
Contractive Functions on Infinite Data Structures

Venanzio Capretta Graham Hutton
Functional Programming Lab
University of Nottingham, UK

{venanzio.capretta,graham.hutton}@nottingham.ac.uk

Mauro Jaskelioff
CIFASIS–CONICET, Argentina

Universidad Nacional de Rosario, Argentina
mauro@fceia.unr.edu.ar

Abstract
Coinductive data structures, such as streams or infinite lists, have
many applications in functional programming and type theory, and
are naturally defined using recursive equations. But how do we en-
sure that such equations make sense, i.e. that they actually gen-
erate a productive infinite object? A standard means to achieve
productivity is to use Banach’s fixed-point theorem, which guar-
antees the unique existence of solutions to recursive equations on
metric spaces under certain conditions. Functions satisfying these
conditions are called contractions. In this article, we give a new
characterization of contractions on streams in the form of a sound
and complete representation theorem, and generalize this result to
a wide class of non-well-founded structures, first to infinite binary
trees, then to final coalgebras of container functors.

These results have important potential applications in functional
programming, where coinduction and corecursion are successfully
deployed to model continuous reactive systems, dynamic interac-
tivity, signal processing, and other tasks that require flexible non-
well-founded data. Our representation theorems provide a defini-
tion paradigm to compactly compute with such data and easily rea-
son about them.

1. Introduction
Coinductive types, data structures with potentially infinite unfold-
ing, are becoming a standard feature of functional programming
languages and type theoretic systems. The most well-studied exam-
ple is streams, infinite sequences of elements. There is a consider-
able literature devoted to streams, covering their theoretical founda-
tion and programming techniques (Gibbons and Hutton 2005; Rut-
ten 2005; Hinze 2008a,b). In recent years, research has explored
more varied kinds of non-well-founded structures (Mendler et al.
1986; Coquand 1993), including infinite trees, interactive processes
and games, and, in logical systems, reflexive modalities (Capretta
2007; Ĉırstea et al. 2011) and infinitary proof rules. Two recent
books give an overview of the area (Sangiorgi 2012a,b).

A crucial issue in programming and reasoning with coinductive
types is the convergence of recursive equations. Given a recursive
equation that specifies an element of a coinductive type in terms
of itself, under what conditions is the existence of a unique solu-
tion certain? In the dual case of recursive definitions over inductive
types, we are interested in the eventual termination of the unfold-

[Copyright notice will appear here once ’preprint’ option is removed.]

ing of the equation: the structure should be well-founded and the
computation should eventually yield a completed element. On the
other hand, the corecursive case requires that the unfolding contin-
uously produces new parts of the structure without getting stuck.
This property is known asproductivity. Intensive research is dedi-
cated to the identification of criteria to ensure productivity.

The basic principle of corecursive programming comes from the
categorical characterization of coinductive types as final coalge-
bras of functors (Jacobs and Rutten 1997b). We can define a unique
function into a coinductive type by giving a coalgebra on the do-
main. This is a simple and theoretically transparent technique, but it
does not apply directly to most cases of interest and forces the pro-
grammers to rewrite their code, often requiring complex interme-
diate data structures (Rutten 2003; Endrullis et al. 2010; Capretta
2010, 2011).

A slightly more permissive method allows equations that are
guarded(Coquand 1993), in which we admit recursive calls as long
as they occur under a constructor that ensures that part of the struc-
ture is generated before iterating the equation. This methodology
is implemented in type-theoretic systems such as Coq (Giménez
1994). It is based on the syntactic form of the recursive definition,
and applies to definitions whose productivity can be checked eas-
ily by a one-step algorithm. Recent work on definition schemes
(Lochbihler and Ḧolzl 2014), extends the range of functions that
are permissible in a proof assistant by exploiting the double nature
of lazy lists as both producers and consumers of data; this work
also provides associated reasoning principles.

A more comprehensive and mathematically elegant approach
appeals to topological and metric concepts. In particular, we can
associate to a coinductive type a notion of distance between its
elements and exploit standard mathematical theorems that ensure
the existence of solutions. The chief among these is Banach’s
theorem, which states that every contractive function on a complete
metric space has a unique fixed point.

Our interest focuses on the application of Banach’s theorem to
the particular setting of non-well-founded data types. The metric
structure, introduced for infinite trees by Arnold and Nivat (1980),
uses a notion of distance that measures the similarities between
elements: two elements are near if they have a common initial
segment. It is easy to verify that the types then become complete
metric spaces. A function is contractive if it always decreases the
distance of its arguments by a factor smaller than one.

The main original contribution of our work is a new represen-
tation theorem: contractive functions are in one-to-one correspon-
dence with elements of an appropriate inductive type. We initially
focus on streams, in which setting we provide a simple and effective
representation of contractions. We prove that it is sound and com-
plete: it exactly captures the notion of contractive function. We then
extend the characterization to richer data structures, first to binary
trees and then to final coalgebras of container functors. Although
the representation for streams is straightforward, its abstraction to

1 2016/12/2

general final coalgebras is far from obvious. We show that most of
the conceptual framework that we developed for streams still ap-
plies. A complex non-well-founded object can be seen as a stream
of slices, each adding all the structure needed at a certain depth, an
idea by Ghani et al. (2006, 2009a). In full generality this requires
the slices to have a type dependent on the previous section of the
structure. Our main result provides a sound and complete represen-
tation of contractions on a wide class of final coalgebras.

2. Metric Spaces and Banach’s theorem
Banach’s theorem was originally discovered as a useful tool to
prove the unique existence of solutions to differential equations
(Banach 1922). The theorem applies incomplete metric spaces,
which are given by a pair(X, d) of a setX and a real-valued
function d that measures the distance between two points of the
setX. Completeness in this context expresses that every Cauchy
sequence converges to a point, where a sequence is Cauchy if the
distance between points becomes arbitrarily close.

A contractionis a function from the setX to itself that shrinks
the distances by a factor smaller than 1 (called the Lipschitz con-
stant). Banach’s theorem states that every contraction has a unique
fixed point. Its proof is constructive: we can begin with any point
and iterate the function, obtaining a Cauchy sequence that con-
verges to the fixed point. Traditionally, the choice ofX is a space
of analytic functions and the contraction is given by a differential
equation. The fixed point is the unique solution to the equation.

Banach’s theorem has also proved very useful in theoretical
computer science, specifically in domain theory. It is used to give
the semantics of recursive types (MacQueen et al. 1984) and the
solution of recursive equations on them (Gianantonio and Miculan
2003, 2004). It has previously been applied to streams and infinite
trees (Buchholz 2005), with important results in the semantics
of reactive programs (Krishnaswami and Benton 2011). In these
applications,X is usually a semantic domain, often a space of
functions denoted by programs. The distance then measures the
information separation between data structures. Banach’s theorem
provides a method to ensure the convergence of iterative programs
and recurrence relations. For an introduction, see Section 6 of
Smyth (1992). An alternative approach consists in using a family
of converging equivalence relations (Matthews 1999).

Our work in this article follows this line of application to in-
finite data structures. The spaceX is a type of non-well-founded
elements. The distanced is a measure of the difference between
two infinite objects, inversely dependent on the size of their com-
mon finite initial segment.

Given the central position of contractive functions in recursive
programming with coinductive data, it is important to have a sim-
ple characterization of the class of contractions. A straightforward
definition imposes the contractivity predicate on a generic function,
but a direct representation as a data type is desirable. We provide a
concrete characterization of contractions in terms of their computa-
tional structure, leading to effective versions of Banach’s theorem
that can be deployed in concrete programming and reasoning prac-
tice.

The original contribution of our work is a sound and complete
representation theorem for contractive functions on streams and on
final coalgebras of containers.

3. Contractions on Streams
In this section we introduce contractions for the particular case of
streams of values over a given typeA:

codata StreamA = {head : A} ⊳ {tail : StreamA}

According to this definition, every streamt : StreamA has the
shapex ⊳ xs, wherex is an element of the parameter typeA and
xs is another stream of the same type. Whereas in lists we have a
constructor for the empty list, in streams we do not, and therefore
every stream must continue forever. If we add such a constructor
to the codata definition, we obtainlazy lists, which comprise both
finite and infinite sequences.

3.1 Recursive Equations

Streams are naturally defined using recursive equations. For exam-
ple, the constant streamones = 1 ⊳ 1 ⊳ 1 ⊳ · · · can be defined
as a single one followed by the stream itself, by means of the fol-
lowing recursive equation:

ones : StreamN

ones = 1 ⊳ ones

In turn, the stream of natural numbersnats = 0 ⊳ 1 ⊳ 2 ⊳ · · ·
can be defined by starting with the value zero, and then mapping
the successor function(+1) over each element of the stream itself
to produce the remaining stream of values:

nats : StreamN

nats = 0 ⊳ map (+1) nats

map : (A→ B) → StreamA→ StreamB
map f (x ⊳ xs) = f x ⊳ map f xs

(The definition ofmap is itself recursive: it appliesf to the first
element of the stream and recursively calls itself on the tail.)

Unfortunately, not all recursive stream equations make sense as
definitions of streams. For example, the following is well-typed,

loop : StreamA
loop = tail loop

but does not actually define a stream because unfolding the defini-
tion loops forever without ever producing any values.

Similarly, attempting to redefine

ones : StreamN

ones = 1 ⊳ tail ones

is also invalid, because it produces a single one and then loops.
However, not all uses oftail in definitions are problematic. For
example, the streamones can be defined as a single1 followed
by the result of interleaving alternative elements from the stream
and its tail:

ones : StreamN

ones = 1 ⊳ interleave ones (tail ones)

interleave : StreamA→ StreamA→ StreamA
interleave (x ⊳ xs) ys = x ⊳ interleave ys xs

However, if we swapped the order of the arguments tointerleave in
the above definition forones, the definition would again become in-
valid. This brings us to the following fundamental question: when
does a recursive stream equation actually define a stream? In the
next few sections we introduce the technical machinery that under-
lies our particular approach to answering this question.

3.2 Fixed Points

In the previous section we reviewed the idea of streams and stream
equations. In this section we consider what these notions mean
from a more formal perspective, in terms of solutions of equations
and fixed points of functions.

First of all, recall that inductive types are defined as theleast
solution of some equation. For example, the typeN of natural
numbers can be defined as the least setX for which there is a
bijectionX ∼= 1 + X, where1 is a singleton set with element∗,

2 2016/12/2

and + is disjoint union of sets with injectionsinl and inr. The
right-to-left component of the bijection,f : 1 + N → N, gives
the constructors forN by definingzero = f (inl ∗) andsuccn =
f (inr n). The left-to-right componentg : N → 1+N gives a form
of case analysis, mappingzero to inl ∗ andsuccn to inr n.

Dually, coinductive types are defined as thegreatestsolution
of some equation. In this case the solutions considered are those
satisfying the coinduction principle, which states that bisimilar ob-
jects are equal: Intuitively, when two entities are indistinguishable
by the structure of the equation, they must be equal. For example,
the equationX ∼= 1 + X also has a greatest solution, given by
the typeN∞ of natural numbers together with an infinite value
inf = succ inf . (It is possible to construct larger solutions by
having many infinite values, but the principle of coinduction will
decree that they must all be equal.) In a similar manner, the coin-
ductive typeStreamA of streams of typeA can be defined as the
greatest setX for which there is a bijectionX ∼= A×X, where× is
Cartesian product of sets with projectionsfst andsnd. The left-to-
right component of the bijection,f : StreamA→ A× StreamA,
gives rise to the destructors for streams by definingheadxs =
fst (f xs) and tailxs = snd (f xs). The right-to-left component
g : A × StreamA → StreamA gives rise to the constructor for
streams by definingx ⊳ xs = g (x, xs).

Just as types can be defined using equations, so too can values.
Consider a recursive equationxs = f xs that defines a stream
xs in terms of itself and some functionf . Any stream that solves
this equation forxs is afixed pointof f . Hence, solving a stream
equation means finding a fixed point of a function on streams.
However, not all such functions have fixed points. For example,
map (+1) has no fixed point, which corresponds to the fact that
xs = map (+1)xs is not a valid definition for a stream. (Here
we’re talking of streams ofN; in N

∞ there exists a fixed point.)
Moreover, some functions have many fixed points. For exam-

ple, the identity function has any stream as a fixed point, which
corresponds to the fact that the equationxs = xs is also an invalid
definition for a stream. Note that there is no general notion of or-
dering on streams, so it does not make sense to consider least or
greatest fixed points in this context.

What then makes a valid definition? Our approach is to only
consider functions on streams that have auniquefixed point, de-
noted byfix f , which is adopted as the semantics of the correspond-
ing recursive equation. For example, the functionλxs. 1 ⊳ xs has
a unique fixed point given by the constant stream of ones, which
corresponds to the fact that the equationones = 1 ⊳ ones is a valid
definition for a stream. In conclusion, the question of when a recur-
sive stream equation actually defines a stream can now be rephrased
as follows: when does a functionf : StreamA → StreamA have
a unique fixed pointfix f : StreamA?

3.3 Contractive Functions

Our approach to this question is based on an idea from topology:
contractive functions. The first step in defining contractions for
streams is to provide a measure of the distance between any two
streams. The distance between two streams is given by the inverse
of the exponential of the length of their longest common prefix.
More formally, we define a family of equivalence relations=n on
streams of the same type as follows:

xs =0 ys

x = y xs =n ys

(x ⊳ xs) =n+1 (y ⊳ ys)

The distance function between two streams of the same type is then

d (xs, ys) =

{

0 if xs = ys
1

2m
otherwise

wherem = max {n | xs =n ys}, i.e. m is the length of the
longest prefix where the two streams coincide.

Checking that the metric space of streams is complete is a matter
of routine verification. The notion of contractivity for streams can
now be reformulated as follows (see also the notion ofcausal
stream functionby Hansen et al. (2006)):

Lemma 1 (contractive functions). A functionf : StreamA →
StreamB is contractiveif and only ifxs =n ys impliesf xs =n+1

f ys for all natural numbersn and streamsxs andys of typeA.

Proof. It is easy to see that this notion of contraction is equivalent to
the metric one. A Lipschitz constant of1/2 will always work.

The above result states that a function on streams is contractive
if, when we appply it to two streams are equal for their firstn
elements, the results give streams that are equal forn+1 elements.
We denote the type of contractive functions between streams by
StreamA→c StreamB.

Theorem 1 (Banach’s theorem for streams). Every contractive
f : StreamA→c StreamA has a unique fixed pointfix f .

In summary, the notion of contractivity provides a sufficient
condition for the (unique) existence of fixpoints, thus guarantee-
ing that we obtain well-defined streams from recursive equations.
Note, however, that contractivity is only a sufficient condition, as
not every function between streams with a unique fixpoint is con-
tractive. For example, if we define

f : StreamN → StreamN

f xs = head (tailxs) ⊳ 1 ⊳ xs

then the functionf has a unique fixed point, given by the constant
stream of ones, but is not contractive. In particular, in the case of
n = 0 contractivity requires thathead (tailxs) = head (tail ys),
which is not always true. Notice that this depends on the particular
definition of distance that we adopted. With different metrics, we
could have different sets of contractions; it is in fact possible to de-
fine a distance that makes the above definition satisfy the conditions
for application of Banach’s theorem.

It is natural to ask what contractivity actually means, i.e. what is
being expressed in its definition? More generally, we can ask what
kind of functions are contractive, i.e. can the class of contractive
functions be characterised in a precise manner? The next section
answers this question by providing a sound and complete represen-
tation theorem for contractive functions on streams.

4. Representation Theorem
Our main goal is to give a representation of the class of contractive
functions as a coinductive data type. In this section we achieve this
objective for functions on streams. In later sections we generalize
it to infinite binary trees and to a wide class of non-well-founded
data structures.

For our purposes, we need that the typeStreamA contains at
least one elementanyA. So we assume thatA itself is non-empty
and has a distinguished elementa0. This will allow us to build
a stream consisting of repetitions ofa0. In our construction, it is
completely indifferent whatanyA is, we just need to know that
there is some element inStreamA.

Let us consider a contractive functionf : StreamA →c

StreamB. Looking at Lemma 1, we see that contractivity requires
that

∀xs, ys. xs =0 ys implies f xs =1 f ys

Since xs =0 ys is true for any two streamsxs and ys, this
condition reduces to∀xs, ys. f xs =1 f ys, i.e. the head of the
output should be the same regardless of the input.

3 2016/12/2

Similarly, given two streamsxs, ys such thatxs =1 ys, i.e.
they coincide on the first element, call itx : A, thenf xs =2 f ys,
so the second element of the output stream can only depend onx.
This suggest the following representation:

codata GenAB = Step {output : B; cont : A→ GenAB}

A generating treet : GenAB is a structure that represents a
contraction that immediately outputs an element(output t), then
reads an element of the input stream,x and continues the compu-
tation using the generating tree(cont t x) on the tail of the input
stream. This is very close to the representation of continuous func-
tions by Ghani et al. (2009b): the difference is that here the actions
of producing an output and reading an input are strictly alternated,
while in their version it is possible to read several elements at a time
without producing a result. The restriction is necessary to obtain a
contraction, rather than just a continuous function: only contrac-
tions are guaranteed to have fixed points.

More precisely, we define a functiongen that takes a generating
tree and produces a contraction as follows:

gen : GenAB → StreamA→c StreamB
gen t (x ⊳ xs) = output t ⊳ gen (cont t x)xs

The validity of this definition, which requires that the resulting
function is contractive, is established by the following result:

Lemma 2. If t is a generating tree thengen t is contractive.

The proof of the lemma, and of the following theorem, are straight-
forward. They also follow from the general results for final coal-
gebras. Dually, every contractive function can be represented as a
generating tree by means of the following definition:

rep : (StreamA→c StreamB) → GenAB
rep f = Step (head (f anyA), λx. rep (tail ◦ f ◦ (x ⊳)))

The first output will not depend on the input, so we obtain it by
applyingf to an arbitrary stream ofAs, which we callanyA. This
stream can be constructed for non-emptyA, e.g. as a constant
stream. The continuation of the tree receives the headx of the
input and returns, recursively, the representation of the function on
streams that: prependsx, appliesf , and takes the tail. The recursive
call torep is valid because it is guarded by the constructorStep; the
application oftail is in this case not problematic, since it is under
the recursive call.

Using the two conversion functions, we can now formalize
the idea that contractions and generating trees are in one-to-one
correspondence, i.e. every contraction can be uniquely represented
by a generating tree, and vice versa.

Theorem 2 (representation theorem). The functionsgen and rep
form an isomorphismGenAB ∼= StreamA→c StreamB.

The representation theorem states that instead of defining a
function and checking that it is a contraction, we can write a
generating tree.

The typegenAB is the same used by Altenkirch (2001) to
represent functions on lists. Specifically, we have thatgenAB ∼=
ListA → B, thus obtaining another representation of contractions
by list functions. The intuition is that the(n + 1)st entry of the
output is calculated from the list of the firstn entries of the input.

How easy is it to build a generating tree? In order to answer
this question, we note that generating trees are a coinductively
defined data type and therefore can naturally be understood by
means of coalgebras. The type of generating treesGenAB is
(the carrier of) the final coalgebra for the functorGC = B ×
(A → C). This means that it comes equipped with a canonical
means of producing generating trees, in the form of anunfold (or
anamorphism) operator (Meijer et al. 1991; Gibbons and Jones

1998). In order to define this operator, we first introduce the notion
of acoalgebra(Jacobs and Rutten 1997a) for generating trees:

CoalgABC = (C → B)× (C → A→ C)

That is, a coalgebra for the typeGenAB comprises two functions
that respectively turn a value of typeC into a value of typeB and
a function of typeA → C. We can think of an element ofC as an
automaton which produces a value inB, then waits for an input in
A before making a transition and changing its state.

Theunfold operator for producing trees is then defined as fol-
lows:

unfoldGen : CoalgABC → C → GenAB
unfoldGen (h, t) z = Step (h z, λx. unfoldGen (h, t) (t z x))

That is, given a coalgebra(h : C → B, t : C → A → C)
and aseedvaluez : C, the label of the resulting tree produced by
theunfold is given by applyingh to the seedz, and the branching
function is given by applyingt to the seedz and the branching
valuex : A to obtain a new seed that is then used to produce the
remaining levels of the tree in the same manner.

5. Examples
Combining the representation theorem with the use ofunfold pro-
vides a means of producing contractive functions on streams. In
particular, given a coalgebra and a seed value, we first applyunfold
to produce a generating tree, then applygen to turn it into a con-
tractive function. We encapsulate this idea as follows:

generate : CoalgABC → C → (StreamA→c StreamB)
generate (h, t) z = gen (unfold (h, t) z)

From the point of view of improving efficiency, however, it is
desirable to fuse the two functions in this definition together to give
a direct recursive definition forgenerate:

generate : CoalgABC → C → (StreamA→c StreamB)
generate (h, t) z (x ⊳ xs) = h z ⊳ generate (h, t) (t z x)xs

It is useful now to think of the seed valuez as astatethat repre-
sents the input history of the resulting contractive function. In this
manner, the above definition expresses that the first value in the out-
put stream is given by applyingh to the current state (as it cannot
depend on the current or future input values, to ensure contractiv-
ity), and the remaining output values are given by applyingt to the
current state and the first input valuex to obtain a new state that is
then used to process the tailxs of the input stream in the same way.

Note that one can work with coalgebras instead of generating
trees without loss of generality, because generating trees are a
particular instance of a coalgebra:

treeAsCoalg : CoalgAB (GenAB)
treeAsCoalg = (output, cont)

We encapsulate the idea of defining a stream as the unique
fixed point of a contractive function produced using the function
generate by means of a new fixed point operator (fix is the fixed
point operator given by Theorem 1):

cfix : CoalgAAC → C → StreamA
cfix (h, t) z = fix (generate (h, t) z)

When we define a stream usingcfix, we can choose an appropriate
state type to represent the history of previous values in the stream,
and then define a suitable starting value and coalgebra for this type.
Ideally, the state should be compact in terms of space, and the
coalgebra should be efficient in terms of time.

Note that we have a choice of how to access previous outputs
of the function. The notion of contraction, and theGen type se-
mantics, allows direct access to the previous element of the output.

4 2016/12/2

Alternatively, we can use the state to store the information about
the present output required for the next iteration.

For example, we can define the stream of natural numbers in
two ways, both using a natural number as state, which represents
the next output value, with starting value zero, and a coalgebra
(hnats, tnats). The first updates the state by replacing it with the
successor of the present output value; the second updates it by
incrementing it and does not use the present output value at all:

nats : StreamN

nats = cfix (hnats, tnats) 0
where hnats : N → N

hnats z = z
tnats : N → N → N

tnats z x = x+ 1

nats : StreamN

nats = cfix (hnats, tnats) 0
where hnats : N → N

hnats z = z
tnats : N → N → N

tnats z x = z + 1

The two coalgebras correspond to the following simple gener-
ating trees.

fromTree1, fromTree2 : N → GenNN

fromTree1 n = Stepn (λx.fromTree1 (x+ 1))
fromTree2 n = Stepn (λx.fromTree1 (n+ 1))

Similarly, the stream of Fibonacci numbers can be defined using
a state that comprises the next two values, starting value (0,1), and
a simple coalgebra on this state:

fibs : StreamN

fibs = cfix (hfibs, tfibs) (0, 1)
where hfibs : (N,N) → N

hfibs(z0, z1) = z0
tfibs : (N,N) → N → (N,N)
tfibs (z0, z1)x = (z1, z1 + x)

Note that we used the valuex, the present output element, to update
the state, rather thanz0. The two values are always identical, so the
two versions are equivalent. A difference in the two approaches
arises if we want to have a more compact state space that does not
necessarily store all the information about the output. In that case,
we may decide to use the present output value to generate the new
state, but we are free to lose information.

As a more complex example, we consider the sequence of Ham-
ming numbers (Dijkstra 1976), natural numbers of the form2i3j5k,
with i, j, k ∈ N, i.e. natural numbers with no prime factors other
than 2, 3, and 5. The sequence consists of Hamming numbers, in
increasing order, without repetitions.

For simplicity, we will only consider numbers of the form2i3j .
The sequencehamming begins with 1, and the rest of the values
can be obtained by recursively merging in increasing order the
Hamming sequences obtained by multiplying the values in the
sequence by two and three respectively:

hamming = 1 ⊳ (map (2∗) hamming || map (3∗) hamming)

Given two increasing sequences without duplicates, the operator||
constructs an increasing sequence without duplicates:

(||) : StreamA→ StreamA→ StreamA

(x ⊳ xs) || (y ⊳ ys) =







x ⊳ (xs || (y ⊳ ys)) if x < y
y ⊳ ((x ⊳ xs) || ys) if x > y
x ⊳ (xs || ys) if x = y

In order to seehamming as the fixpoint of a contractive function,
we note that one may define the|| operator using a coalgebra

(h||, t||) and compose it with the functionλx. (2 ∗ x, 3 ∗ x):

hhamming : (N, [N], [N]) → N

hhamming = h||

thamming : (N, [N], [N]) → N → (N, [N], [N])
thamming s x = t|| s (2 ∗ x, 3 ∗ x)

hamming = cfix (hhamming, thamming) (1, [], [])

The coalgebra for the merge operator has a triple as state, where
the first component of the triple is the next item to be outputted,
and the other two are finite lists of the unused inputs so far:

h|| : (N, [N], [N]) → N

h||(a, ,) = a

t|| : (N, [N], [N]) → (N,N) → (N, [N], [N])
t|| (, xs, ys) (x, y) = h (xs ++ [x], ys ++ [y])

whereh (x :: xs, y :: ys) =







(x, xs, y :: ys) if x < y
(y, x :: xs, ys) if x > y
(x, xs, ys) if x = y

The coalgebra presentation makes it obvious that such a stream has
a memory leak, as the history increases whenever the next item
on both lists differ and it does not decrease in the other case. This
issue is also present in the original formulation, although not in an
explicit manner: in practice, however, we need to keep the output
stream in memory and have two pointers to the different positions
of the next elements to be multiplied by 2 and 3.

6. Contractions on Final Coalgebras
In the previous sections we defined a representation for contractive
functions on streams and proved that it is a complete characteriza-
tion. The facility to define a contraction by a simple coinductive
object enhances the practicality of Banach’s fixed point theorem to
define streams. The theorem says that every contraction on a com-
plete metric space has a unique fixed point. It can be applied in a
programming language context by turning a data structure, specifi-
cally streams, into a metric space by associating a distance between
elements that measures how much they differ. A contraction is a
function that shrinks the distances by a factor smaller than 1. Ba-
nach’s theorem guarantees that we can define a total program by
specifying a contraction.

Now we extend these results to richer (dependent) types, pro-
viding techniques to construct fixed points on coinductive types
defined bycontainers, a general form of data constructors. We char-
acterize the contractive functions between final coalgebras of con-
tainer functors, using ideas about the representation of continuous
functions from Ghani et al. (2006, 2009a,b).

A final coalgebra is the greatest fixed point of a functorF :
Set → Set satisfying the bisimulation principle (bisimilar objects
are equal). Intuitively,F specifies a collection of forms to build el-
ements and the final coalgebra,νF , is the set of elements obtained
by iterating these forms in a potentially infinite structure.

We use the notation(νF, outν) for it, whereoutν : νF →
F (νF) is the actual coalgebra. Intuitively, it unpacks the top struc-
ture of an element, exposing its overall form and subobjects. Its
defining property is that, for every other coalgebraf : X → F X
there exists a uniqueφf : X → νF that commutes with the coalge-
brasoutν andf : outν◦φf = (F φf)◦f . In type theory, coinductive
types are often defined by constructors, similarly to inductive types.
So the final coalgebra is specified by giving its inverse algebra
inν : F (νF) → νF . This is equivalent since, by Lambek’s lemma
(Lambek 1968), final coalgebras are always invertible. In more
modern approaches (Abel et al. 2013; Abel and Pientka 2013), they
are presented bycopatterns, which are a syntactic equivalent of the

5 2016/12/2

components of the final coalgebra, and they are explicitly stratified
intosized types. See also Kurz et al. (2015) for a categorical account
of the construction of parametric coinductive types by stages. A still
different account (Atkey and McBride 2013), inspired by the recur-
sion modality of Nakano (2000), usesclock variablesto represent
coinductive elements as processes evolving in time.

The universal property of final coalgebras is the standard defi-
nition scheme for functions that produce coinductive objects. Our
goal is to extend the range of acceptable definition schemes. Instead
of looking for a coalgebra, a user should be able to write down a
recursive equation and have it be accepted, provided that it satisfies
some conditions. Inspired by the work on streams, we propose that
this condition is that the operator given by the recursive equation
has to be a contractive function.

In order to generalize the notion of contraction, we need to re-
strict the class of functors that can be used. Containers are functors
whose constructors consist of a shape containing positions where
the elements of the base type are inserted. We will see that mem-
bers of the final coalgebras of containers are, in a sense that we
will make precise, generalized dependently typed streams. There-
fore the representation of contractions on streams can be adapted
once we take into account the way that the dependency of the ele-
ment type varies along the sequence. We first look at a specific in-
stantiation, non-well-founded binary trees, in the next section. Then
we give the full generalization to containers.

7. Contractions on Binary Trees
Our first generalization step is to adapt the results on contractive
functions to richer data structures. We start by considering infinite
binary trees with nodes labelled by elements of a typeA:

codata BTreeA = Node {get : A; left, right : BTreeA}

Every element of this type,t : BTreeA, has the shape of a node
with two children,t = Nodex t1 t2, wherex is an element of the
parameter typeA andt1, t2 are recursive subtrees inBTreeA. The
record functions extract the components of the tree:get t = x,
left t = t1, right t = t2. Because there is no leaf constructor,
the trees are non-well-founded:t1 and t2 must also have a node
structure with two children each, and so on. In this manner, every
path from the root will continue forever.

Our goal now is to precisely characterize the concept of contrac-
tive functions between two types of trees,BTreeA andBTreeB.
Intuitively, a contraction computes a certain part of the output from
a strictly smaller part of the input. A node of the output tree at
depthn should depend only on nodes of the input tree at depths
less thann. We can imagine the trees as made of subsequentslices,
each slice consisting of the node elements at the same depth. Then
a function is contractive if it computes thenth slice of the output
from the slices of the input up to the(n− 1)th.

We don’t deviate much from the stream case: we view trees as
streams of slices. The difference is that the type of each slice is
different. In particular, a slice at depthn is given by a2n-tuple.

The definition of distance between trees is parallel to that be-
tween streams, with the only difference in the notion of the family
of equivalence relations up to a certain depth. If we see lists of
Booleans as paths inside trees, we can define a function extracting
the node in the position pointed by the path:

nodeAt : [B] → BTreeA→ A
nodeAt nil t = get t
nodeAt (true :: bs) t = nodeAt bs (left t)
nodeAt (false :: bs) t = nodeAt bs (right t)

Then two trees are equivalent at leveln if all their nodes with paths
of length smaller thann are equal. That is:

t1 =n t2 if and only if
∀p : [B], (length p < n) → nodeAt p t1 = nodeAt p t2

Then the definition of distance between trees is exactly the same as
the distance between streams and we get the same characterization
of contractive functions as previously:

Lemma 3 (contractive functions). A functionf : BTreeA →
BTreeB is contractiveif and only if t1 =n t2 impliesf t1 =n+1

f t2 for all natural numbersn and treest1 andt2 of typeBTreeA.

In particular, the root element of the output has depth0, so it
shouldn’t depend on the input at all. The function must therefore
first of all print this root element. Then it can read the root element
of the input and use it in the computation of the rest of the output.

To make this observation into a recursive definition, we use a
trick to view the children of a tree as a single double tree. The
children of a tree of typeBTreeA are given by two trees, but
they can also be viewed as a single tree with pairs of labels on
the nodes,BTree (A2). Imagine superimposing the two trees: they
have the same overall shape with different labels on the nodes;
we can encode them into a tree with the same shape with coupled
labels. So our contractive function, after producing the root of the
output and reading the root of the input, can continue recursively
as a contractive function on trees of pairs.

We can encode the above intuition in the following representa-
tion, similar to the one we gave in Section 4 for streams:

codata TGenAB =
Step {output : B; cont : A→ TGen (A2) (B2)}

An element ofTGenAB has the formStep b f : the elementb goes
in the root of the output tree; the functionf expects the roota of
the input tree and returns a new contraction on trees of pairs that
will be applied to the children of the input tree. Given such a code,
we unfold it as a function from trees to trees. To formulate this
computation, we use zipping/unzipping operations on trees, defined
in a straightforward recursive fashion.

zipTree : BTreeA→ BTreeA→ BTree (A2)
unZipTree : BTree (A2) → (BTreeA)2

These functions can be defined becauseBTree has a single con-
structor and therefore all trees have the same structure. It would
not work with data types whose elements can have different shapes.
However, we will see later that it is possible to define contractions
for data types with different shapes, without the need of such zip-
ping and unzipping operations.

The interpretation of an element ofTGenAB as a function on
trees is given by a computation operator:

genT : TGenAB → BTreeA→c BTreeB
genT (Step b f) (Node a t1 t2) = Node b u1 u2

where (u1, u2) = unZipTree (genT (f a) (zipTree t1 t2))

When elaborating an input treeNode a t1 t2, the contraction gen-
erates an output of formNode b · ·, without the need to look at the
input at all. The shape is the only possible shape, the node element
b is dictated by the contraction. The computation of the output chil-
dren may need information from the input. The labela determines
the contraction(f a) that is used for the continuation. The input
children are zipped together into a single tree(zipTree t1 t2) that
is elaborated by the continuation contraction. This returns a tree of
pairs, that needs to be unzipped to obtain the output children.

Dually, every contractive function can be represented by a code
in TGenAB. The definition is again similar to that for streams,
except that we need some zipping and unzipping, and the type of
the representation function depends on the type parameters of the

6 2016/12/2

trees. (We use an arbitrary treeanyA, which could be a constant
tree with all labels occupied by a designated element ofA.)

repTA,B : (BTreeA→c BTreeB) → TGenAB
repTA,B f = Step (get (f anyA), λx. repTA2,B2 fx)

where fx : BTree (A2) →c BTree (B2)
fx t = let (t1, t2)= unZipTree t

tB = f (Nodex t1 t2)
in zipTree (left tB) (right tB)

The two conversion functions form an isomorphism which
shows that contractions on trees and generating codes are in one-
to-one correspondence, i.e. every contraction can be uniquely rep-
resented by a generating code, and vice versa.

Theorem 3 (representation theorem). The functionsgenT and
repT form an isomorphismTGenAB ∼= BTreeA→c BTreeB.

Example 1. Let us illustrate the use of fixpoints of contractions to
construct infinite binary trees. We build a tree of integers where the
children of a node are, respectively, the sum of its value with its left
neighbour and the difference of its value with the right neighbour.
When there are no neighbours (on leftmost and rightmost spines of
the tree) we assume that value to be 0.

1

1

△ △

1

2

2

△ △

1

3

△ △

-2

△ △

1

3

△ △

△

This example is interesting in this context because the children
are not generated simply by their parent, but also they depend on
the values of other elements at the same depth.

We can define a functionmnplslice that yields a new tree slice.
The tree generators work on input types that are structured tuples,
e.g.(A2)2. We use the notationPowTypeA 2 for such type:

PowType : Set → N → Set
PowTypeA 0 = A
PowTypeA (n+ 1) = (PowTypeAn)2

Then we can easily define the one-step function

mnplslice : (n : N) → (PowTypeAn) → (PowTypeA (n+ 1))

which computes the sums/differences of adjacent elements, e.g.

mnplslice 2 〈〈a0, a1〉, 〈a2, a3〉〉 =
〈 〈〈a0, a0 − a1〉, 〈a0 + a1, a1 − a2〉〉,
〈〈a1 + a2, a2 − a3〉, 〈a2 + a3, a3〉〉 〉

The code of the contraction that we need to define our tree is then:

mpgen : (n : N) → (PowTypeZn) →
TGen (PowTypeZn) (PowTypeZn)

mpgenn v =
Step v (λw.mpgen (n+ 1) (mnplslicenw))

Remark 1. We can generalize the representation of contractive
functions by using any final coalgebra as codomain, in place of
BTreeB. Let G be any functor for which the final coalgebra
νG exists; now we want to characterize the contractions of type
BTreeA→ νG.

Let inG : G(νG) → νG be the inverse of the final coalgebra
for G. The type of contractions is now defined by:

codata TGenGA = Step (G (A→ TGenG (A2)))

Let us see how to interpret elements of this type as computable
functions. An element ofTGenGA has the formStep g, whereg

is in G (A → TGenG (A2)). We often see functors as specifying
the shape of a data structure, with positions in the shape where
substructures are inserted. We will make this intuition formal when
we consider containers. We can viewG as providing the top shape
of the output inνG, with the positions occupied by functions of
typeA → TGenG (A2). After generating the top shape, without
reading any input, the contraction can read the labela of the input
tree and feed it to these functions, each of which produces a new
contraction that can run on the zipping of the children of the input
tree. Formally, this spells out the following computation operator.

genTG : TGenGA→ BTreeA→ ν G
genTG (Step g) (Node a t1 t2) =

inG (mapG (λf. genTG (f a) (zipTree t1 t2)) g)

The way it works will be clearer if we instantiate to the previous
case of contractions that map trees to trees. In the special case
when the output isBTreeB, we haveGX = B × X2, inG =
Node. In a contraction code of formStep g, the parameterg has
typeB × (A → TGenG (A2))2, so it will be a triple〈b, f1, f2〉.
We unfold the definition ofgenTG.

genTG (Step 〈b, f1, f2〉) (Node a t1 t2) =
Node b (genTG (f1 a) (zipTree t1 t2))

(genTG (f2 a) (zipTree t1 t2))

With respect to our previous definition ofgenT, we see that now we
use two distinct functionsf1 and f2 to produce the left and right
child of the output, whereas previously we had a single functionf
that produced a tree of pairs that needed to be unzipped. Otherwise
the functions are equivalent. We do not give an inverse represen-
tation operator and theorem for this generalization. This requires
associating a metric space to the final coalgebraνG. We see how
to do this whenG is a container functor in the next section.

A drawback of this evaluation function is that it is inefficient,
because of the zipping and unzipping of trees. We avoided the un-
zipping of the output in the second version, but we still need to zip
the input. We may think of applying some standard fusion tech-
niques to resolve this problem. However, a more elegant solution
will come to light when we generalize the construction even fur-
ther to work on container functors. As the generalization of the
codomain type to any final coalgebra produced an optimization at
the output side of the computation, a similar generalization of the
domain will produce an optimization at the input side.

8. Contractions on Containers
Now we generalize the notion of contraction and the representation
theorem to a large class of non-well-founded structures. We want
to characterize contractive functions between final coalgebras of
general functors. To do this, we need to have a metric on such
coalgebras. As before, this can be done if we have a notion of depth
and a way of pointing at the parts of the data structure that lie at
a given depth. This is possible if the functor has a specific form,
which is the case for most commonly used final coalgebras.

A container (Abott et al. 2005), also calleddependent poly-
nomial functor (Gambino and Hyland 2003) in the categorical
literature, is a pair〈S, P 〉 with S : Set, a set ofshapes, and
P : S → Set, a family of positionsfor every shape. Every con-
tainer defines a functor:

(S ✄ P) : Set → Set
(S ✄ P)X = Σs : S. P s→ X

So an element of(S ✄ P)X is a pair〈s, xs〉 wheres : S is a
shape andxs : P s → X is a function assigning an element ofX
to every position in the shapes. The final coalgebra of a container,
ν(S✄P), is inhabited by trees with nodes decorated by shapes and

7 2016/12/2

with positions giving their branching type:

codata ν(S ✄ P) =
inν {shape : S; subs : P (shape t) → ν(S ✄ P)}

So every element oft : ν(S ✄ P) is uniquely given by a shape,
shape t : S, and a family of subelements,subs t : P (shape t) →
ν(S ✄ P).

We are interested in characterizing the contractive functions
between final coalgebras of containers: if〈S, P 〉 and 〈T,Q〉 are
two containers, what are the contractions inν(S✄P) → ν(T✄Q)?
We extend the intuition that we gained from streams and trees: a
contraction produces the output structure up to depthn by looking
only at the structure of the input at depths lower thann.

Ghani et al. (2009a) study the related question of characterizing
the continuous functions of this same type. Their technique is use-
ful for our purpose as well. They approximate the elements of the
final coalgebra by another container〈S♮, P ♮〉, whose shapes are it-
erations of the functor up to a fixed depth and whose positions are
the holes where new shapes can be inserted. We call the elements
of S♮ hangersand the elements of(P ♮ s) pegs, for some hangers.
Intuitively, a hanger is an incomplete structure, a well-founded ap-
proximation to a completed infinite tree. The pegs are those places
in the incomplete structure where subtrees need to be inserted to
complete the tree.

Hangers and pegs are defined by induction-recursion (Dybjer
2000; Dybjer and Setzer 1999, 2003). This is a type definition
paradigm where we simultaneously define a well-founded type
and a recursive function on it. When constructing an element, we
can already use the function on its subterms. Induction-recursion
is available in the dependently-typed language Agda and can be
mimicked, for the small types that we consider, in other type-
theoretic systems by an inductive family.

S♮ : Set P ♮ : S♮ → Set

• : S♮ P ♮ • = 1
(;) : Πs : S♮. (P ♮ s→ S) → S♮

P ♮ (s ; σ) = Σp : P ♮ s. P (σ p)

The simplest hanger,•, is a completely uninformative approx-
imation, a hook with one peg where the whole tree needs to be
added. Given a hangers with pegsP ♮ s, we can extend it by plac-
ing a new shape at each peg. So we give a functionσ : P ♮ s → S,
which we think of as a newsliceof the structure, specifying all the
data at the next level. The new hanger is denoted by(s ; σ) and its
pegs are the disjoint union of the positions of all the new shapes.

We can approximateν(S ✄ P) andν(T ✄ Q) by stages using
〈S♮, P ♮〉 and〈T ♮, Q♮〉. A contraction is a function for which the
approximation of the output at a certain stage only depends on
approximations of the input at lower stages. We can in fact summon
again the intuition that we had for streams. Think of an element of
ν(S ✄ P) as a stream of slices. Using stream notation, we can
express it as

• ⊳ σ0 ⊳ σ1 ⊳ σ2 ⊳ · · ·
where σ0 : P ♮ • → S

σ1 : P ♮ (• ; σ0) → S
σ2 : P ♮ (• ; σ0 ; σ1) → S.

Most of our previous definitions and results are still valid, once
we make the adjustments necessitated by the more complex type
structure of the stream entries.

First of all, we can modify the family of equivalences up to
depthn and use them to define the metric on the final coalgebra.
We just give a function that truncates an element of the coalgebra
to a hanger by cutting it at a given depth. We can cut a tree at level
n into an upper part, given by a hanger, and a lower part, given by

a family of trees to be inserted in the pegs.

cut : ν(S ✄ P) → N → Σs : S♮.
(

P ♮ s→ ν(S ✄ P)
)

cut t 0 = 〈•, λp. t〉
cut t (n+ 1) = let 〈s, τ〉= cut t n

σ= λp. shape (τ p)
τ ′ = λp. subs (τ p)

in 〈s ; σ, λ〈p, q〉. τ ′ p q〉

Keeping only the hanger part of this splitting (the first component
of the pair) we get the truncation of a tree at leveln.

truncate : ν(S ✄ P) → N → S♮

truncate t = fst (cut t n)

Using this notion, two elements ofν(S✄P) are then defined to be
equivalent at leveln if their n-truncations are the same:

t1 =n t2 if and only if truncate t1 n = truncate t2 n

As in the case of trees, the definition of distance onν(S ✄ P)
is the same as the distance between streams and we get the same
characterization of contractive functions.

Lemma 4 (contractive functions). A functionf : ν(S ✄ P) →
ν(T ✄Q) is contractiveif and only ift1 =n t2 impliesf t1 =n+1

f t2 for all natural numbersn and treest1 andt2 in ν(S ✄ P).

Example 2. One of the most interesting applications of contrac-
tions on final coalgebras of containers is to realize the notion of
higher-order recursion. For example, we may want to realize para-
metric fixed points on streams:

pfix : (Stream (A×B) →c StreamB)
→ (StreamA→c StreamB)

pfix f as = f (zip as (pfix f as))

In Section 4 we showed that contractive functions on streams can
be represented by codes, so the parametric fixed point operator
defined above can be lifted to the codes:

pfix code : Gen (A×B)B → GenAB
pfix code (Step b g) = Step b (λa.pfix code (g 〈a, b〉))

Furthermore,GenAB is a final coalgebra of a container with
shapesB and positionsλb.A. Althoughpfix code is not itself a
contraction, it is clear from its definition that it generates a slice
for every slice of the input, so it preserves distances. This indicates
that, when composed with contractions, it will yield a contraction.

The representation theorem for contractions on final coalgebras
of containers is complicated slightly by the fact that each slice of
the structure has a different complex type. Contractions need to be
definedlocally, that is, given two hangers for the input and output,
s : S♮ and t : T ♮, we define the type of contractions from the
extensions ofs to the extension oft. In other words: assume that
we have already reads in input and we have producedt in output,
we define how the rest of the input is mapped to an extension of
the output. We use the notationCGen s t for the set of codes for
contractions from thepointsof s to the points oft. By points ofs
we mean elements ofν(S ✄ P) approximated bys.

A contraction must first of all produce part of the output without
reading any input. The part of the output produced is aslice that
puts a new shape in every peg:τ : Q♮ t→ T . Then the contraction
reads a slice of the inputσ : P ♮ s → S and, according to
this value, specifies how to continue the computation by giving
a new contraction between the refinements:CGen (s ; σ) (t ; τ).
Since both input and output are potentially infinite, the type of
codes for contractions is also a final coalgebra defined by the
following coinductive family, which generalizes the representations

8 2016/12/2

for streams in Section 4 and for trees in Section 7:

codata

CGen : S♮ → T ♮ → Set

CGen s t = Step { output : Q♮ t→ T ;
cont : Πσ : P ♮ s→ S.

CGen (s ; σ) (t ; output) }.

Finally, the set of all contractions fromν(S ✄ P) to ν(T ✄ Q) is
represented byCGen • •.

We have seen earlier, in defining the functioncut, that an ele-
ment ofν(S ✄ P) can be split into a hangers : S♮ and a family
of substructures to be inserted in each peg ofs. Let us call the set
of all such possible families theextensionof s: Ext s = P ♮ s →
ν(S ✄ P). This type is isomorphic to the subtype ofν(S ✄ P) of
those elements that are approximated bys.

We can widen the notion of contraction to functions between
extensions. We writeExt s →c Ext t to denote a contraction on
the possible evolution of the input and output hangers,s andt. The
definition is similar to that of contraction at the top level, except
that we count depth from the next level below the hangers.

genC s t : CGen s t→ Ext s→c Ext t
genC s t (Step τ f) g = λr : Q♮ t.
inν (τ r) (λq : Q (τ r). genC (s ; σ) (t ; τ) (f σ)

(λ〈p, u〉. subs (g p)u) 〈r, q〉)
where σ = shape ◦ g

The above definition is rather involved, but the intuitive idea is
similar to the special case of streams. A generating code has the
form (Step τ f), whereτ is the slice that has to be sent to output
immediately andf is the interaction function specifying how to
continue the computation according to the value of the next input
slice. Their respective types are

τ : Q♮ t→ T f : Πσ : P ♮ s→ S.CGen (s ; σ) (t ; τ)

So f reads a new input sliceσ and decrees accordingly how to
continue the computation between the two extended hangers.

The contractive function associated to this code maps the exten-
sion of s to the extension oft. The next argument isg : Ext s =
P ♮ s → ν(S ✄ P). We need to produce an element inExt t, that
is,Q♮ t → ν(T ✄ Q). The next argument to our function is then
r : Q♮ t and we have to produce an element ofν(T ✄ Q). We use
the canonical constructorinν for coinductive types: The top shape
is given by the output slice in the appropriate positions,(τ r). The
substructures must map every positionq : Q (τ r) in this shape to
an element ofν(T ✄ Q). Intuitively, we have produced a sliceτ
in output and we can read a new sliceσ from input. We must now
produce the part of the tree below the hanger(t ;τ). We are allowed
to use the next slice of the input to do this. The functiong generates
the whole continuation of the input. We extract just the first slice
by taking only its top shapes:

σ = shape ◦ g : P ♮ s→ S

The functionf applied to this slice produces a new code for a
contraction between the extensions of(s ; σ) and(t ; τ). We can
recursively apply the generating function to this code:

genC (s ; σ) (t ; τ) (f σ) : Ext (s ; σ) →c Ext (t ; τ)

This function takes an element ofExt (s ; σ), whose structure can
be seen by unfolding definitions as follows:

Ext (s ; σ) = P ♮ (s ; σ) → ν(S ✄ P)
= (Σp : P ♮ s. P (σ p)) → ν(S ✄ P)

We already have an argumentg in Ext s, so we can just lop off the
first slice:λ〈p, u〉. subs (g p)u : Ext (s ; σ). Putting it all together,

we have an element ofExt (t ; τ) and we can instantiate it to the
right pegr and positionq in the output tree.

In the other direction, we seek a representation operator that as-
sociates a code to every contractive function between the extensions
of two hangers. As in previous incarnations, we need an arbitrary
elementanys : Ext s. This will certainly exist ifS is non-empty,
that is, the input container has at least one shape. We assume this is
the case in the following. The representation operator is defined as
follows:

repC s t : (Ext s→c Ext t) → CGen s t
repC s t φ =
Step τ (λσ. repC (s ; σ) (t ; τ) (λh. λ〈r, q〉. subs (φ v r) q))
where τ = shape ◦ (φ anys)

v = λp. inν (σ p) (λq. h 〈p, q〉)

Remember that the functionφ is assumed to be contractive, which
means that the first slice it produces (which is the only part of
(φ anys) that we need) does not actually depend on the argument
anys. The code for the contraction prescribes that the first slice of
the output,τ , consists of the shapes of the result ofφ on anys (or
indeed on any other element ofExt s).

The continuation must be a function that maps the next slice
of the inputσ : P ♮ s → S to the code for the contraction on the
extensions, with typeCGen (s ; σ) (t ; τ). Here we are allowed to
use recursively the operatorrepC, because we are guarded byτ .
We must give it a contraction betweenExt (s ; σ) andExt (t ; τ).
So leth be an extension of(s ; σ), that is:

h : Ext (s ; σ) = P ♮ (s ; σ) → ν(S ✄ P)
= (Σp : P ♮ s. P (σ p)) → ν(S ✄ P)

First we use it to make an extension ofs by simply gluingσ on top:

g : Ext s = P ♮ s→ ν(S ✄ P)
g = λp : P ♮ s. inν (σ p) (λq : P (σ p). h 〈p, q〉)

We can now apply the original contraction to this extension:

(φ g) : Ext t = Q♮ t→ ν(T ✄Q)

We can split it into the first slice and the rest. Note that the first
slice shape ◦ (φ g) must be equal toτ becausef is a contraction.
This is essential to check that the following type-checks correctly.

λ〈r, q〉. subs (φ g r) q : Ext (t ; τ)
= (Σr : Q♮ t. Q (τ r)) → ν(T ✄Q)

This concludes the definition of the contraction between the exten-
sions, therefore we can safely applyrepC to it.

As in the case of streams and binary trees, the generation and
representation operators are mutually inverse functions. The iso-
morphism is up to extensionality for functions and bisimilarity for
coinductive objects. This means that we consider contractive func-
tions and functional arguments of recursive data equal if they are
equal pointwise. Elements of final coalgebras are considered equal
if they are bisimilar. This allows us to use the method of proof by
bisimulation: when proving that two structures are equal, we just
have to show that the top shapes are equal and we can invoke the
statement recursively on the substructures.

Theorem 4 (representation theorem). The functionsgenC s t and
repC s t form an isomorphismCGen s t ∼= Ext s→c Ext t.

At the top level, this gives us a representation isomorphism for
contractions on final coalgebras:

CGen • • ∼= ν(S ✄ P) →c ν(T ✄Q)

Proof. In one direction, given a contractionφ : Ext s →c Ext t,
we prove that(genC s t (repC s t φ)) = φ. Let us callφ′ the left-
hand side of this equality for short. We want to show that these

9 2016/12/2

two functions are extensionally equal. To this end, we letg : Ext s
and r : Q♮ t, and aim to prove thatφ′ g r = φ g r. These two
terms are in the inductive typeν(T ✄ Q), so their equality can be
demonstrated by bisimulation: we prove that the top shape is the
same and we invoke the statement of the theorem recursively to
show that the substructures are also equal.

The top shapes are identical:shape (φ′ g r) = shape (φ g r). In
fact, by construction,shape (φ′ g r) = shape (φ anys r). Continu-
ity of φ guarantees that this result does not depend on the argument
anys, so replacing it withg gives the same shape, as desired.

The substructures are equal:subs (φ′ g r) = subs (φ g r). The
coinduction principle, which allows us to prove equalities by bisim-
ulation, tells us that we can recursively use the statement of the
theorem to prove this. That is, we are allowed to assume that
genC (s ; σ) (t ; τ) andrepC (s ;σ) (t ; τ) are inverse of each other
for appropriateσ andτ . We call this thecoinductive hypothesis.

By definition ofrepC andgenC we have that:

subs (φ′ g r) = λv. genC (s ; σ) (t ; τ) (f σ) e 〈r, q〉
where σ = shape ◦ g

τ = shape ◦ (φ anys)
f = λσ. repC (s ; σ) (t ; τ)ψ
ψ = λh. λ〈r, q〉. subs (f g′ r) q
g′ = λp. inν (σ p) (λq. h 〈p, q〉)
e = λ〈p, u〉. subs (g p)u

We can now apply the coinduction hypothesis to obtain

subs (φ′ g r)
= λv. genC (s ; σ) (t ; τ) (repC (s ; σ) (t ; τ)ψ) e 〈r, q〉
= λv. ψ e 〈r, q〉
= subs (φ g′ r) q

We can conclude by noting thatg′ = g since

σ p = shape (g p)
e 〈p, q〉 = subs (g p) q

This completes the proof of one direction of the isomorphism. The
opposite direction can be checked similarly, by just unfolding def-
initions and using extensional equality for functions and bisimula-
tion for coinductive objects.

Remark 2. As for binary trees, we can generalize the construction
and use any final coalgebra as codomain. For any functorG, we
define a family of contractions from every hangers : S♮ to νG:

codata (−◮G) : S♮ → Set

Step : G (Πσ : P ♮ s→ S. (s ; σ)−◮G) → (s−◮G)

9. Instantiations for Streams and Trees
We show how the abstract representation of contractions on final
coalgebras instantiates to the cases of streams and binary trees.
What we obtain is equivalent to the ad hoc versions that we defined
in Sections 4 and 7.

Streams can be represented as the final coalgebra of a container:

StreamA ∼= ν(A✄ λx.1)

In this case the type of hangersA♮ is just (List A), and every hanger
always has just one peg. Extension simply consists in attaching a
new element at the end of a list. After simplification (the function
type1 → A is isomorphic toA), the type of codes for contractions
becomes

codata
CGen : List A→ List B → Set
CGen as bs

= Step { output : B;
cont : Πa : A.CGen (as ; a) (bs ; output) }

Since the argumentsas andbs occur only in the type specification,
we have that each element of this family is isomorphic and essen-
tially the same asGenAB.

The final coalgebra representation of infinite binary trees is

BTreeA ∼= ν(A✄ λx.2)

The corresponding hangers are complete binary trees of fixed depth
with elements ofA in the internal nodes. Let us denote by|s| the
depth of such a hangers : A♮. The pegs are the leaves of the
trees, therefore the hangers will have 2|s| pegs. We see this by
simplifying the definitions in this particular case:

A♮ : Set P ♮ : A♮ → Set

• : A♮ P ♮ • = 1

(;) : Πs : A♮. A2
|s|

→ A♮ P ♮ (s ; σ) = Σp : P ♮ s.2

where we directly used the observation thatP ♮ s is a type with2|s|

elements to defineA♮ independently ofP ♮ (P ♮ s → A ∼= A2
|s|

).
The type of codes for contractions simplifies to

codata

CGen : A♮ → B♮ → Set
CGen s t

= Step { output : B2
|t|

;

cont : Πσ : A2
|s|

.CGen (s ; σ) (t ; output) }

From this simplification, it is clear thatCGen s t is isomorphic to
TGenA2

|s|

B2
|t|

.

10. Summary and Conclusion
In this article, we developed sound and complete representations
of contractive functions on streams, non-well-founded binary trees,
and final coalgebras of containers. In all three cases, a contraction
is represented by a code. Such a code is itself an element of a
coinductive type, and comprises two fields.

The first component, calledoutput, gives the portion of the re-
sult that must be produced immediately, before reading any input.
In the case of streams, it consists of the next element of the se-
quence; in the case of binary trees, it consists of the nodes on the
next depth level; in the case of final coalgebras, it consists of the
nextsliceof the structure.

The second component, calledcont, specifies how the rest of the
coinductive structure will be generated according to the value read
in input. This input token is again the next element of the sequence
for streams, a tuple of the nodes of the next depth level for trees,
and the next slice of data for final coalgebras. The continuation is a
function mapping this value to a recursive code.

We gave generation operators that unpack codes into contractive
functions and representation mappings that synthesize a code from
a contraction. We proved that the generation and representation
operators are mutual inverses, showing that the representation is
both sound and complete.

Our development yields a precise characterization of contractive
functions on a wide class of coinductive data structures. This result
provides the theoretical framework to deploy Banach’s fixed point
theorem to prove that recursive definitions of non-well-founded
objects are guaranteed to produce a unique solution. We illustrated
the application of our results by means of some simple examples.
We expect to deploy them fruitfully on more complex and realistic
applications in the future. In particular, they have the potential
to facilitate the definition of highly recursive objects and to offer
powerful proof methods for reasoning about them.

10 2016/12/2

Acknowledgments
Graham Hutton was funded by EPSRC grant EP/P00587X/1,Mind
the Gap: Unified Reasoning About Program Correctness and Effi-
ciency.

References
A. Abel and B. Pientka. Wellfounded recursion with copatterns: a unified

approach to termination and productivity. In Morrisett and Uustalu
(2013), pages 185–196. ISBN 978-1-4503-2326-0.

A. Abel, B. Pientka, D. Thibodeau, and A. Setzer. Copatterns: programming
infinite structures by observations. In R. Giacobazzi and R.Cousot, ed-
itors, The 40th Annual ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, POPL ’13, Rome, Italy - January 23 -
25, 2013, pages 27–38. ACM, 2013. ISBN 978-1-4503-1832-7.

M. Abott, T. Altenkirch, and N. Ghani. Containers - constructing strictly
positive types. Theoretical Computer Science, 342:3–27, September
2005. Applied Semantics: Selected Topics.

T. Altenkirch. Representations of first order function types as terminal
coalgebras. InTyped Lambda Calculi and Applications, TLCA 2001,
number 2044 in Lecture Notes in Computer Science, pages 8 – 21, 2001.

A. Arnold and M. Nivat. The metric space of infinite trees. algebraic and
topological properties.Fundam. Inform., 3(4):445–476, 1980.

R. Atkey and C. McBride. Productive coprogramming with guarded recur-
sion. In Morrisett and Uustalu (2013), pages 197–208. ISBN 978-1-
4503-2326-0.

S. Banach. Sur les opérations dans les ensembles abstraits et leur applica-
tion auxéquations int́egrales.Fund. Math., 3:133–181, 1922.

W. Buchholz. A term calculus for (co-)recursive definitionson streamlike
data structures.Ann. Pure Appl. Logic, 136(1-2):75–90, 2005.

V. Capretta. Common knowledge as a coinductive modality. In E. Barend-
sen, H. Geuvers, V. Capretta, and M. Niqui, editors,Reflections on Type
Theory, Lambda Calculus, and the Mind, pages 51–61. ICIS, Faculty of
Science, Radbout University Nijmegen, 2007. Essays Dedicated to Henk
Barendregt on the Occasion of his 60th Birthday.

V. Capretta. Bisimulations generated from corecursive equations. Elec-
tronic Notes in Theoretical Computer Science, 265:245–258, 2010.

V. Capretta. Coalgebras in functional programming and type theory. Theo-
retical Computer Science, 412(38):5006–5024, 2011. CMCS Tenth An-
niversary Meeting.

C. Ĉırstea, A. Kurz, D. Pattinson, L. Schröder, and Y. Venema. Modal logics
are coalgebraic.Comput. J., 54(1):31–41, 2011.

T. Coquand. Infinite objects in type theory. In H. Barendregtand T. Nip-
kow, editors,Types for Proofs and Programs. International Workshop
TYPES’93, volume 806 ofLecture Notes in Computer Science, pages
62–78. Springer-Verlag, 1993.

E. W. Dijkstra.A Discipline of Programming. Prentice-Hall, 1976.

P. Dybjer. A general formulation of simultaneous inductive-recursive defi-
nitions in type theory.Journal of Symbolic Logic, 65(2), June 2000.

P. Dybjer and A. Setzer. A finite axiomatization of inductive-recursive
definitions. InProceedings of TLCA 1999, volume 1581 ofLNCS, pages
129–146. Springer-Verlag, 1999.

P. Dybjer and A. Setzer. Induction-recursion and initial algebras.Ann. Pure
Appl. Logic, 124(1-3):1–47, 2003.

J. Endrullis, C. Grabmayer, D. Hendriks, A. Isihara, and J. W.
Klop. Productivity of stream definitions. Theor. Comput. Sci.,
411(4-5):765–782, 2010. doi: 10.1016/j.tcs.2009.10.014. URL
http://dx.doi.org/10.1016/j.tcs.2009.10.014.

N. Gambino and M. Hyland. Wellfounded trees and dependent polynomial
functors. In S. Berardi, M. Coppo, and F. Damiani, editors,Types for
Proofs and Programs, International Workshop, TYPES 2003, Torino,
Italy, April 30 - May 4, 2003, Revised Selected Papers, volume 3085
of Lecture Notes in Computer Science, pages 210–225. Springer, 2003.
ISBN 3-540-22164-6.

N. Ghani, P. Hancock, and D. Pattinson. Continuous functions on final coal-
gebras.Electr. Notes Theor. Comput. Sci., 164(1):141–155, 2006. Pro-

ceedings of the Eighth Workshop on Coalgebraic Methods in Computer
Science (CMCS 2006).

N. Ghani, P. Hancock, and D. Pattinson. Continuous functions on final coal-
gebras.Electr. Notes Theor. Comput. Sci., 249:3–18, 2009a. Proceedings
of the 25th Conference on Mathematical Foundations of Programming
Semantics (MFPS 2009).

N. Ghani, P. Hancock, and D. Pattinson. Representations of stream proces-
sors using nested fixed points.Logical Methods in Computer Science, 5
(3), 2009b.

P. D. Gianantonio and M. Miculan. A unifying approach to recursive and
co-recursive definitions. In H. Geuvers and F. Wiedijk, editors, Proc.
TYPES’02, volume 2646 ofLNCS, pages 148–161. Springer-Verlag,
2003.

P. D. Gianantonio and M. Miculan. Unifying recursive and co-recursive
definitions in sheaf categories. In I. Walukiewicz, editor,Proc. FOS-
SACS’04, volume 2987 ofLNCS, pages 136–150. Springer, 2004.

J. Gibbons and G. Hutton. Proof methods for corecursive programs. Fun-
dam. Inform., 66(4):353–366, 2005.

J. Gibbons and G. Jones. The Under-Appreciated Unfold. InProceedings
of the Third ACM SIGPLAN International Conference on Functional
Programming, pages 273–279, Baltimore, Maryland, 1998.

E. Giménez. Codifying guarded definitions with recursive schemes.In
P. Dybjer, B. Nordstr̈om, and J. Smith, editors,Types for Proofs and
Programs. International Workshop TYPES ’94, volume 996 ofLecture
Notes in Computer Science, pages 39–59. Springer, 1994.

H. H. Hansen, D. Costa, and J. J. M. M. Rutten. Synthesis of
mealy machines using derivatives.Electr. Notes Theor. Comput.
Sci., 164(1):27–45, 2006. doi: 10.1016/j.entcs.2006.06.003.URL
http://dx.doi.org/10.1016/j.entcs.2006.06.003.

R. Hinze. Functional pearl: streams and unique fixed points. In J. Hook and
P. Thiemann, editors,ICFP 2008, pages 189–200. ACM, 2008a. ISBN
978-1-59593-919-7.

R. Hinze. Concrete stream calculus: An extended study.J. Funct. Program.,
20(5-6):463–535, 2008b.

B. Jacobs and J. Rutten. A Tutorial on (Co)Algebras and (Co)Induction.
Bulletin of the European Association for Theoretical Computer Science,
62:222–259, 1997a.

B. Jacobs and J. Rutten. A tutorial on (co)algebras and (co)induction.
EATCS Bulletin, 62:222–259, 1997b.

N. R. Krishnaswami and N. Benton. Ultrametric semantics of reactive
programs. InProceedings of the 26th Annual IEEE Symposium on Logic
in Computer Science, LICS 2011, June 21-24, 2011, Toronto, Ontario,
Canada, pages 257–266. IEEE Computer Society, 2011.

A. Kurz, A. Pardo, D. Petrisan, P. Severi, and F.-J. de Vries.Approximation
of Nested Fixpoints – A Coalgebraic View of Parametric Dataypes. In
L. S. Moss and P. Sobocinski, editors,CALCO 2015, volume 35 of
LIPIcs, pages 205–220, Dagstuhl, Germany, 2015.

J. Lambek. A fixpoint theorem for complete categories.Math. Zeitschr.,
103:151–161, 1968.

A. Lochbihler and J. Ḧolzl. Recursive functions on lazy lists via domains
and topologies. In G. Klein and R. Gamboa, editors,Interactive Theorem
Proving - 5th International Conference, ITP, volume 8558 ofLecture
Notes in Computer Science, pages 341–357. Springer, 2014. ISBN 978-
3-319-08969-0.

D. B. MacQueen, G. D. Plotkin, and R. Sethi. An ideal model for recursive
polymorphic types. In K. Kennedy, M. S. V. Deusen, and L. Landweber,
editors,Conference Record of the Eleventh Annual ACM Symposium
on Principles of Programming Languages, Salt Lake City, Utah, USA,
January 1984, pages 165–174. ACM Press, 1984.

J. Matthews. Recursive function definition over coinductive types. In
Y. Bertot, G. Dowek, A. Hirschowitz, C. Paulin, and L. Théry, editors,
Theorem Proving in Higher Order Logics, 12th InternationalConfer-
ence, TPHOLs’99, Nice, France, September, 1999, Proceedings, volume
1690 of Lecture Notes in Computer Science, pages 73–90. Springer,
1999. ISBN 3-540-66463-7.

11 2016/12/2

E. Meijer, M. Fokkinga, and R. Paterson. Functional Programming with
Bananas, Lenses, Envelopes and Barbed Wire. In J. Hughes, editor, Pro-
ceedings of the Conference on Functional Programming and Computer
Architecture, number 523 in LNCS. Springer-Verlag, 1991.

N. P. Mendler, P. Panangaden, and R. L. Constable. Infinite objects in
type theory. InProceedings, Symposium on Logic in Computer Science,
pages 249–255, Cambridge, Massachussetts, 16–18 June 1986.IEEE
Computer Society.

G. Morrisett and T. Uustalu, editors.ACM SIGPLAN International Confer-
ence on Functional Programming, ICFP’13, Boston, MA, USA - Septem-
ber 25 - 27, 2013, 2013. ACM. ISBN 978-1-4503-2326-0.

H. Nakano. A modality for recursion. InLICS, pages 255–
266. IEEE Computer Society, 2000. ISBN 0-7695-0725-5. URL
http://tinyurl.com/huzq7gl.

J. Rutten. A coinductive calculus of streams.Mathematical Structures in
Computer Science, 15:93–147, 2005.

J. J. M. M. Rutten. Behavioural differential equations: a coinductive cal-
culus of streams, automata, and power series.Theor. Comput. Sci., 308
(1-3):1–53, 2003.

D. Sangiorgi. Introduction to Bisimulation and Coinduction. Cambridge
University Press, 2012a.

D. Sangiorgi, editor.Advanced Topics in Bisimulation and Coinduction.
Cambridge University Press, 2012b.

M. Smyth. Topology. InHandbook of Logic in Computer Science, vol-
ume 2, pages 641–761. Oxford University Press, 1992.

12 2016/12/2

