abso fold g
<= { extensionality}
repofold f = foldg
= { fusion property ofold }

repof = goFrep
O

The situation regarding (4) is more involved, and we will return to this shortly. In the
meantime, let us consider how the first three conditions are used in practice.

For some applications, the definition for the functtiat forms the body of the worker
fold g will already be given, and our aim then isverify that one of the three conditions
is satisfied, to ensure that the worker/wrapper factorisation holds. For many applications,
however, our aim will be t@wonstructa suitable functiorg. In such cases, condition (1)
provides an explicit definitiog = repo f o F absfor the body of the worker in a similar
manner to (Gill & Hutton, 2009), and our aim then is sonplify the definition. This
simplification process is typically driven by the desire to fuse together instancep ahd
abs to eliminate the overhead of repeatedly converting between the concrete and abstract
types. In contrast, conditions (2) and (3) provide a specificatiog,fand our aim is then to
calculatea definition that satisfies the specification, again with the desire to fuse together
instances of the conversion functions between the two types.

Given that (1) is the strongest condition and provides an explicit definitiog fs a
starting point, why would we ever wish to use the other conditions? In our experience,

Factorising Folds for Faster Functions 7

using one of the weaker conditions often results in a simpler verification or calculation
process. In combination with the fact that (3) corresponds to the familiar case of fusion,
for the purposes of examples we will primarily focus on (2). Nonetheless, it is interesting
to consider the other conditions, and their relationships.

Let us now return to the remaining condition in our lattice:

(4) f = absogoFrep

Unfortunately, in general this condition does not imply tf@t f = abso fold g, and is
only sufficient to ensure the following more specialised worker/wrapper factorisation in
which the bodyg of the worker is composed with an additional term:

fold f = abso fold (go F (repo abg)

Proof:
fold f = abso fold (go F (repo abg)
= { fusion property ofold }
absogo F (repoabs = foFabs
& { F is a functor}
absogo Frepo Fabs = f o Fabs
<= { extensionality}

absogoFrep = f
O

The additional ternf (rep o abg) in the worker plays the role of @ormalisationfunction
that is applied after each recursive call. In genengh o abs# idg, but we can think of
rep o absas normalising a value of typB by first converting to the typd, which is
typically a ‘smaller’ type, and then converting backBolt is natural to ask when (4) does
imply fold f = abso fold g. The answer is given by the following condition, which states
thatrep o absis a homomorphism frorg to itself:

(5) repoabsog = goF (repo abg
In particular, we then have the following equivalence:
WAGB) = AQ)
That is, the combination of (4) and (5) is equivalent to the combination of (2) and (3), either

condition of which implies the worker/wrapper factorisation. To verify thalirection of
the above equivalence, we first show théitA (5) = (2):

repo f
{4}
repo abso go Frep
= {®)}
go F(repoabs o Frep
= { F is a functor}
go F(repo absorep)
= {absorep=id, }
goFrep

8 G. Hutton, M. Jaskelioff and A. Gill

And similarly for (4) A (5) = (3):

f o Fabs
{@}
abso go Frepo Fabs
= { F is a functor}
absogo F (repo abg
= {5}
abso repo abso g
= {absorep=id, }
abso g

O

For the < direction, we have already shown th@) = (4) and (3) = (4), so all that
remains to verify ig2) A (3) = (5), which proceeds as follows:

goF (repo abg
= { F is a functor}
go Frepo Fabs
{@}

repo f o Fabs

{3}

repo abso g

O

We conclude this section by noting that condition (5) also implies the following property,
which is precisely the worker/wrapper fusion property from (Gill & Hutton, 2009) for the
special case when the worker is defined udoid:

(6) repoabsofoldg = foldg

That is, even thoughep o abs= idg does not always hold, given (5) this identity does hold
for the special case of values of tyBehat are produced by the worker itself. The proof of
worker/wrapper fusion is now a simple application of fusion:

repo abso foldg = fold g
= { fusion property ofold }
repoabsog = go F(repo aby

4 Worker/wrapper for lists

To illustrate our new worker/wrapper technique, we now move from the abstract world of
category theory to the concrete world of Haské¢Reyton Jones, 2003). Our first example

1 Technically, we view Haskell as a meta-language for the cate§&¥, which admits simple
equational reasoning without the need to considddowever, using the ‘fast and loose’ approach
of (Danielssoret al,, 2006), our reasoning is also valid for the total fragmentB0O.

Factorising Folds for Faster Functions 9
concerns lists, for which thield operator in Haskell is defined as follows:

fold . (aﬂbﬂb)ﬂbﬂ[a]ﬂb
fold f v[] = v
foldf v(x:xs) = fx(foldfvxg

That is, the functiorfold f v processes a list by replacing the empty [isby the valuev,
and each constructdr) within the list by the functiorf. For example, the function that
sums a list of numbers can be defineddmyn= fold (+) 0. The Haskell definition above
is equivalent to the categorical definitionfofd for lists, except that it uses two arguments
f andv rather than combining these as a single argument.

Now suppose we are given a functiéold f v:: [a] — b for somef ::a— b — b and
v:: b, and that we wish to change the return type offihld from b to some other type.
Moreover, we also assume that we are given conversion funggpnd — candabs::c —

b satisfying the equatioabso rep = id,. Then instantiating our general theory from the
previous section, we find that any of the three conditions

(1) gxy=rep(f x(absy)
(2) rep(fxy)=gx(repy)

(3) fx(absy =abs(gxy)

is sufficient to justify the following factorisation of the originfld that produces a result
of type b into the composition of a workefold that produces a result of typs and a
wrapper function that converts the result back to the original bype

foldf v = abso fold g(repv)

4.1 Example: fast reverse

Consider the problem of transforming a simple function that reverses a list into a more
efficient version that uses accumulation. This transformation is normally achieved using
more elementary techniques (Hutton, 2007), but we now show that it also fits naturally
into our worker/wrapper paradigm based ugoldl, and leads to a simpler derivation than
the previous worker/wrapper approach based dpon

Using explicit recursion, a reverse function can be defined by

rev D [a] —[a]
rev(] = I
rev(x:xs) = revxst[x]

or equivalently, using théold operator for lists:

rev D [a]—[a]
rev = fold snoc|]
snoc D a—[a)l—[a]

SNOC X XS = XS+ [X]

10 G. Hutton, M. Jaskelioff and A. Gill

However, because of the use of appendt)(this definition forrev takes quadratic time.

We now show how our worker/wrapper technique fold can be used to derive a more
efficient worker that uses an extra argument to accumulate the result, together with a
wrapper that takes care of the initial setup. Using the notion of currying, the introduction
of an accumulator argument corresponds to changing the return type fodbm a list to

a function on lists, i.e. changing from the original return typéto the new return type

[a] — [a]. The necessary conversion functions between the two types, the latter of which
is sometimes calleHughes list{Hughes, 1986), are defined as follows:

typeHa = [a] —[a]
rep : [a]—Ha
repxs = (Xs+)
abs @ Ha—|[3a]
absh = hj]

Note thatrepis just a synonym fof+). It is straightforward to verify the worker/wrapper
assumptiorabso rep=id . We also have the important property thegpy forms a monoid
homomorphism from lists to Hughes lists, in the sense that:

rep(xs+vys) = repxsorepys
rep|] = id

@

In the case of reverse, it turns out that the most convenient condition to use as the basis
for constructing the worker function is condition (2):

rep(snocxxy = gx(repxs

We calculate a functiog satisfying this equation as follows:

rep (snoc x x$

{ applyingsnoc}
rep (xs+-[x])

{ repis a homomorphism}
rep xso rep [X]

{ applyingrep }
rep xso (x:)

{ definegxh=ho (x) }
g x(repxs

Now that we have satisfied the necessary preconditions, applying the worker/wrapper
transformation fofold gives the following new definitions:

rev o [a]—]a]
rev = absowork
work : [a]—Ha

work = foldg(rep[])

Factorising Folds for Faster Functions 11

Finally, if we make the list arguments explicit, and expand out the component functions,
we obtain the expected linear time version of reverse that uses an accumulator:

rev D [al—[a]

rev xs = work xs[]

work t [al—[a]l—[a]
work[] ys = ys

work (x:xs)ys = work xs(x:ys)

We conclude with a number of observations about the above derivation. First of all, in
common with the previous derivation of fast reverse using the worker/wrapper technique
for fix (Gill & Hutton, 2009), once we have made the decision to use Hughes’ representa-
tion of lists, the rest of the derivation proceeds using simple equational reasoning, without
the need for induction. However, in contrast to the previous derivation, the additional
structure made explicit by usinigld avoids the need for the additional functiowsap
andunwrap the use of worker/wrapper fusion, and the need to expand out the worker as
an essential step in the derivation, resulting in a simpler derivation.

4.2 Example: fast reverse revisited

It is interesting now to return to our earlier question of why we don’t always use condi-
tion (1), which provides an explicit definition fay as a starting point. In the case of the
reverse example, the initial definition would then be as follows:

gxy = rep(snocx(absy)

The problem comes when we try and simplify this definition:

gxy
= { applyingg }
rep (snoc x(absy))
{ applyingsnoc}
rep (abs y++ [X])
{ repis a homomorphism}
rep (absy) o rep[x]
{ applyingrep }
rep(absy o (x:)

Now we appear to be stuck. We would like to fuse togetiegr and abs in the final
expression to give the definitiamx y=y o (x:), but unfortunately it is not the case that
repo abs=id,, ,. In order to make progress, we begin by rewriting the worker

work = foldg(rep[])
by making the first list argument explicit, expanding out fbkl, and using the above
simplification ofg to give the following definition using explicit recursion:

work [] = rep|[]
work (x:xs) = rep(abs(work xg) o (x:)

12 G. Hutton, M. Jaskelioff and A. Gill

While rep o abs= id,, , is not true in general, for the special case of values produced by
worker itself we do haveep o abso work = work, the worker/wrapper fusion property (6),
which allows use to rewrite the worker as

work [] = rep]]
work (x:xs) = work xso (x:)

which can then be expanded to give the expected definition:

work[]ys = ys
work (x:xs)ys = work xs(y:ys)

However, an unsatisfactory aspect of the above derivation is the need to rewrite the
worker using explicit recursion in order to make progress by applying worker/wrapper
fusion. Can the derivation also be performed atftild level, without expanding out the
recursion? The key to achieving this is to observe that in this context the second argument
of g will always be of the formrep zfor some listz, since both the base and recursive
case for the worker have an applicatiorrep at the outer level. Using this assumption, the
definition forg can then be simplified as follows:

gxy

{ previous simplificatior}
rep(absy o (x:)
= { assuming/=rep z}
rep (abs(rep 2) o (x:)

{absorep=id }
rep zo (X:)

= { assuming/=rep z}

yo (x)
Avoiding the need for this kind of ad-hoc additional reasoning is precisely the benefit

that we obtain by starting from condition (2) rather than (1). In particular, usip xy) =
g X (repy) as our specification fay makesexplicit from the outset that we can assume the
second argument tpis always of the formep y.

5 Worker/wrapper for expressions

For our next example we move from the type of lists to a simple language of expressions
comprising integers and addition, together with its associfateidbperator:

data Expr = Val Int| Add Expr Expr
fold @ (@a—a—a)— (Int—a) —-Expr—a
fold f v (Val n) = vn

foldf v(Addxy = f (foldfvx (foldf vy)

Now suppose that we wish to change the return type of a funéioif v:: Expr — a
from the original typea to some other typd, and that we are given conversion func-
tionsrep::a — b andabs:: b — a such thatabso rep = id,. In this context, our general
worker/wrapper theory states that any of the three conditions

Factorising Folds for Faster Functions 13
(1) gxy=rep(f (absx (absy)
(2) rep(fxy)=g(repx) (repy)

(3) f(absX (absy =abs(gxy)

is sufficient to justify the following factorisation of the originfld that produces a result
of type a into the composition of a workeold that produces a result of tyde and a
wrapper function that converts the result back to the original &ype

foldfv = absofold g(repov)

Now consider the problem of transforming an evaluator for expressions into continuation-
passing style, the typical first step in deriving an efficient abstract machine (Hutton &
Wright, 2006). Using explicit recursion, an evaluation function can be defined by

eval m Expr— Int
eval(Val n) =n
eval(Add xy = evalxt+evaly

or equivalently, using théold operator for expressions:

eval 1 Expr—Int
eval = fold (+)id

Rewriting this definition in continuation-passing style involves taking a function on inte-
gers (the continuation) as an extra argument, which using currying corresponds to changing
from the original return typént to the new return typéint — Int) — Int. The necessary
conversion functions between the two types are defined as follows:

typeCint = (Int—Int) — Int
rep . Int— Cint

repn = Ac—cn

abs o Cint— Int

abs f = fid

It is easy to show thaibso rep=id,,.. As with fast reverse, the appropriate starting point
for constructing the worker in this case is condition (2),

rep(x+y) = g(repX(repy)
from which we calculate a functiogsatisfying this equation as follows:

rep(x+y)c
{ applyingrep }

c(x+y)

= { abstracting ovex }
(An—c(n+y))x

= { unapplyingrep }
repx(An—c(n+y))

14 G. Hutton, M. Jaskelioff and A. Gill

= { abstracting ovey }
repX(An— (Am—c(n+m))y)

= { unapplyingrep }
repx(An—repy(Am— c(n+m)))

= { definegab=a(An—b(Am—c(n+m))) }
g(repx) (repy)

Now that we have satisfied the necessary preconditions, applying the worker/wrapper
transformation fofold gives the following definitions

eval 1 Expr—Int
eval = absowork
work 1 Expr— Cint

work = fold g(repoid)

which expand out to give the expected continuation-passing evaluator:

eval . Expr—Int
evale = workeid
work . Expr— (Int—Int) — Int

work (Val n) ¢ cn
work (Add xy ¢ = workx(An—worky(Am— c(n+m)))

Once again, note that the derivation proceeds using simple equational reasoning and does
not require induction. Moreover, in contrast to our previous derivation of such an evaluator
using more elementary techniques (Hutton & Wright, 2006), using worker/wrapper condi-
tion (2) as the starting point results in a derivation whose goal is made explicit from the
outset, namely to construct a functigsuch thatep (x+y) = g (rep X) (rep y), rather than
this property being implicit in the structure of the derivation itself.

6 Efficient substitution

For our final example, we consider a more challenging problem: improving the perfor-
mance of monadic substitution on trees. The example is taken from @&odgf, 2008),

but whereas the author only sketches a proof of correctness and conjectures that a formal
proof may require sophisticated techniques, we show that a simple proof is possible using
our worker/wrapper technique féold. We begin by generalising the tyf@&pr from the
previous section to the typeree aof binary trees with leaves of type

dataTreea = Leaf a|Node(Tree g (Tree g

Now recall that in Haskell, the categorical notion shanadis captured by the following
class declaration, which states that a parameterisedtypa member of the clasdonad
of monadic types if it is equipped witleturn and>= functions of the specified types:

classMonad mwhere
return X a—ma
(>=) = ma—(a—mb —mb

Factorising Folds for Faster Functions 15

The two functions must also satisfy identity and associativity properties:

returnx>=f = fx
e>=return = e
(ex=f)>=g = e>=Ax—Tfx>=g)

It is straightforward to mak@&reeinto a monadic type by the following instance decla-
ration, and to verify that the required monad laws are satisfied:

instanceMonad Treewhere

return . a— Treea

return x = Leaf x

(>=) i Treea— (a— Treebh — Treeb
(Leaf Y >=f = fx

(Node I r) >=f

Node(I >=>=f) (r >=f)

This declaration implements the well-known idea that substitution is monadic. In particu-
lar, if we view values of typdree aas terms with variables of tyge thenreturn converts

a value into the corresponding term, ansl=f is the term that results from applying the
substitutionf to every variable in the terin For example, given the tree of characters

t = Node(Leaf’a’) (Leaf ’b?)
and the substitution

f ;. Char— Tree Int

f’a> = Leafl

f’b> = Node(Leaf2) (Leaf3)

then the expressian==f produces the following tree of integers:

Node(Leaf 1) (Node(Leaf 2) (Leaf 3))

Now consider the following recursive function on natural numbers, which uses substitu-
tion to produce a tree of integers of a specified depth:

fullTree Int— TreeInt
fullTreel = returnl
fullTree(n+1) = fullTree n>=Ai —

Node(return(n—i)) (return(i+ 1))

That is, a tree of depth 1 is produced by returning a leaf, and a tree of depthby
recursively building a tree of depth, and then using substitution to replace each leaf
valuei by a tree of depth two with leaf values—i andi + 1. For example, the first four
trees produced by applyirfglITree can be pictured as follows:

AN Py
A N /
2 1 0 3 : : :
ANANA\

1 3 2 2 3 1

1

\

4

N
/
0

16 G. Hutton, M. Jaskelioff and A. Gill

As we would expect from these exampléd|Tree takes exponential time. Now consider
the functionzigzagthat follows a path down a tree that alternates between movingigft (
and right gag, and returns the resulting leaf value:

zigzag ;@ Treea—a
zigzag = zig
where
zig (Leaf X = x

zig(Node Ir) =zag |
zag(Leaf ¥ =x
zag(Node Ir) =zigr

In alazy language such as Haskell, evaluatiiggag(full Tree n) only builds as much of the
intermediate tree as necessary to produce the final result, which in this case is a single path.
However, due to the iterative nature foflTree in which the complete tree is potentially
traversed at each step in order to increase the depth by one, such an evaluation still requires
guadratic time, even in a lazy language. How can this be reduced to linear time?

6.1 The codensity monad

Voigtlander’s solution (2008) is based upon changing the representation of trees, using
the notion of continuations. Recall that a continuation can be viewed as a function that
is applied to the result of another computation. Using this idea, we can represent a value
x as the functiomc — c x that takes a continuationy and applies this function te in

order to produce the final result. This representation gives rise to thédyper) — r of
continuation computations of tyethat return results of type

typeContra = (a—r)—r

It is easy to show thaCont ris a monadic type. Moreover, we can also parameterise the
declaration by another monadlto give amonad transforme(Liang et al,, 1995):

typeContTrma = (a—mr)—mr

For the purposes of improving the efficiencyfoliTree we will use the following variant,
known as theodensitynonad transformer (Jaskelioff, 2009):

typeCodT ma = Vr.((@a—mr)—mr)

That is, the result typeis moved from the the left-side of the declaration to the right-side,
by exploiting Haskell's notion ofank 2 types (Peyton Jonest al, 2007). Moving the
guantification in this manner means that whereas the continuation n@omad r mhas a
fixed result type, the codensity mona@odT mhas a variable (polymorphic) result type.

Factorising Folds for Faster Functions 17

Making CodT into a monad transformer proceeds as follows:

instanceMonad m=- Monad(CodT n) where

return 7 a—CodTma

returnx = AC—CX

(>=) = CodT ma— (a— CodT mbh— CodT mb
f>=g = Ac—f(Ax—gx9

Using the codensity monad transformer, we now define a new representation for trees,
together with the necessary conversion functions between the original and new types:

type Codena = CodT Tree a

rep .. Tree a— Coden a
rept = (t>=)

abs ;. Coden a— Tree a
absc = creturn

It is interesting to note the similarity to the definitiorep xs= (xs+-) andabs f=f []
given earlier for lists. The above definitions for trees have the same structure, except that
the monoid operations+ and[] are generalised to the monad operations andreturn.

A simple calculation verifies the worker/wrapper assumpéibso rep = idqee 4

abs(rep t)

{ applyingrep }
abs(t >=)

{ applyingabs}
t>=return

{ monad laws

6.2 The term type

To improve the performance @illTree our aim now is to factorise this function into the
composition of a more efficient worker that produces a result in the codensity monad, and
a wrapper that converts the result back into the tree monad. That is, we seek to define a
functionfullCodenthat makes the following diagram commute:

fulT7 Ncwen

Tree Int<— Coden Int

Following the lead of our previous examples, we might expect to proceed by defining
fullTree as afold over the type of natural numbers, and then applying our worker/wrapper
technique to derive the required worker. For this example, however, it turns out to be

18 G. Hutton, M. Jaskelioff and A. Gill

preferable to begin by reformulating the problem in terms of a more structured type than
the natural numbers. Consider once again the definitiofufiree

full Tree ;o Int — Tree Int

full Treel = returnl

fullTree(n+ 1) fullTree n>=Ai —
Node(return(n—i)) (return (i +1))

In this definition, the resulting trees are built using three functions:

return :: a— Treea
(>=) : Treea— (a— Tree) — Treeb
Node :: Tree a— Treea— Treea

Based upon this observation, we can define the following typeeeftermsvhose values
represent trees that are built using these functions:

data Term awhere

Return :: a— Terma
Bind : Terma— (a— Termb — Termb
Branch :: Terma— Terma— Term a

Reifying functions as data in this manner is sometimes called a deep embedding. Note that
becaus@ind involves terms of two different type$erm ais a GADT (Peyton Jonest al,

2006). Categorically, definingfald for such types requires moving to a functor category,

in which objects are functors and arrows are natural transformations (Johann & Ghani,
2008). In Haskell, théold for terms can be defined as follows:

fold it (Vaa—fa)—

(Vab.fa— (a—fb)—fb) —

(vafa—fa—fa) —

(Va. Terma—f a)
foldrbn(Returny =
fold rbn(Bind tg)
foldrbn(Branchty

rx
b(foldrbnt) (foldrbno g)
n(foldrbnt) (foldrbnu

The use of quantifiers in the type fmid reflects the use of natural transformations, which
in Haskell correspond to polymorphic functions. To ensure the expected universal property
we also require thalermandf are functors, but we omit the details here.

Using thefold operator for terms, the fact that terms represent trees can now be for-
malised by defining an evaluation function that simply replaces the syntactic constructors
on terms by the corresponding semantic operations on trees:

eval 1 Terma— Treea
eval = fold return(>=) Node

Factorising Folds for Faster Functions 19

In turn, we can define a version &illTree that produces a term rather than a tree, by
replacing the use of the tree operations by the appropriate term constructors:

fullTerm 7 Int— Term Int
fullTerm1 = Returnl
fullTerm(n+1) = fullTermn‘Bind Ai —

Branch(Return(n—i)) (Return(i + 1))

A simple inductive proof shows thatllTree = evalo fullTerm

Base case:

eval(fullTerm1)
{ applyingfullTerm}

eval (Returnl)

= { applyingeval }
returnl

= { applyingreturn }
Leafl

= { unapplyingfullTree }
fullTreel

Inductive case:

eval(fullTerm(n+ 1))

{ applyingfullTerm}
eval (fullTerm n‘Bind' Ai — Branch(Return(n—i)) (Return(i +1)))
= { applyingeval }

eval(fullTerm n >= Ai — Node(return (n—i)) (return (i+ 1))
= { induction hypothesi$

fullTree n>== Ai — Node(return (n—1i)) (return (i+ 1))
= { applyingreturn }

fullTree n>= Ai — Node(Leaf (n—i)) (Leaf (i+ 1))
= { unapplyingfullTree }

fullTree(n+1)

6.3 Applying worker/wrapper

Having reformulatedullTree using an intermediate type of tree terms, we now seek to
complete the following expanded version of our commuting diagram from the previous
section, by defining appropriate functiomsrk andfullCoden

20 G. Hutton, M. Jaskelioff and A. Gill

Int

fulﬂ{erm

Term Int

yw

Tree Int<— Coden Int

fullTree fullCoden

Commutativity of the upper left triangle was established in the previous section. The
following definition ensures the upper right triangle also commutes, by construction:

fullCoden :: Int— Coden Int
fullCoden = worko fullTerm

In turn, we define the functiowork usingfold for terms, by simply supplying theturn
and>= operations for our codensity monad, and a suitalblgeoperation:

work ;. Terma— Codena
work = fold return(>=) node
node ;. Coden a— Coden a— Coden a

nodefg = Ac— Node(f c)(gc)

To verify that this definition makes the lower triangle in the diagram commute\iad—=
abso work, we begin by expanding out the definitions &walandwork to give:

fold return(>>=) Node = abso fold return(>=) node

Note thatreturn and>>= on the left-side of the equation are for the tree monad, and on the
right-side are for the codensity monad. We then apply the worker/wrapper technique for
fold. In particular, condition (2) for this example expands to give three equations that are
together sufficient to justify the above factorisation:

(2.1) rep(returnX) = return x
(22) rep(t>=f)=rept>=repof

(2.3) rep(Nodelr) =node(repl) (repr)

The first two equations state thap preserves theeturn and>= operations and is hence

a monad morphism, while the last states tfegt preserves the node operation. Verifying
these equations is simply a matter of expanding definitions and using monad laws. We
include all three proofs below to emphasise their simplicity.

Proof: (2.1)

rep (return X) g
= { applyingrep }

Factorising Folds for Faster Functions 21

return x>>=g

= { monad law}
g X

= { unapplyingreturnfor Coden}
return x g

Proof: (2.2)

rep(t>==f)g
{ applyingrep }
(t>==f)>=g¢g
= { monad law}
t>=(Ax—f x>=g)
= { unapplyingrep }
t>= (Ax—rep(f x) g)
= { unapplyingrep }
rep t(Ax — rep(f x) g)
= { unapplying== for Coden}
(rept>=repof)g

Proof: (2.3)

rep(Nodelr) g
= { applyingrep }
Nodelr>==g
= { applying>= for Tree}
Node(I ==g) (r >=g9)
= { unapplyingrep }
Node(rep 1 g) (reprg)
= { unapplyingnode}
node(rep) (repr) g
O

Finally, because the three internal triangles in the diagram commute, the external triangle
also commutes, which verifies the desired worker/wrapper factorisation:

fullTree :: Int— Tree Int
fullTree = abso fullCoden

Proof:

fullTree
{ upper left triangle}
evalo fullTerm
= { lower triangle}
abso work o fullTerm

{ upper right triangle:

22 G. Hutton, M. Jaskelioff and A. Gill

abso fullCoden
O

Returning to our original problem of improving the efficiency z§zag(fullTree n),
if we now replace the original definition fdullTree by the new version obtained using
the worker/wrapper technique, the time complexity is reduced from quadratic to linear.
For example, in a simple experiment using the Glasgow Haskell Compiler the time for
n = 10000 was reduced from around 90 seconds to 0.2 seconds. If desired, the definition
fullCoden= work o fullTermcan also be fused to eliminate the use of the intermediate term
structure, further reducing the running time to under 0.1 seconds.

We conclude with a few remarks about this example. First of all, despite using a sophis-
ticated optimisation technique in the form of the codensity monad, the proof of correctness
of the efficient version ofullTerm still only requires simple equational reasoning. Sec-
ondly, our proof of the worker/wrapper factorisatiemal= work o absis not specific to
tree terms built usinfulITerm but shows how to optimise the evaluatioraeofysuch terms.

And finally, the use of tree terms also provides an explanatiomwfgrthe optimisation is
correct, in the sense that it makes explicit the key idea of implementingethm, >=,
andNodeoperations on expression trees using the codensity monad.

7 Conclusion and further work

In this article we developed a general worker/wrapper theory for changing the type of re-
cursive functions defined using fold operators, and showed how it can be used in practice as
an equational reasoning technique for improving the performance of functional programs.
The approach requires only basic categorical and equational reasoning principles, and
using fold operators results in simpler and more structured calculations than the previous
worker/wrapper theory based upon fixed point operators.

It is also interesting to recount how this work was developed. Initially we focused on
the special case dbld for lists, and identified conditions (1) and (2) for the case of lists.
However, it was not clear how these conditions were related, nor how they related to fold
fusion (3), or worker/wrapper fusion (6). It was only when we generalised from lists to an
arbitrary type using initial algebra semantics that it became clear that there were in fact four
relevant properties, related by a simple lattice structure. Focusing on lists made it difficult
to “see the wood for the trees”, and the move to a categorical approach revealed the simple
underlying algebraic structure of the problem.

There are many interesting topics for further work, including mechanising the tech-
nigue, other recursion operators suchuasold, weaker versions of the worker/wrapper
assumptiorabso rep = id, and other application areas. The monadic substitution example
also suggests a new approach to program optimisation that we are particularly keen to
explore, based upon a deep embedding of the operations to be optimised and the use of the
worker/wrapper technigue to demonstrate correctness of the optimised program.

Factorising Folds for Faster Functions 23

Acknowledgements

We would like to thank Ralf Hinze and the four anonymous referees for their useful com-
ments. The last author would like to thank the Functional Programming Lab in Nottingham
for funding a one week research visit during June 2009.

References

Backhouse, Roland, Jansson, Patrik, Jeuring, Johan, & Meertens, Lambert. (1999). Generic
Programming: An Introduction. Pages 28-115 ofSwierstra, Doaitse, Henriques, Pedro, &
Oliveira, Jose (edsfdvanced Functional ProgramminggNCS 1608. Springer-Verlag.

Bird, Richard, & de Moor, Oege. (1997Algebra of ProgrammingPrentice Hall.

Danielsson, Nils Anders, Gibbons, Jeremy, Hughes, John, & Jansson, Patrik. (2006). Fast and Loose
Reasoning is Morally CorrecBrinciples of Programming Language8CM Press.

Gibbons, Jeremy. (2006). Fission for Program Comprehengtages 162—-179 ofJustalu, Tarmo
(ed), Mathematics of Program ConstructionLecture Notes in Computer Science, vol. 4014.
Springer-Verlag.

Gill, Andy, & Hutton, Graham. (2009). The Worker/Wrapper Transformatimurnal of Functional
Programming 19(2), 227-251.

Hoare, Tony. (1972). Proof of Correctness of Data Representafiates Informatical(4), 271-281.

Hughes, John. (1986). A Novel Representation of Lists and its Application to the Function Reverse.
Information Processing Letter22(3).

Hutton, Graham. (1999). A Tutorial on the Universality and Expressiveness of Bolarnal of
Functional Programming9(4), 355-372.

Hutton, Graham. (2007 Programming in HaskellCambridge University Press.

Hutton, Graham, & Wright, Joel. (2006). Calculating an Exceptional Machine. Loidl, Hans-
Wolfgang (ed),Trends in Functional Programming volume 3ntellect. Selected papers from
the Fifth Symposium on Trends in Functional Programming, Munich, November 2004.

Jaskelioff, Mauro. (2009). Modular Monad TransformerBages 64—79 of: Proceedings of the
European Symposium on ProgrammidNCS, vol. 5502. Springer.

Johann, Patricia, & Ghani, Neil. (2008). Foundations for Structured Programming with GADTSs.
Pages 297-308 of: Proceedings of the 35th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming LanguagesACM Press.

Liang, Sheng, Hudak, Paul, & Jones, Mark. (1995). Monad Transformers and Modular Interpreters.
Pages 333-343 of: Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming LanguageACM Press.

Malcolm, Grant. (1990). Algebraic Data Types and Program TransformaSoience of Computer
Programming 14(2-3), 255-280.

Meijer, Erik, Fokkinga, Maarten, & Paterson, Ross. (1991). Functional Programming with Bananas,
Lenses, Envelopes and Barbed Wire. Hughes, John Rrdieedings of the Conference on
Functional Programming and Computer ArchitectuteNCS, no. 523. Springer-Verlag.

Peyton Jones, Simon. (2003 askell 98 Language and Libraries: The Revised RepBembridge
University Press. Also available on the web frams . haskell.org/definition.

Peyton Jones, Simon, & Launchbury, John. (1991). Unboxed Values as First Class Citizens in a
Non-strict Functional Languag®roceedings of the Conference on Functional Programming and
Computer ArchitectureCambridge, Massachussets: Springer-Verlag.

Peyton Jones, Simon, Vytiniotis, Dimitrios, Weirich, Stephanie, & Washburn, Geoffrey. (2006).
Simple Unification-Based Type Inference for GADTRages 50-61 of: Proceedings of the 11th
ACM SIGPLAN International Conference on Functional Programm#ygM Press.

24 G. Hutton, M. Jaskelioff and A. Gill

Peyton Jones, Simon, Vytiniotis, Dimitrios, Weirich, Stephanie, & Shields, Mark. (2007). Practical
Type Inference for Arbitrary-Rank Typegournal of Functional Programmind 7(1), 1-82.

Voigtlander, Janis. (2008). Asymptotic Improvement of Computations over Free MoRages
388-403 of: Proceedings of the 9th International Conference on Mathematics of Program
Construction LNCS, vol. 5133. Marseille, France: Springer-Verlag.

