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Abstract ing of the equation: the structure should be well-founded and the

Coinductive data structures, such as streams or infinite lists, haveCOmPutation should eventually yield a completed element. On the

many applications in functional programming and type theory, and other hand, the corecursive case requires that_the unfold_ing contin-
are naturally defined using recursive equations. But how do we en- U0USIy produces new parts of the structure without getting stuck.
sure that such equations make sense, i.e. that they actually gen-Th's property is known aproductivity Intensive research is dedi-

erate a productive infinite object? A standard means to achieve Cated t0 the identification of criteria to ensure productivity.
productivity is to use Banach’s fixed-point theorem, which guar- The basic principle of corecursive programming comes from the

antees the unique existence of solutions to recursive equations orfategorical characterization of coinductive types as final coalge-
metric spaces under certain conditions. Functions satisfying these ras _Of fu_nctors (J_acobs_ and Rutten 1.9.97b)' We can define a unique
conditions are called contractions. In this article, we give a new 'UNCtion into a coinductive type by giving a coalgebra on the do-
characterization of contractions on streams in the form of a sound Main- This is asimple and theoretically transparent technique, butit
and complete representation theorem, and generalize this result t!0€S N0t apply directly to most cases of interest and forces the pro-

a wide class of non-well-founded structures. first to infinite binary 9r@Mmers to rewrite their code, often requiring complex interme-
trees, then to final coalgebras of container functors y diate data structures (Rutten 2003; Endrullis et al. 2010; Capretta

These results have important potential applications in functional 2010, 2011).

programming, where coinduction and corecursion are successfully Adsllggtly morde %%rgm|§S|vi.mhethoddalllows quanonﬁ thatl are
deployed to model continuous reactive systems, dynamic interac-duardedCoquand 1993), in which we admit recursive calls as long

tivity, signal processing, and other tasks that require flexible non- &S they occur under a constructor that ensures that part of the struc-

well-founded data. Our representation theorems provide a defini- {Ur€ is generated before iterating the equation. This methodology

tion paradigm to compactly compute with such data and easily rea- 'S implemented in type-theoretiq systems such as Qoq Q@HD
son gbout ?hem. pactly P y 1994). It is based on the syntactic form of the recursive definition,

and applies to definitions whose productivity can be checked eas-
. ily by a one-step algorithm. Recent work on definition schemes
1. Introduction (Lochbihler and Hlzl 2014), extends the range of functions that
Coinductive types, data structures with potentially infinite unfold- are permissible in a proof assistant by exploiting the double nature
ing, are becoming a standard feature of functional programming of lazy lists as both producers and consumers of data; this work
languages and type theoretic systems. The most well-studied exam-also provides associated reasoning principles.

ple is streams, infinite sequences of elements. There is a consider- A more comprehensive and mathematically elegant approach
able literature devoted to streams, covering their theoretical founda-appeals to topological and metric concepts. In particular, we can
tion and programming techniques (Gibbons and Hutton 2005; Rut- associate to a coinductive type a notion of distance between its
ten 2005; Hinze 2008a,b). In recent years, research has eaplore elements and exploit standard mathematical theorems that ensure
more varied kinds of non-well-founded structures (Mendler et al. the existence of solutions. The chief among these is Banach’s
1986; Coquand 1993), including infinite trees, interactive processestheorem, which states that every contractive function on a complete
and games, and, in logical systems, reflexive modalities (Caprettametric space has a unique fixed point.

2007; Qrstea et al. 2011) and infinitary proof rules. Two recent Our interest focuses on the application of Banach’s theorem to
books give an overview of the area (Sangiorgi 2012a,b). the particular setting of non-well-founded data types. The metric

A crucial issue in programming and reasoning with coinductive structure, introduced for infinite trees by Arnold and Nivat (1980),
types is the convergence of recursive equations. Given a reeursiv uses a notion of distance that measures the similarities between
equation that specifies an element of a coinductive type in terms elements: two elements are near if they have a common initial
of itself, under what conditions is the existence of a unique solu- segment. It is easy to verify that the types then become complete
tion certain? In the dual case of recursive definitions over inductive metric spaces. A function is contractive if it always decreases the
types, we are interested in the eventual termination of the unfold- distance of its arguments by a factor smaller than one.

The main original contribution of our work is a new represen-
tation theorem: contractive functions are in one-to-one correspon-
dence with elements of an appropriate inductive type. We initially
focus on streams, in which setting we provide a simple and effective
representation of contractions. We prove that it is sound and com-
plete: it exactly captures the notion of contractive function. We then
extend the characterization to richer data structures, first to binary
trees and then to final coalgebras of container functors. Although
the representation for streams is straightforward, its abstraction to

[Copyright notice will appear here once 'preprint’ optiarémoved.]
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general final coalgebras is far from obvious. We show that most of According to this definition, every stream: Stream A has the
the conceptual framework that we developed for streams still ap- shaper < zs, wherex is an element of the parameter tydeand
plies. A complex non-well-founded object can be seen as a streamzs is another stream of the same type. Whereas in lists we have a
of slices each adding all the structure needed at a certain depth, anconstructor for the empty list, in streams we do not, and therefore
idea by Ghani et al. (2006, 2009a). In full generality this requires every stream must continue forever. If we add such a constructor
the slices to have a type dependent on the previous section of theto the codata definition, we obtalazy lists which comprise both
structure. Our main result provides a sound and complete represenf{inite and infinite sequences.
tation of contractions on a wide class of final coalgebras. ] ]
3.1 Recursive Equations

. Streams are naturally defined using recursive equations. For exam-

2. Metric Spaces and Banach’s theorem ple, the constant streammes = 1 < 1 < 1 < --- can be defined

Banach’s theorem was originally discovered as a useful tool to &S @ single one followed by the stream itself, by means of the fol-
prove the unique existence of solutions to differential equations 10Wing recursive equation:

(Banach 1922). The theorem appliesdomplete metric spaces ones : Stream N

which are given by a paifX,d) of a setX and a real-valued ones = 1 < ones

function d that measures the distance between two points of the

set X. Completeness in this context expresses that every Cauchy!n tUrn. the stream of natural numbersts = 0 < 1 42 < -

sequence converges to a point, where a sequence is Cauchy if th&an e defined by starting with the value zero, and then mapping
distance between points becomes arbitrarily close. the successor functiofs-1) over each element of the stream itself

A contractionis a function from the seX to itself that shrinks ~ © Produce the remaining stream of values:

the distances by a factor smaller than 1 (called the Lipschitz con- nats : Stream N

stant). Banach'’s theorem states that every contraction has a unique nats = 0 < map (+1) nats

fixed point. Its proof is constructive: we can begin with any point

and iterate the function, obtaining a Cauchy sequence that con- map : (A — B) — Stream A — Stream B
verges to the fixed point. Traditionally, the choiceXfis a space map f (z < zs) = fz < map fxs

of analytic functions and the contraction is given by a differential
equation. The fixed point is the unique solution to the equation.
Banach’s theorem has also proved very useful in theoretical
computer science, specifically in domain theory. It is used to give
the semantics of recursive types (MacQueen et al. 1984) and the
solution of recursive equations on them (Gianantonio and Miculan loop : Stream A
2003, 2004). It has previously been applied to streams and infinite loop = tail loop
trees (Buchholz 2005), with important results in the semantics
of reactive programs (Krishnaswami and Benton 2011). In these
applications, X is usually a semantic domain, often a space of
functions denoted by programs. The distance then measures the
information separation between data structures. Banach'’s theorem ones : Stream N
provides a method to ensure the convergence of iterative programs ones =1 < tail ones
and recurrence relations. For an introduction, see Section 6 of g gisg invalid, because it produces a single one and then loops.
Smyth (1992). An alternative approach consists in using a family However, not all uses ofail in definitions are problematic. For
of converging equivalence relations (Matthews 1999). example, the strearanes can be defined as a singlefollowed

_ Our work in this article follows this line of application to in-  py the result of interleaving alternative elements from the stream
finite data structures. The spadgis a type of non-well-founded  g5nq its tail:

elements. The distanceéis a measure of the difference between
two infinite objects, inversely dependent on the size of their com-
mon finite initial segment.

Given the central position of contractive functions in recursive
programming with coinductive data, it is important to have a sim-
ple characterization of the class of contractions. A straightforward
definition imposes the contractivity predicate on a generic function, However, if we swapped the order of the argumeniaterleave in
but a direct representation as a data type is desirable. We provide ahe above definition fosnes, the definition would again become in-
concrete characterization of contractions in terms of their computa- valid. This brings us to the following fundamental question: when
tional structure, leading to effective versions of Banach’s theorem does a recursive stream equation actually define a stream? In the
that can be deployed in concrete programming and reasoning prac-next few sections we introduce the technical machinery that under-
tice. lies our particular approach to answering this question.

The original contribution of our work is a sound and complete ) )
representation theorem for contractive functions on streams and on3-2  Fixed Points
final coalgebras of containers. In the previous section we reviewed the idea of streams and stream

equations. In this section we consider what these notions mean
from a more formal perspective, in terms of solutions of equations

(The definition ofmap is itself recursive: it applieg to the first

element of the stream and recursively calls itself on the tail.)
Unfortunately, not all recursive stream equations make sense as

definitions of streams. For example, the following is well-typed,

but does not actually define a stream because unfolding the defini-
tion loops forever without ever producing any values.
Similarly, attempting to redefine

ones : Stream N
ones = 1 < interleave ones (tail ones)

interleave : Stream A — Stream A — Stream A
interleave (x < xs)ys = = < interleaveys xs

3. Contractions on Streams and fixed points of functions.
In this section we introduce contractions for the particular case of ~ First of all, recall that inductive types are defined as Itheest
streams of values over a given tyde solution of some equation. For example, the typeof natural
numbers can be defined as the least Xefor which there is a
codata Stream A = {head : A} < {tail : Stream A} bijection X = 1 + X, wherel is a singleton set with element
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and + is disjoint union of sets with injectionsl andinr. The
right-to-left component of the bijectiory; : 1 + N — N, gives
the constructors foN by definingzero = f (inl *) andsuccn =
f (inrn). The left-to-right component : N — 1 + N gives a form
of case analysis, mappingro to inl * andsuccn to inr n.

Dually, coinductive types are defined as teatestsolution

of some equation. In this case the solutions considered are thos

satisfying the coinduction principle, which states that bisimilar ob-
jects are equal: Intuitively, when two entities are indistinguishable

by the structure of the equation, they must be equal. For example,

the equationX = 1 4+ X also has a greatest solution, given by
the typeN> of natural numbers together with an infinite value
inf = succinf. (It is possible to construct larger solutions by
having many infinite values, but the principle of coinduction will

decree that they must all be equal.) In a similar manner, the coin-

ductive typeStream A of streams of typed can be defined as the
greatest seX for which there is a bijectioX = Ax X, wherex is
Cartesian product of sets with projectioias andsnd. The left-to-
right component of the bijectiory, : Stream A — A x Stream A,
gives rise to the destructors for streams by defirtiegd zs =
fst (f zs) andtailzs = snd (f xs). The right-to-left component
g : A x Stream A — Stream A gives rise to the constructor for
streams by defining < zs = g (z, zs).

wherem = max{n | s =, ys}, i.e. m is the length of the
longest prefix where the two streams coincide.

Checking that the metric space of streams is complete is a matter
of routine verification. The notion of contractivity for streams can
now be reformulated as follows (see also the notioncafisal
stream functiorby Hansen et al. (2006)):

Semma 1 (contractive functions) A functionf : Stream A —

Stream B is contractivaf and only ifxs =, ysimpliesf zs =, 1
f ys for all natural numbers: and streamsa:s andys of typeA.

Proof. Itis easy to see that this notion of contraction is equivalent to
the metric one. A Lipschitz constant f2 will always work. [

The above result states that a function on streams is contractive
if, when we appply it to two streams are equal for their finst
elements, the results give streams that are equal fot elements.

We denote the type of contractive functions between streams by
Stream A —. Stream B.

Theorem 1 (Banach’s theorem for streamsEvery contractive
f : Stream A —. Stream A has a unique fixed poirfix f.

In summary, the notion of contractivity provides a sufficient
condition for the (unique) existence of fixpoints, thus guarantee-

Just as types can be defined using equations, so too can valuesng that we obtain well-defined streams from recursive equations.

Consider a recursive equatiars = f xs that defines a stream
xs in terms of itself and some functioft Any stream that solves
this equation forrs is afixed pointof f. Hence, solving a stream
equation means finding a fixed point of a function on streams.
However, not all such functions have fixed points. For example,
map (+1) has no fixed point, which corresponds to the fact that
xs = map (+1) zs is not a valid definition for a stream. (Here
we're talking of streams df; in N*° there exists a fixed point.)
Moreover, some functions have many fixed points. For exam-
ple, the identity function has any stream as a fixed point, which
corresponds to the fact that the equatien= zs is also an invalid
definition for a stream. Note that there is no general notion of or-

Note, however, that contractivity is only a sufficient condition, as
not every function between streams with a unique fixpoint is con-
tractive. For example, if we define

f : StreamN — Stream N
fxs head (tailzs) < 1 <« zs

then the functionf has a unique fixed point, given by the constant
stream of ones, but is not contractive. In particular, in the case of
n = 0 contractivity requires thatiead (tail zs) = head (tail ys),
which is not always true. Notice that this depends on the particular
definition of distance that we adopted. With different metrics, we
could have different sets of contractions; it is in fact possible to de-

dering on streams, so it does not make sense to consider least ofine a distance that makes the above definition satisfy the conditions

greatest fixed points in this context.
What then makes a valid definition? Our approach is to only
consider functions on streams that havengquefixed point, de-

noted byfix f, which is adopted as the semantics of the correspond-

ing recursive equation. For example, the functlars. 1 < zs has

for application of Banach'’s theorem.

Itis natural to ask what contractivity actually means, i.e. what is
being expressed in its definition? More generally, we can ask what
kind of functions are contractive, i.e. can the class of contractive
functions be characterised in a precise manner? The next section

a unique fixed point given by the constant stream of ones, which answers this question by providing a sound and complete represen-

corresponds to the fact that the equatienrs = 1 < onesis a valid

definition for a stream. In conclusion, the question of when a recur-
sive stream equation actually defines a stream can now be rephrase

as follows: when does a functigfi: Stream A — Stream A have
a unique fixed poinfix f : Stream A?

3.3 Contractive Functions

tation theorem for contractive functions on streams.

4. Representation Theorem

Our main goal is to give a representation of the class of contractive
functions as a coinductive data type. In this section we achieve this
objective for functions on streams. In later sections we generalize
it to infinite binary trees and to a wide class of non-well-founded

Our approach to this question is based on an idea from topology: data structures.

contractive functions. The first step in defining contractions for

For our purposes, we need that the tyjzeeam A contains at

streams is to provide a measure of the distance between any twdeast one elemeniny ,. So we assume that itself is non-empty
streams. The distance between two streams is given by the inverseand has a distinguished element. This will allow us to build

of the exponential of the length of their longest common prefix.
More formally, we define a family of equivalence relaticas on
streams of the same type as follows:

=Y IS=pYSs
(@ 4 28) =nt1 (y < y3)

TS =0 YS

The distance function between two streams of the same type is then

_J o if s =ys
d(zs,ys) = { L otherwise

om

a stream consisting of repetitions @f. In our construction, it is
completely indifferent whatny , is, we just need to know that
there is some element Btream A.

Let us consider a contractive functioh : Stream A —.
Stream B. Looking at Lemma 1, we see that contractivity requires
that

implies  fxs=1 fys

Sincexs = ys is true for any two streamss and ys, this
condition reduces t&xs,ys. f rs =1 fys, i.e. the head of the
output should be the same regardless of the input.

Vrs,ys. xs=o ys
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Similarly, given two streams:s, ys such thatrzs =1 ys, i.e. 1998). In order to define this operator, we first introduce the notion
they coincide on the first element, calkit: A, thenf zs =5 f ys, of acoalgebra(Jacobs and Rutten 1997a) for generating trees:
so the second element of the output stream can only depemd on
This suggest the following representation: Coalg ABC = (C = B)x (€= A= C)
_ . . That is, a coalgebra for the tyfigen A B comprises two functions
codata Gen A 8 = Step {output : B; cont : A — Gen A B} that respectively turn a value of tyge into a value of typeB and
A generating tree¢t : Gen A B is a structure that represents a  a function of typeA — C'. We can think of an element ¢f as an
contraction that immediately outputs an elem@nitput¢), then automaton which produces a valueft then waits for an input in
reads an element of the input strearmand continues the compu- A before making a transition and changing its state.
tation using the generating tréeont ¢ ) on the tail of the input The unfold operator for producing trees is then defined as fol-
stream. This is very close to the representation of continuous func- lows:
tions by G_hani et al. (2009b): the_ differe_nce is that here the actions unfoldcen . CoalgABC —C — GenAB
of pro_ducm_g an output and re_adlng an input are strictly alternat_ed, unfoldgen (h,t) 2 = Step (hz, Az. unfoldgen (h, ) (t 2 z))
while in their version it is possible to read several elements at atime
without producing a result. The restriction is necessary to obtain a That is, given a coalgebréh : C — B,t : C — A — C)
contraction, rather than just a continuous function: only contrac- and aseedvaluez : C, the label of the resulting tree produced by

tions are guaranteed to have fixed points. theunfold is given by applying: to the seed;, and the branching
More precisely, we define a functigen that takes a generating  function is given by applying to the seed: and the branching
tree and produces a contraction as follows: valuez : A to obtain a new seed that is then used to produce the
gen . GenAB —s Stream A —. Stream B remaining levels of the tree in the same manner.
gent(x < xs) = outputt < gen(conttz)zxs

The validity of this definition, which requires that the resulting 5. Examples _ ]
function is contractive, is established by the following result: Combining the representation theorem with the usendéld pro-

. ) . ) vides a means of producing contractive functions on streams. In
Lemma 2. If ¢ is a generating tree thegen ¢ is contractive. particular, given a coalgebra and a seed value, we first apytyd
The proof of the lemma, and of the following theorem, are straight- t0 produce a generating tree, then apgiy to turn it into a con-
forward. They also follow from the general results for final coal- tractive function. We encapsulate this idea as follows:

gebras. Dually, every contractive function can be rt.apresented 8S @ generate : Coalg A BC — C — (Stream A —», Stream B)
generating tree by means of the following definition: generate (h, t) z = gen (unfold (h, t) z)

From the point of view of improving efficiency, however, it is
desirable to fuse the two functions in this definition together to give
a direct recursive definition fagenerate:

rep :  (Stream A —. Stream B) — Gen A B
repf = Step(head (fany,), Az.rep(tailo fo(z <)))

The first output will not depend on the input, so we obtain it by
applying f to an arbitrary stream ods, which we calbny 4. This
stream can be constructed for non-empty e.g. as a constant
stream. The continuation of the tree receives the head the Itis useful now to think of the seed valueas astatethat repre-
input and returns, recursively, the representation of the function on sents the input history of the resulting contractive function. In this
streams that: prependsappliesf, and takes the tail. The recursive  manner, the above definition expresses that the first value in the out-

generate : Coalg ABC — C — (Stream A — Stream B)
generate (h,t) z (x < xs) = hz < generate (h,t) (t zx) zs

call torep is valid because it is guarded by the construétesp; the put stream is given by applyinlg to the current state (as it cannot
application oftail is in this case not problematic, since it is under depend on the current or future input values, to ensure contractiv-
the recursive call. ity), and the remaining output values are given by applyitgthe

Using the two conversion functions, we can now formalize current state and the first input valueio obtain a new state that is
the idea that contractions and generating trees are in one-to-onethen used to process the tad of the input stream in the same way.
correspondence, i.e. every contraction can be uniquely représente  Note that one can work with coalgebras instead of generating
by a generating tree, and vice versa. trees without loss of generality, because generating trees are a

Theorem 2 (representation theorem)rhe functiongen and rep particular instance of a coalgebra:

form an isomorphisngen A B = Stream A —. Stream B. treeAsCoalg : Coalg A B (Gen A B)

The representation theorem states that instead of defining a treeAsCoalg = (output, cont)

function and checking that it is a contraction, we can write a We encapsulate the idea of defining a stream as the unique

generating tree. fixed point of a contractive function produced using the function
The typegen A B is the same used by Altenkirch (2001) to generate by means of a new fixed point operatdix(is the fixed
represent functions on lists. Specifically, we have fwtA B = point operator given by Theorem 1):

List A — B, thus obtaining another representation of contractions -
by list functions. The intuition is that thén + 1)st entry of the c;!X 'hc‘zalgffc —C t_> ?Ltrfam A
output is calculated from the list of the firstentries of the input. cfix (h, 1) z = fix (generate (h, ) 2)

How easy is it to build a generating tree? In order to answer When we define a stream usinfix, we can choose an appropriate
this question, we note that generating trees are a coinductively state type to represent the history of previous values in the stream,
defined data type and therefore can naturally be understood byand then define a suitable starting value and coalgebra for this type.

means of coalgebras. The type of generating tt@esA B is Ideally, the state should be compact in terms of space, and the
(the carrier of) the final coalgebra for the funct6rC = B x coalgebra should be efficient in terms of time.

(A — (). This means that it comes equipped with a canonical Note that we have a choice of how to access previous outputs
means of producing generating trees, in the form otiafold (or of the function. The notion of contraction, and tien type se-

anamorphis operator (Meijer et al. 1991; Gibbons and Jones mantics, allows direct access to the previous element of the output.
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Alternatively, we can use the state to store the information about (h)|, t);) and compose it with the functiok. (2 * z, 3 * x):
the present output required for the next iteration. o

For example, we can define the stream of natural numbers in E"amm{”g '_(IE’ NJ, [NJ) = N
two ways, both using a natural number as state, which represents hamming == 1|
the next output value, with starting value zero, and a coalgebra
(Pnats, tnats). The first updates the state by replacing it with the
successor of the present output value; the second updates it by
incrementing it and does not use the present output value at all:

thamming * (N, [N], [N]) —-N— (N, [N], [ND
thammingsw = tH S (2 * l',3 * .’L')

hamming = cfix (hhamming; thamming) (1, ], [])
nats : Stream N nats : Stream N The coalgebra for the merge operator has a triple as state, where
nats = cfix (hnats, tnats) 0 nats = cfix (hnats, tnats) 0 the first component of the triple is the next item to be outputted,
where hnats : N — N where hpats : N — N and the other two are finite lists of the unused inputs so far:
hnats 2 = 2 hnats 2 = 2 hH :(N, [NL[ND—}N
thats : N — N — N thats : N — N — N hi(a,--) = a

thats 2L = + 1 thats 2 = 2+ 1

o t): (N, [N], [N]) — (N,N) = (N, [N], [N])
The two coalgebras correspond to the following simple gener- ¢ (_ zs, ys) (z,y) = h (zs + (2], ys ++ [y])

, ]
ating trees. (w,zs,y wys) ifzx<y
whereh (z = xs,y = ys) = (y,z = xs,ys) ifx>y
fromTree;, fromTreez : N — Gen NN ( ) (z,2s,ys) ifx=y
fromTree; n = Stepn (Az.fromTreeq (z + 1)) . ) i
fromTrees n = Stepn (Az.fromTree; (n + 1)) The coalgebra presentation makes it obvious that such a stream has

a memory leak, as the history increases whenever the next item

Similarly, the stream of Fibonacci numbers can be defined using on both lists differ and it does not decrease in the other case. This

a state that comprises the next two values, starting value (0,1), and'SSUe is also present in the original formulation, although not in an

a simple coalgebra on this state: explicit manner: in practice, howevgr, we need to keep the output
stream in memory and have two pointers to the different positions
fibs : Stream N of the next elements to be multiplied by 2 and 3.
fibs = cfix (hfibs, tfibs) (0, 1 : H
where h(fibs (N, I)NS _,)N 6. Contractions on Final Coalgebras
hfibs (20, 21) = 20 In the previous sections we defined a representation for contractive
tibs : (N,N) - N — (N,N) functions on streams and proved that it is a complete characteriza-
thibs (20, 21) ¢ = (21,21 + @) tion. The facility to define a contraction by a simple coinductive

object enhances the practicality of Banach’s fixed point theorem to
Note that we used the valug the present output element, to update define streams. The theorem says that every contraction on a com-
the state, rather thafy. The two values are always identical, so the plete metric space has a unique fixed point. It can be applied in a
two versions are equivalent. A difference in the two approaches programming language context by turning a data structure, specifi-
arises if we want to have a more compact state space that does notally streams, into a metric space by associating a distance between
necessarily store all the information about the output. In that case, elements that measures how much they differ. A contraction is a
we may decide to use the present output value to generate the newunction that shrinks the distances by a factor smaller than 1. Ba-

state, but we are free to lose information. nach’s theorem guarantees that we can define a total program by
As a more complex example, we consider the sequence of Ham-specifying a contraction.
ming numbers (Dijkstra 1976), natural numbers of the fafgi5*, Now we extend these results to richer (dependent) types, pro-

with 4, j, k € N, i.e. natural numbers with no prime factors other viding techniques to construct fixed points on coinductive types

than 2, 3, and 5. The sequence consists of Hamming numbers, indefined bycontainersa general form of data constructors. We char-

increasing order, without repetitions. o acterize the contractive functions between final coalgebras of con-
For simplicity, we will only consider numbers of the forzt3”’. tainer functors, using ideas about the representation of continuous

The sequenceamming begins with 1, and the rest of the values functions from Ghani et al. (2006, 2009a,b).

can be obtained by recursively merging in increasing order the A final coalgebra is the greatest fixed point of a funcior:

Hamming sequences obtained by multiplying the values in the Set — Set satisfying the bisimulation principle (bisimilar objects

sequence by two and three respectively: are equal). IntuitivelyF" specifies a collection of forms to build el-
ements and the final coalgebrd’, is the set of elements obtained
hamming = 1 < (map (2%) hamming || map (3) hamming) by iterating these forms in a potentially infinite structure.

We use the notatiofv F, out, ) for it, whereout, : vF —
Given two increasing sequences without duplicates, the opefator £ (vF) is the actual coalgebra. Intuitively, it unpacks the top struc-

constructs an increasing sequence without duplicates: ture of an element, exposing its overall form and subobjects. Its
defining property is that, for every other coalgelfra X — F X
. there exists auniqugy : X — v F that commutes with the coalge-
(I} : Stream A — Stream A — Stream A ) brasout, andf: out,,c{gzﬁf = (F ¢5)of. Intype theory, coinductive
< (zs|l(yays) ifz<y types are often defined by constructors, similarly to inductive types.
(zaxs)|[(yays)=9q y<((@<azs)|[ys) fa>y So the final coalgebra is specified by giving its inverse algebra
z < (zs || ys) ifoz=y in, : F (vF) — vF. This is equivalent since, by Lambek’s lemma

(Lambek 1968), final coalgebras are always invertible. In more
In order to sehamming as the fixpoint of a contractive function, modern approaches (Abel et al. 2013; Abel and Pientka 2013), they
we note that one may define the operator using a coalgebra are presented bgopatternswhich are a syntactic equivalent of the
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components of the final coalgebra, and they are explicitly stratified Then two trees are equivalent at lewsf all their nodes with paths
into sized typesSee also Kurz et al. (2015) for a categorical account of length smaller tham are equal. That is:

of the construction of parametric coinductive types by stages. A still t1 = to ifand only if

different account (Atkey and McBride 2013), inspired by the recur- Vp : [B], (length p < n) — nodeAtpt1 = nodeAt pts

sion modality of Nakano (2000), usekck variablesto represent U ] )
coinductive elements as processes evolving in time. Then the definition of distance between trees is exactly the same as

The universal property of final coalgebras is the standard defi- the distance between streams and we get the same characterization
nition scheme for functions that produce coinductive objects. Our Of contractive functions as previously:
goal is to extend the range of acceptable definition schemes. Insteaq gyyma 3 (contractive functions) A function f : BTree A —
of looking for a coalgebra, a user should be able to write down a pTyee B is contractiveif and only ift; =, to implies ft1 =pi1
recursive equation and have it be accepted, provided that it satisfiesf t, for all natural numbers: and trees; andt. of typeBTree A.
some conditions. Inspired by the work on streams, we propose that

this condition is that the operator given by the recursive equation  In particular, the root element of the output has deptso it
has to be a contractive function. shouldn’t depend on the input at all. The function must therefore

In order to genera“ze the notion of Cc)r]tractionl we need to re- first of all print this root element. Then it can read the root element

strict the class of functors that can be used. Containers are functorsof the input and use it in the computation of the rest of the output.
whose constructors consist of a shape containing positions where ~ To make this observation into a recursive definition, we use a
the elements of the base type are inserted. We will see that mem-trick to view the children of a tree as a single double tree. The
bers of the final coalgebras of containers are, in a sense that wechildren of a tree of typeBTree A are given by two trees, but
will make precise, generalized dependently typed streams. There-they can also be viewed as a single tree with pairs of labels on
fore the representation of contractions on streams can be adaptedhe nodesBTree (A”). Imagine superimposing the two trees: they
once we take into account the way that the dependency of the ele-have the same overall shape with different labels on the nodes;
ment type varies along the sequence. We first look at a specific in- We can encode them into a tree with the same shape with coupled

stantiation, non-well-founded binary trees, in the next section. Then labels. So our contractive function, after producing the root of the
we give the full generalization to containers. output and reading the root of the input, can continue recursively

as a contractive function on trees of pairs.
We can encode the above intuition in the following representa-
tion, similar to the one we gave in Section 4 for streams:

7. Contractions on Binary Trees codata TGen AB =
Our first generalization step is to adapt the results on contractive Step {output : B;cont : A — TGen (A?) (B*)}
functions to richer data structures. We start by considering infinite. An element ofT Gen A B has the fornStep b f: the elemenb goes
binary trees with nodes labelled by elements of a type in the root of the output tree; the functighexpects the roat of
the input tree and returns a new contraction on trees of pairs that
codata BTree A = Node {get : A; left, right : BTree A} will be applied to the children of the input tree. Given such a code,

we unfold it as a function from trees to trees. To formulate this
Every element of this type, : BTree A, has the shape of a node computation, we use zipping/unzipping operations on trees, defined
with two children,t = Node x t; t2, wherez is an element of the in a straightforward recursive fashion.
parameter typel andt, t, are recursive subtrees |B1Tree. A.The zipTree : BTree A — BTree A — BTree (A2)
record functions extract the components of the tggt = =, . ] 2 >
leftt = ¢1, rightt = ¢,. Because there is no leaf constructor, unZipTree : BTree (A%) — (BTree A)
the trees are non-well-foundeti: andt,; must also have a node  These functions can be defined becaB3eee has a single con-
structure with two children each, and so on. In this manner, every structor and therefore all trees have the same structure. It would

path from the root will continue forever. not work with data types whose elements can have different shapes.
Our goal now is to precisely characterize the concept of contrac- However, we will see later that it is possible to define contractions
tive functions between two types of treé&Tree A andBTree B. for data types with different shapes, without the need of such zip-

Intuitively, a contraction computes a certain part of the output from ping and unzipping operations.

a strictly smaller part of the input. A node of the output tree at The interpretation of an element ®Gen A B as a function on
depthn should depend only on nodes of the input tree at depths trees is given by a computation operator:

less tha}m. We can imagine the trees as made of subsecliees genT : TGen A B — BTree A —. BTree B

each slice consisting of the node elements at the same depth. Then genT (Stepb f) (Nodea t, t2) = Node bus us

a function is contractive if it computes theh slice of the output
from the slices of the input up to tHe — 1)th.

We don't deviate much from the stream case: we view trees as WWhen elaborating an input trééode a ¢ ¢2, the contraction gen-
streams of slices. The difference is that the type of each slice is erates an output of forfiode b - -, without the need to look at the
different. In particular, a slice at depthis given by a&2™-tuple. input at all. The shape is the only possible shape, the node element

The definition of distance between trees is parallel to that be- b is dictated by the contraction. The computation of the output chil-
tween streams, with the only difference in the notion of the family dren may need information from the input. The labeletermines
of equivalence relations up to a certain depth. If we see lists of the contraction(f a) that is used for the continuation. The input
Booleans as paths inside trees, we can define a function extractingchildren are zipped together into a single t(e#pTreet, ¢2) that

where (u1,u2) = unZipTree (genT (f a) (zipTreet: t2))

the node in the position pointed by the path: is elaborated by the continuation contraction. This returns a tree of
pairs, that needs to be unzipped to obtain the output children.
nodeAt : [B] — BTree A — A Dually, every contractive function can be represented by a code
nodeAt nilt = get ¢ in TGen A B. The definition is again similar to that for streams,
nodeAt (true :: bs)t = nodeAt bs (leftt) except that we _need some zipping and unzipping, and the type of
nodeAt (false :: bs)t = nodeAt bs (right t) the representation function depends on the type parameters of the
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trees. (We use an arbitrary traeey 4, which could be a constant
tree with all labels occupied by a designated element.pf

repT 4 5 : (BTree A —. BTree B) — TGen AB
repT 4 5 [ = Step (get (f any o), Az.repT 42 p2 fo)
where f, : BTree (A?) —. BTree (B?)
fot =let (t1,t2) = unZipTreet
tB = f (NOde$t1 tg)
in zipTree (lefttp) (righttp)

The two conversion functions form an isomorphism which

shows that contractions on trees and generating codes are in one-
to-one correspondence, i.e. every contraction can be uniquely rep-

resented by a generating code, and vice versa.

Theorem 3 (representation theorem)The functionsgenT and
repT form an isomorphisnTGen A B = BTree A —. BTree B.

Example 1. Let us illustrate the use of fixpoints of contractions to

construct infinite binary trees. We build a tree of integers where the
children of a node are, respectively, the sum of its value with its left
neighbour and the difference of its value with the right neighbour.

When there are no neighbours (on leftmost and rightmost spines of

the tree ) we assume that value to be 0.

This example is interesting in this context because the children
are not generated simply by their parent, but also they depend on
the values of other elements at the same depth.

We can define a functiomnplslice that yields a new tree slice.
The tree generators work on input types that are structured tuples,
e.g.(A%)%. We use the notatioRow Type A 2 for such type:

PowType : Set — N — Set
PowType A0 = A
PowType A (n + 1) = (PowType An)?

Then we can easily define the one-step function
mnplslice : (n : N) — (PowType An) — (PowType A (n + 1))
which computes the sums/differences of adjacent elements, e.g.

mnplslice 2 ({(ao, a1), (az,as)) =
( ((ao, a0 — a1), (ao + a1, a1 — az)),
((a1 + a2,a2 — a3), (a2 + as,as)) )
The code of the contraction that we need to define our tree is then:
mpgen : (n : N) — (PowTypeZn) —
TGen (PowTypeZn) (PowTypeZn)
mpgennuv =
Step v (Aw. mpgen (n + 1) (mnplslice n w))

Remark 1. We can generalize the representation of contractive
functions by using any final coalgebra as codomain, in place of
BTree B. Let G be any functor for which the final coalgebra
v exists; now we want to characterize the contractions of type
BTree A — vG.

Leting : G(vG) — vG be the inverse of the final coalgebra
for G. The type of contractions is now defined by:

codata TGeng A = Step (G (A — TGeng (A%)))

isin G (A — TGeng (A?)). We often see functors as specifying
the shape of a data structure, with positions in the shape where
substructures are inserted. We will make this intuition formal when
we consider containers. We can viéivas providing the top shape

of the output invG, with the positions occupied by functions of
type A — TGeng (A?). After generating the top shape, without
reading any input, the contraction can read the labedf the input

tree and feed it to these functions, each of which produces a new
contraction that can run on the zipping of the children of the input
tree. Formally, this spells out the following computation operator.

genT, : TGeng A — BTree A - v G
genT (Stepg) (Nodeat: ta) =
inc (mapg (A\f.genT¢ (fa) (zipTreet1 t2)) g)

The way it works will be clearer if we instantiate to the previous
case of contractions that map trees to trees. In the special case
when the output i8Tree B, we haveG X = B x X2, ing =
Node. In a contraction code of forrtep g, the parametey has
type B x (A — TGeng (A?))?, so it will be a triple (b, f1, f2).

We unfold the definition @fenT ;.

genT (Step (b, f1, f2)) (Nodeat; t2) =
Nodeb (genT (f1a) (zipTreet: t2))
(genTs (f2a) (zipTreet: t2))

With respect to our previous definitionggnT, we see that now we
use two distinct functiong; and f, to produce the left and right
child of the output, whereas previously we had a single funcfion
that produced a tree of pairs that needed to be unzipped. Otherwise
the functions are equivalent. We do not give an inverse represen-
tation operator and theorem for this generalization. This requires
associating a metric space to the final coalgebi@. We see how

to do this wherG is a container functor in the next section.

A drawback of this evaluation function is that it is inefficient,
because of the zipping and unzipping of trees. We avoided the un-
zipping of the output in the second version, but we still need to zip
the input. We may think of applying some standard fusion tech-
nigues to resolve this problem. However, a more elegant solution
will come to light when we generalize the construction even fur-
ther to work on container functors. As the generalization of the
codomain type to any final coalgebra produced an optimization at
the output side of the computation, a similar generalization of the
domain will produce an optimization at the input side.

8. Contractions on Containers

Now we generalize the notion of contraction and the representation
theorem to a large class of non-well-founded structures. We want
to characterize contractive functions between final coalgebras of
general functors. To do this, we need to have a metric on such
coalgebras. As before, this can be done if we have a notion of depth
and a way of pointing at the parts of the data structure that lie at
a given depth. This is possible if the functor has a specific form,
which is the case for most commonly used final coalgebras.

A container (Abott et al. 2005), also calledependent poly-
nomial functor(Gambino and Hyland 2003) in the categorical
literature, is a pair(S, P) with S : Set, a set ofshapes and
P : S — Set, a family of positionsfor every shape. Every con-
tainer defines a functor:

(St P) : Set — Set
(S>P)X=%s:5.Ps—X

So an element ofS > P) X is a pair(s,zs) wheres : Sis a
shape and:s : Ps — X is a function assigning an element &f

Let us see how to interpret elements of this type as computableto every position in the shape The final coalgebra of a container,

functions. An element dfGeng A has the formStep g, whereg

v(S > P), is inhabited by trees with nodes decorated by shapes and
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with positions giving their branching type:

codata v(S > P) =
in, {shape : S;subs : P (shapet) — v(S> P)}

So every element of : v(S > P) is uniquely given by a shape,
shapet : S, and a family of subelementsybst : P (shapet) —
v(S > P).

We are interested in characterizing the contractive functions
between final coalgebras of containers{# P) and (T, Q) are
two containers, what are the contractions {i>P) — v(T>Q)?

We extend the intuition that we gained from streams and trees: a

contraction produces the output structure up to depby looking
only at the structure of the input at depths lower than

Ghani et al. (2009a) study the related question of characterizing
the continuous functions of this same type. Their technique is use-
ful for our purpose as well. They approximate the elements of the
final coalgebra by another containgt*, P?), whose shapes are it-

erations of the functor up to a fixed depth and whose positions are

a family of trees to be inserted in the pegs.

cut: v(S>P) =+ N—Ss: S (Pls > v(S> P))
cutt0 = (e, Ap. )
cutt(n+1) = let(s,7)=-cuttn
o = Ap.shape (7 p)
7/ = Ap.subs (7 p)
in(s;0,Xp,q). 7" pq)

Keeping only the hanger part of this splitting (the first component
of the pair) we get the truncation of a tree at lexel

truncate : v(S > P) — N — S*
truncatet = fst (cuttn)

Using this notion, two elements of S > P) are then defined to be
equivalent at leveh if their n-truncations are the same:

t1 =n t2 ifand onlyif truncatet; n = truncatetan

the holes where new shapes can be inserted. We call the elementds in the case of trees, the definition of distance.dis' > P)

of S* hangersand the elements @fP" s) pegs for some hanges.
Intuitively, a hanger is an incomplete structure, a well-founded ap-

proximation to a completed infinite tree. The pegs are those places
in the incomplete structure where subtrees need to be inserted to,

complete the tree.

Hangers and pegs are defined by induction-recursion (Dybjer
2000; Dybjer and Setzer 1999, 2003). This is a type definition
paradigm where we simultaneously define a well-founded type
and a recursive function on it. When constructing an element, we
can already use the function on its subterms. Induction-recursion

is available in the dependently-typed language Agda and can be

mimicked, for the small types that we consider, in other type-
theoretic systems by an inductive family.

S%:Set P%:S" - Set

o: 5" Ple=1

(;):Ms: 8% (P's — S) — S°
Pi(s;0)=%p: P's. P(op)

The simplest hanges, is a completely uninformative approx-
imation, a hook with one peg where the whole tree needs to be
added. Given a hangemwith pegsP’ s, we can extend it by plac-
ing a new shape at each peg. So we give a funetiorP? s — S,
which we think of as a newliceof the structure, specifying all the
data at the next level. The new hanger is denote(shy) and its
pegs are the disjoint union of the positions of all the new shapes.

We can approximate(S > P) andv(T > Q) by stages using
(S%, P%) and (T%, Q"). A contraction is a function for which the
approximation of the output at a certain stage only depends on
approximations of the input at lower stages. We can in fact summon
again the intuition that we had for streams. Think of an element of
v(S > P) as a stream of slices. Using stream notation, we can
express it as

e Jdogg<doyp dog Q-

where 5o : PPe — S
o1:PY(e;00) = S
Uz:Ph(O;Uo;U1)—>S.

Most of our previous definitions and results are still valid, once

is the same as the distance between streams and we get the same
characterization of contractive functions.

Lemma 4 (contractive functions) A functionf : v(S > P) —
(T > Q) is contractivef and only ift; =, t2 impliesft1 =n+1
f t2 for all natural numbers: and treest; and¢z in v(S > P).

Example 2. One of the most interesting applications of contrac-
tions on final coalgebras of containers is to realize the notion of
higher-order recursion. For example, we may want to realize para-
metric fixed points on streams:

pfix : (Stream (A x B) —. Stream B)
— (Stream A —. Stream B)
pfix f as = f (zip as (pfix f as))

In Section 4 we showed that contractive functions on streams can
be represented by codes, so the parametric fixed point operator
defined above can be lifted to the codes:

pfix_code : Gen (A x B) B — Gen A B
pfix_code (Stepb g) = Step b (Aa.pfix_code (g {(a, b)))

Furthermore,Gen A B is a final coalgebra of a container with
shapesB and positions\b. A. Althoughpfix_code is not itself a
contraction, it is clear from its definition that it generates a slice
for every slice of the input, so it preserves distances. This indicates
that, when composed with contractions, it will yield a contraction.

The representation theorem for contractions on final coalgebras
of containers is complicated slightly by the fact that each slice of
the structure has a different complex type. Contractions need to be
definedlocally, that is, given two hangers for the input and output,

s : S andt : T*, we define the type of contractions from the
extensions ok to the extension of. In other words: assume that
we have already readin input and we have producedn output,

we define how the rest of the input is mapped to an extension of
the output. We use the notatidiGen s ¢ for the set of codes for
contractions from th@ointsof s to the points oft. By points ofs

we mean elements of(S > P) approximated by.

A contraction must first of all produce part of the output without
reading any input. The part of the output produced #®iee that

we make the adjustments necessitated by the more complex typeputs a new shape in every peg: Q"t — T. Then the contraction

structure of the stream entries.
First of all, we can modify the family of equivalences up to
depthn and use them to define the metric on the final coalgebra.

reads a slice of the input : P*s — S and, according to
this value, specifies how to continue the computation by giving
a new contraction between the refineme@&en (s ; o) (¢ ; 7).

We just give a function that truncates an element of the coalgebra Since both input and output are potentially infinite, the type of
to a hanger by cutting it at a given depth. We can cut a tree at level codes for contractions is also a final coalgebra defined by the
n into an upper part, given by a hanger, and a lower part, given by following coinductive family, which generalizes the representations
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for streams in Section 4 and for trees in Section 7: we have an element d&xt (¢ ; 7) and we can instantiate it to the
right pegr and position; in the output tree.

In the other direction, we seek a representation operator that as-
sociates a code to every contractive function between the extensions
of two hangers. As in previous incarnations, we need an arbitrary

codata
CGen : §% — T% — Set
CGenst = Step{ output: Q*t — T}

cont : Ilo : P¥s — 5. elementany, : Exts. This will certainly exist ifS is non-empty,
CGen (s;0) (t;output) }. that is, the input container has at least one shape. We assume this is
Finally, the set of all contractions from(S > P) to v(T 1> Q) is the case in the following. The representation operator is defined as
represented b Gen e . follows:
We have seen earlier, in defining the functiart, that an ele- repCst: (Exts —. Extt) — CGenst
ment ofv(S > P) can be split into a hanger: S% and a family repCst ¢ =
of substructures to be inserted in each peg.dfet us call the set StepT (Ao.repC(s; o) (t;7) (Ah. A(r,q).subs (¢ vr)q))
of all such possible families thextensiorof s: Exts = Pfs — where 7 = shapeo (¢any,)
v(S > P). This type is isomorphic to the subtypemfS > P) of v = Ap.in, (0 p) (A\g-h (p, q))

those elements that are approximatedby

We can widen the notion of contraction to functions between
extensions. We writ&xt s —. Extt to denote a contraction on
the possible evolution of the input and output hangees)dt. The
definition is similar to that of contraction at the top level, except
that we count depth from the next level below the hangers.

Remember that the functiahis assumed to be contractive, which
means that the first slice it produces (which is the only part of
(¢ any,) that we need) does not actually depend on the argument
any,. The code for the contraction prescribes that the first slice of
the output,r, consists of the shapes of the resuligobn any, (or
indeed on any other element Bkt s).

The continuation must be a function that maps the next slice

genCst: CGenst — Exts —c Extt of the inputo : P*s — S to the code for the contraction on the
genCst (Stepr f)g = Ar: Q¢ extensions, with typ€Gen (s ; o) (¢ ; 7). Here we are allowed to
in, (77)(A\g: Q(77).genC(s;0)(t;7)(fo) use recursively the operategpC, because we are guarded by
(Mp,u).subs (gp)u) (r,q)) We must give it a contraction betweént (s ; o) andExt (¢ ; 7).
where o =shapeog So leth be an extension dfs ; o), that is:
The above definition is rather involved, but the intuitive idea is h:Ext(s;o)=P'(s;0) = v(S> P)
similar to the special case of streams. A generating code has the =(Zp: P's.P(op)) = v(S> P)

form (Step 7 f), wherer is the slice that has to be sent to output ] ) ] i
immediately andf is the interaction function specifying how to  Firstwe use it to make an extensionsdfy simply gluingo on top:

continue the computation according to the value of the next input g:Exts=Pls - u(S>P)

slice. Their respective types are g=\p: Pis.in, (op) (Aq: P(op).hip,q))
T:Qt—T  f:lo:Ps— S.CGen(s;o)(t;r) We can now apply the original contraction to this extension:

So f reads a new input slice and decrees accordingly how to (¢g) : Extt = Qh t—u(T>Q)

continue the computation between the two extended hangers. o i : _
The contractive function associated to this code maps the exten-We can split it into the first slice and the rest. Note that the first

sion of s to the extension of. The next argument ig : Exts = sliceshape o (¢ g) must be equal ta becausef is a contraction.

Pts v(S > P). We need to produce an elementBrt ¢, that This is essential to check that the following type-checks correctly.

is, Qhut — v(T > Q). The next argument to our function is then A(r, q).subs (pgr)q: Ext(t;7)

r: @Q*t and we have to produce an elementl’ > Q). We use =(Zr:Qt.Q(r7)) = (T Q)

the canonical constructan, for coinductive types: The top shape

is given by the output slice in the appropriate positiqhs;). The This concludes the definition of the contraction between the exten-
substructures must map every positipn Q (7 ) in this shape to  Sions, therefore we can safely appépC to it. _
an element of/(T t> Q). Intuitively, we have produced a slice As in the case of streams and binary trees, the generation and

in output and we can read a new slieérom input. We must now  epresentation operators are mutually inverse functions. The iso-
produce the part of the tree below the har(gev—) We are allowed mqrphlsm IS UP to eXtepSIOnallty for functlons_and bISImIIa_rlty for

to use the next slice of the input to do this. The funcijagenerates coinductive objects. This means that we consider contractive func-
the whole continuation of the input. We extract just the first slice tions and functional arguments of recursive data equal if they are

by taking only its top shapes: equal pointwise. Elements of final coalgebras are considered equal
b if'they are bisimilar. This_ allows us to use the method of proof_by

o =shapeog: P's =8 bisimulation: when proving that two structures are equal, we just
The function f applied to this slice produces a new code for a Nave to show that the top shapes are equal and we can invoke the
contraction between the extensions(sf: o) and (¢ ; 7). We can ~ Statement recursively on the substructures.
recursively apply the generating function to this code: Theorem 4 (representation theorem)he functiongenC s ¢ and

genC(s;0) (t; 7) (fo) : Ext(s; o) = Ext(t; 7) repC st form an isomorphism@Gen st = Ext s —. Extt.
This function takes an element Bkt (s ; o), whose structure can At the top level, this gives us a representation isomorphism for
be seen by unfolding definitions as follows: contractions on final coalgebras:
Ext(s;0) = P’ (s;0) = v(S> P) CGen e 0 2 (S>> P) = v(T>Q)

_ . ph
= (Ep: P's. P(op)) = v(S>P) Proof. In one direction, given a contractiaf : Exts —. Extt,
We already have an argumenin Ext s, so we can just lop off the we prove thaigenC st (repCst¢)) = ¢. Let us callg’ the left-
first slice:A(p, u).subs (g p) u : Ext (s ; o). Putting it all together, hand side of this equality for short. We want to show that these
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two functions are extensionally equal. To this end, weyleExt s
andr : Q%t, and aim to prove thap’ gr = ¢gr. These two
terms are in the inductive type(T > @), so their equality can be
demonstrated by bisimulation: we prove that the top shape is the

same and we invoke the statement of the theorem recursively to

show that the substructures are also equal.

The top shapes are identicstiape (¢’ g ) = shape (¢ g 7). In
fact, by constructiorshape (¢’ g r) = shape (¢ any, r). Continu-
ity of ¢ guarantees that this result does not depend on the argumen
any,, so replacing it withy gives the same shape, as desired.

The substructures are equalbs (¢’ gr) = subs (¢ gr). The
coinduction principle, which allows us to prove equalities by bisim-
ulation, tells us that we can recursively use the statement of the
theorem to prove this. That is, we are allowed to assume that
genC(s; o) (t;7) andrepC (s; o) (t; 7) are inverse of each other
for appropriates andr. We call this thecoinductive hypothesis

By definition ofrepC andgenC we have that:

subs (¢’ gr) = Av.genC(s; o) (t;7) (fo)e(r,q)
where ¢ = shapeog
T = shapeo (¢any,)
f =Xo.repC(s;o) (t;T)
¥ = Ah. \(r,q).subs (fg'r)
g' = Ap.in, (op) (A\g- h (p, q)
e = Xp,u).subs (gp)u

We can now apply the coinduction hypothesis to obtain

subs (¢’ g7)

= Av.genC(s; o) (t;7)(repC(s;0) (t57)¢)e(r,q)

= \v.e(r,q)

=subs(¢g'r)q
We can conclude by noting that = g since

o p = shape (g p)
e(p,q) =subs(gp)q

This completes the proof of one direction of the isomorphism. The
opposite direction can be checked similarly, by just unfolding def-

initions and using extensional equality for functions and bisimula-
tion for coinductive objects. O

<

q
)

Remark 2. As for binary trees, we can generalize the construction
and use any final coalgebra as codomain. For any functomwe
define a family of contractions from every hangerS"® to vG:

codata (¥ G): S% — Set
Step: G (Ilo: P's — S.(s;0) » G) = (s » G)

9. Instantiations for Streams and Trees
We show how the abstract representation of contractions on final

coalgebras instantiates to the cases of streams and binary treeg
What we obtain is equivalent to the ad hoc versions that we defined

in Sections 4 and 7.
Streams can be represented as the final coalgebra of a containe

Stream A 2 v(A > A\z.1)
In this case the type of hanget$ is just (List A), and every hanger

I

Since the argumentss andbs occur only in the type specification,
we have that each element of this family is isomorphic and essen-
tially the same a&en A B.

The final coalgebra representation of infinite binary trees is

BTree A~ v(A > A\z.2)

The corresponding hangers are complete binary trees of fixed depth

with elements of4 in the internal nodes. Let us denote sy the

depth of such a hanger : A". The pegs are the leaves of the
tree s, therefore the hanger will have 2!/ pegs. We see this by
simplifying the definitions in this particular case:

P A% 5 Set
Ple=1
Pi(s;0)=3p: Pis.2

A" Set
o: Al
() : s As A2y a

where we directly used the observation tidts is a type with2!*!

elements to definel? independently ofP® (P%s — A = 42"y,
The type of codes for contractions simplifies to

codata
CGen : A" — B% — Set
CGenst

= Step { output : BQM;
cont : To : A2 .CGen (s;0) (t;output) }

From this simplification, it is clear thalGen s ¢ is isomorphic to
TGen A2 B2,

10. Summary and Conclusion

In this article, we developed sound and complete representations
of contractive functions on streams, non-well-founded binary trees,
and final coalgebras of containers. In all three cases, a contraction
is represented by a code. Such a code is itself an element of a
coinductive type, and comprises two fields.

The first component, callesuitput, gives the portion of the re-
sult that must be produced immediately, before reading any input.
In the case of streams, it consists of the next element of the se-
quence; in the case of binary trees, it consists of the nodes on the
next depth level; in the case of final coalgebras, it consists of the
nextsliceof the structure.

The second component, callesht, specifies how the rest of the
coinductive structure will be generated according to the value read
in input. This input token is again the next element of the sequence
for streams, a tuple of the nodes of the next depth level for trees,
and the next slice of data for final coalgebras. The continuation is a
unction mapping this value to a recursive code.

We gave generation operators that unpack codes into contractive
functions and representation mappings that synthesize a code from
a contraction. We proved that the generation and representation
operators are mutual inverses, showing that the representation is
both sound and complete.

Our development yields a precise characterization of contractive

always has just one peg. Extension simply consists in attaching agnctions on a wide class of coinductive data structures. This result

new element at the end of a list. After simplification (the function
typel — A isisomorphic tad), the type of codes for contractions
becomes

codata
CGen : List A — List B — Set
CGenasbs
= Step{ output : B;
cont : Ila : A.CGen (as ; a) (bs ; output) }

10

provides the theoretical framework to deploy Banach’s fixed point
theorem to prove that recursive definitions of non-well-founded
objects are guaranteed to produce a unigque solution. We illustrated
the application of our results by means of some simple examples.
We expect to deploy them fruitfully on more complex and realistic
applications in the future. In particular, they have the potential
to facilitate the definition of highly recursive objects and to offer
powerful proof methods for reasoning about them.
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