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The Context

» We need semantics to reason about programs.

» Operational semantics is a popular way of giving
semantics to languages.

» Languages evolve over time and need to be extended.

» We want to use what we alredy knew to reason about the
extended language.

» However, operational semantics have poor modularity.
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a:x=Conn|Add aa
where n ranges over Z.
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A Combined Language

t:=Conn|Addtt|Throw | Catchtt

tdx uly
Con x | Just x Add t u |} Just (x +y)

t | Just x t y Nothing uly
Throw || Nothing Catcht u | Just x Catchtu |y

t § Nothing u | Nothing
Add t u || Nothing Add t u || Nothing

» What is the relation between this semantics and the
previous ones?

» Can we obtain rules that just propagate Nothing for free?



Functorial Operational Semantics

» Abstract formulation of operational semantics using
category theory.

» Rules of SOS are expressed in terms of

» The signature ¥ (set of operations)
e The observable behaviour B

That is,
R(Z,B)

D. Turi. and G. Plotkin. Towards a mathematical operational
semantics. 12th LICS Conf., 1997.
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What if. . .

...we have some operations on rules R(X, B) such that:

» We could join to languages with different signatures, but
same behaviour.

join: (R(Z,B), (R(X',B))) — R(T + ', B)

» We could lift a rule to some effect F.

lift: R(Z,B) — R(,F - B)

» We could construct rules with behaviour F - B that are
well-defined for any B.

pr: VB.R(L,F - B)
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Then we could. ..

...answer the previous questions.
Semantics of arithmetics:

PA: R(ZA, Kz)
Semantics of exceptions:
pr: VB.R(Xg,Maybe - B)

with Maybe X =1+ X

PA: R(ZA, Kz) Pr- VBR(ZE, Maybe : B)
lift(pa): R(Xa, Maybe - Kz) pr ¢ R(Xg, Maybe - Kz)
join(pa, pmc): R(Ea + Te, Maybe - Kz)
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Our rules R(X, B), are actually abstract operational rules,
natural transformations

p:X-(ldxB)—B-Tx
where

» Ty is the free monad on the signature X. (TyX is the set of
terms with variables from X.)

px: - (X xBX)— (B-Tg)X



Abstract Operational Rules

Our rules R(X, B), are actually abstract operational rules,
natural transformations

p:X-(ldxB)—B-Tx

where

» Ty is the free monad on the signature X. (TyX is the set of
terms with variables from X.)

px: - (X xBX)— (B -Tx)X
Example: One rule for a binary sequence operator

(;): X xX =X

a

t=t’ . (Xx BX ) x (XxBX)) —=(B-Tg)X
t;uit’;u (')((t ,(a,t’)) X (u , )) — (a,t’;u)



Joining Rules

join puts together two languages with different signatures, but
same behaviour.

'Y (Id xB) =BTy /.5 .(Id xB) = B - Tx
p P

join(p,p) : (Z+Y)-(ld xB)

= { Coproduct of Functors }
Y -(Id xB)4+ Y- (ld xB)

— {p+ro}
B-Ts+B- Ty

— { [Binl 4 Binr] }
B- (Tz + Tz/)

— { BJfold (inl, inr.inl),fold (inl,inr.inr)] }
B (Tsix)




Lifting Rules
lift lifts a rule with behaviour B to a behaviour F - B.

» For F strong and a distributivity law ¥ - F — F - ¥

p : X-(ldxB)—B-Tg

lifte p @ X-(ld xF-B)
— { strength of F }
Y -F-(ld x B)
— { distributivity law }
- - (Ild x B)
— { Fp}
F.-B-Ty
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Lifting Rules
lift lifts a rule with behaviour B to a behaviour F - B.

» For F strong and a distributivity law ¥ - F — F - ¥

p : X-(ldxB)—B-Tg

lifte p @ X-(ld xF-B)
— { strength of F }
Y -F-(ld x B)
— { distributivity law }
- - (Ild x B)
— { Fp}
F.-B-Ty

» if F is applicative and X traversable, we obtain
the strength and distributivity law for free.

Tm

» For simple signatures and all monadic effects, we get
“propagation rules” for free.
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Rule Transformers

» A rule transformer is a mapping from a behaviour B to a
rule p,: X-(ld xF-B)—-F-B-Ts.

» They can be generated from a transformer germ: a natural
transformation 7: ¥ - F — F.

T:Xx-F—-F

pr : X-(ldxF-B)
— { Tm }
Y.F-B
- {8}
F.B
— { (F-B)p }
F.B-Ts




Lifting T to D-coalgebras

Functorial operational semantics are a distributivity law
NT-D—=D-T

between
» amonad T (corresponding to syntax)
» a comonad D (corresponding to behaviours)

Equivalently, a lifting T of T to the D-coalgebras:
Forallk: X — DX,

T(k): TX — D(TX)

To execute a program (a closed term T ()) we unfold

T(e): TO — D(T®), where e: () — D).




Summary

» We can easily reason about operational semantics by
working in the abstract (category-theoretical) setting of
functorial operational semantics.

» We can build complex semantics out of simpler building
blocks, using operations on abstract operational rules (but
with some limitations.)

» Future Work
» Broaden the class of languages that we can represent
(variable binding).
 Construct more powerful operations to combine two
languages (instead of transforming one.)



Thanks for listening

Haskell code will be available for downloading at
http://www.cs.nott.ac.uk/~mijj/



http://www.cs.nott.ac.uk/~mjj/
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