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The Context

I We need semantics to reason about programs.

I Operational semantics is a popular way of giving
semantics to languages.

I Languages evolve over time and need to be extended.

I We want to use what we alredy knew to reason about the
extended language.

I However, operational semantics have poor modularity.



Modularity in SOS

I An arithmetics language

a ::= Con n | Add a a

where n ranges over Z.

⇓

Con x ⇓ x

t ⇓ x u ⇓ y

Add t u ⇓ (x + y)

I An exceptions language

e ::= Throw | Catch e e

⇓

Throw ⇓ Nothing

t ⇓ Just x

Catch t u ⇓ Just x

t ⇓ Nothing u ⇓ y

Catch t u ⇓ y
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A Combined Language

t ::= Con n | Add t t | Throw | Catch t t

⇓

Con x ⇓ Just x

t ⇓ x u ⇓ y

Add t u ⇓ Just (x + y)

⇓

Throw ⇓ Nothing

t ⇓ Just x

Catch t u ⇓ Just x

t ⇓ Nothing u ⇓ y

Catch t u ⇓ y

t ⇓ Nothing

Add t u ⇓ Nothing

u ⇓ Nothing

Add t u ⇓ Nothing

I What is the relation between this semantics and the
previous ones?

I Can we obtain rules that just propagate Nothing for free?
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Functorial Operational Semantics

I Abstract formulation of operational semantics using
category theory.

I Rules of SOS are expressed in terms of
• The signature Σ (set of operations)
• The observable behaviour B

That is,
R(Σ, B)

D. Turi. and G. Plotkin. Towards a mathematical operational
semantics. 12th LICS Conf., 1997.



What if. . .

. . . we have some operations on rules R(Σ, B) such that:

I We could join to languages with different signatures, but
same behaviour.

join : (R(Σ, B), (R(Σ′, B))) → R(Σ + Σ′, B)

I We could lift a rule to some effect F .

lift : R(Σ, B) → R(Σ, F · B)

I We could construct rules with behaviour F · B that are
well-defined for any B.

ρτ : ∀B.R(Σ, F · B)
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Then we could. . .

. . . answer the previous questions.
Semantics of arithmetics:

ρA : R(ΣA, KZ)

Semantics of exceptions:

ρτ : ∀B.R(ΣE , Maybe · B)

with Maybe X = 1 + X

ρA : R(ΣA, KZ)

lift(ρA) : R(ΣA, Maybe · KZ)

ρτ : ∀B.R(ΣE , Maybe · B)

ρτK : R(ΣE , Maybe · KZ)

join(ρA, ρτK ) : R(ΣA + ΣE , Maybe · KZ)
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Abstract Operational Rules
Our rules R(Σ, B), are actually abstract operational rules,
natural transformations

ρ : Σ · (Id × B) → B · TΣ

where
I TΣ is the free monad on the signature Σ. (TΣX is the set of

terms with variables from X .)

ρX : Σ · (X × BX ) → (B · TΣ)X

Example: One rule for a binary sequence operator

(; ) : X × X → X

t a−→t ′

t ;u a−→t ′; u
⇒ ((X× BX )× (X×BX )) →(B · TΣ)X

(; )(( t , 〈a, t ′〉)× (u , _ )) → 〈a, t ′; u〉
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Joining Rules

join puts together two languages with different signatures, but
same behaviour.

ρ : Σ · (Id × B) → B · TΣ ρ′ : Σ′ · (Id × B) → B · TΣ′

join (ρ, ρ′) : (Σ + Σ′) · (Id × B)

= { Coproduct of Functors }
Σ · (Id × B) + Σ′ · (Id × B)

→ { ρ + ρ′ }
B · TΣ + B · TΣ′

� { [Binl + Binr ] }
B · (TΣ + TΣ′)

� { B[fold (inl, inr.inl),fold (inl,inr.inr)] }
B · (TΣ+Σ′)



Lifting Rules
lift lifts a rule with behaviour B to a behaviour F · B.

I For F strong and a distributivity law Σ · F → F · Σ

ρ : Σ · (Id × B) → B · TΣ

liftF ρ : Σ · (Id × F · B)

→ { strength of F }

Σ · F · (Id × B)

→ { distributivity law }

F · Σ · (Id × B)

→ { Fρ }

F · B · TΣ

I if F is applicative and Σ traversable, we obtain
the strength and distributivity law for free.

I For simple signatures and all monadic effects, we get
“propagation rules” for free.
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Rule Transformers

I A rule transformer is a mapping from a behaviour B to a
rule ρτ : Σ · (Id × F · B) → F · B · TΣ.

I They can be generated from a transformer germ: a natural
transformation τ : Σ · F → F .

τ : Σ · F → F

ρτ : Σ · (Id × F · B)

→ { Σπ2 }
Σ · F · B

→ { τB }
F · B

→ { (F · B)η }
F · B · TΣ
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Lifting T to D-coalgebras

Functorial operational semantics are a distributivity law

λ : T · D → D · T

between
I a monad T (corresponding to syntax)
I a comonad D (corresponding to behaviours)

Equivalently, a lifting T̃ of T to the D-coalgebras:
For all k : X → DX ,

T̃ (k) : TX → D(TX )

To execute a program (a closed term T∅) we unfold
T̃ (e) : T∅ → D(T∅), where e : ∅ → D∅.



Summary

I We can easily reason about operational semantics by
working in the abstract (category-theoretical) setting of
functorial operational semantics.

I We can build complex semantics out of simpler building
blocks, using operations on abstract operational rules (but
with some limitations.)

I Future Work
• Broaden the class of languages that we can represent

(variable binding).
• Construct more powerful operations to combine two

languages (instead of transforming one.)



Thanks for listening

Haskell code will be available for downloading at
http://www.cs.nott.ac.uk/~mjj/

http://www.cs.nott.ac.uk/~mjj/
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