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Abstract

There are different notions of computation, the most popular being monads, applicative functors,
and arrows. In this article we show that these three notions can be seen as instances of a unifying
abstract concept: monoids in monoidal categories. We demonstrate that even when working at this
high level of generality one can obtain useful results. In particular, we give conditions under which
one can obtain free monoids and Cayley representations at the level of monoidal categories, and
we show that their concretisation results in useful constructions for monads, applicative functors,
and arrows. Moreover, by taking advantage of the uniform presentation of the three notions of
computation, we introduce a principled approach to the analysis of the relation between them.

1 Introduction

When constructing a semantic model of a system or when structuring computer code, there are several
notions of computation that one might consider. Monads [37, 38] are the most popular notion, but other
notions, such as arrows [22] and, more recently, applicative functors [35] have been gaining widespread
acceptance.

Each of these notions of computation has particular characteristics that makes them more suitable
for some tasks than for others. Nevertheless, there is much to be gained from unifying all three different
notions under a single conceptual framework.

In this article we show how all three of these notions of computation can be cast as monoids in
monoidal categories. Monads are known to be monoids in a monoidal category of endofunctors [34, 8].
Moreover, strong monads are monoids in a monoidal category of strong endofunctors. Arrows have
been recently shown to be related to monoids in a monoidal category of profunctors by Jacobs et al. [24].
Applicative functors, on the other hand, are usually presented as lax monoidal functors with a compatible
strength [35, 28, 41]. However, in the category-theory community, it is known that lax monoidal functors
are monoids with respect to the Day convolution [14], and hence applicative functors are also monoids
in a monoidal category of endofunctors using the Day convolution as a tensor.

Therefore, we unify the analysis of three different notions of computation, namely monads, applicative
functors, and arrows, by looking at them as monoids in a monoidal category. In particular, we make
explicit the relation between applicative functors and monoids with respect to the Day convolution, and
we simplify the characterisation of arrows so that arrows are exactly monoids in a monoidal category.
Unlike the approach to arrows of Jacobs et al. [24], where the operation first is added on top of the
monoid structure, we obtain that operation from the monoidal structure of the underlying category.
Furthermore, we show that at the level of abstraction of monoidal categories one can obtain useful
results, such as free constructions and Cayley representations.
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Free constructions are often used in programming in order to represent abstract syntax trees. For
instance, free constructions are used to define deep embeddings of domain-specific languages [45]. Tra-
ditionally, one uses a free monad to represent abstract syntax trees, with the bind operation (Kleisli
extension) acting as a form of simultaneous substitution. However, in certain cases, the free applicative
functor is a better fit [11]. The free arrow, on the other hand, has been less well explored and we know
of no publication that has an implementation of it.

The Cayley representation theorem states that every group is isomorphic to a group of permuta-
tions [12]. Hence, one can work with a concrete group of permutations instead of working with an
abstract group. The representation theorem does not really use the inverse operation of groups so one
can generalise the representation to monoids and obtain a Cayley representation theorem for monoids [25].

In functional programming, the Cayley theorem appears as an optimisation by change of represen-
tation. We identify two known optimisations, namely difference lists [21], and the codensity monad
transformation [47, 23] as being essentially the same, since both are instances of the general Cayley rep-
resentation of monoids in a monoidal category. Moreover, we obtain novel transformations for applicative
functors and arrows by analysing their Cayley representations.

Given the three notions of computation, one may ask what are the relations between them. Lindley
et al. [33] address this question by studying the equational theories induced by calculi capturing each
notion of computation. If, on the other hand, we want to address the question by taking a categorical
approach, one should study the relation between the different categories of monads, applicative functors,
and arrows. Since the three notions are monoids in a monoidal category, this is the same as studying the
relation between the corresponding categories of monoids. However, as a consequence of having a unified
view we can ask a simpler, more basic question instead and analyse the relation between the different
monoidal categories that give support to monoids. Then, we obtain the relation between their monoids
as a corollary.

Concretely, the article makes the following contributions:

• We present a unified view of monads, applicative functors, and arrows as monoids in a monoidal
category. Although most of these results are known in other communities, the case of the applicative
functors as monoids seems to have been overlooked in the functional programming community, and
in the case of arrows, the existing models were not an exact fit.

• We show how the Cayley representation of monoids unifies two different known optimisations,
namely difference lists and the codensity monad transformation. The similarity between these two
optimisations has been noticed before, but now we make the relation precise and demonstrate that
they are two instances of the same change of representation.

• We apply the characterisation of applicative functors as monoids to obtain a free construction
and a Cayley representation for applicative functors. In this way, we clarify the construction of
free applicative functors as explained by Capriotti and Kaposi [11]. The Cayley representation for
applicative functors is entirely new.

• We clarify the view of arrows as monoids by incorporating their strength in the supporting monoidal
category. In previous approaches, such strength was an extra operation attached to the monoids,
while in this article we consider a category with strong profunctors. Our approach leads to a new
categorical model of arrows and to the first formulation of free arrows.

• We analyse the relation between the monoidal categories that give rise to monads, applicative
functors, and arrows, by constructing monoidal functors between them.

• We give canonical constructions for converting profunctors into strong profunctors, one which can
be used to convert weak arrows (arrows without the operation first) into arrows.

The rest of the article is structured as follows. In Section 1 we introduce the Cayley representation for
ordinary monoids. In Section 2, we introduce monoidal categories, monoids, free monoids and the Cayley
representation for monoids in a monoidal category. In Section 3, we instantiate these constructions in
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a category of endofunctors, with composition as a tensor and obtain monads, free monads, and the
Cayley representation for monads. In Section 5, we do the same for applicative functors. Before that, we
introduce in Section 4 the notions of ends and coends needed to define and work with the Day convolution.
In Section 6, we work in a category of profunctors to obtain weak arrows, their free constructions, and
their Cayley representations. In Section 7, we turn to arrows, and construct free arrows. Finally, in
Section 8, we analyse the relation between the different monoidal categories considered in the previous
sections, provide canonical constructions for adding a strength to profunctors, and obtain a representation
for arrows. We conclude in Section 9 where we summarise our results and discuss related work.

The article is aimed at functional programmers with knowledge of basic category theory concepts, such
as categories, functors, limits, adjunctions, and initial algebra semantics. We provide an introduction to
more advanced concepts, such as monoidal categories, ends and coends.

In frames like the one surrounding this paragraph, we include implementations in Haskell of several
of the categorical concepts of the article. The idea is not to formalise these concepts in Haskell, but
rather to show how the category theory informs and guides the implementation. Nevertheless, one can
prove that the implementation of the different concepts is correct using “fast and loose” reasoning [13].

This is an extended version of the article published in the Journal of Functional Programming.

Cayley representation for monoids

We start by stating the Cayley representation theorem for ordinary monoids, i.e. monoids in the category
Set of sets and functions. A monoid is a triple (M,⊕, e) of a set M , a binary operation ⊕ : M ×M →M
which is associative ((a⊕ b)⊕ c = a⊕ (b⊕ c)), and an element e ∈M which is a left and right identity
with respect to the binary operation (i.e. e ⊕ a = a = a ⊕ e.) Because of the obvious monoid (N, ·, 1),
the binary operation ⊕ and the element e are often called the multiplication and unit of the monoid.

For every set M we may construct the monoid of endomorphisms (M →M, ◦, id), where ◦ is function
composition and id is the identity function.

Up to an isomorphism, M is a sub-monoid of a monoid (M ′,⊕′, e′) if there is an injection i : M ↪→M ′

such that i(e) = e′ and i(a⊕b) = i(a)⊕′ i(b) for some ⊕ and e. The existence of such an i makes (M,⊕, e)
a monoid and i a monoid morphism.

Theorem 1.1 (Cayley representation for (Set) monoids) Every monoid (M,⊕, e) is a sub-monoid
of the monoid of endomorphisms on M .

Proof We construct an injection rep : M → (M →M) by currying the binary operation ⊕.

rep(m) = λm′.m⊕m′.

The function rep is a monoid morphism:

rep(e) = λm′. e⊕m′
= id

rep(a⊕ b) = λm′. (a⊕ b)⊕m′
= λm′. a⊕ (b⊕m′)
= (λm. a⊕m) ◦ (λn. b⊕ n)
= rep(a) ◦ rep(b)

Moreover, rep is an injection, since we have a function abs : (M →M)→M given by

abs(k) = k(e)

and, abs(rep(m)) = (λm′.m⊕m′) e = m⊕ e = m.
ut

When M lifts to a group (i.e. it has a compatible inverse operation), then the monoid of endomor-
phisms on M lifts to the traditional Cayley representation of a group M .
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How can we use this theorem in Haskell? Lists are monoids ([a ],++, [ ]) so we may apply Theorem 1.1.
Let us define a type synonym for the monoid of endomorphisms:

type EList a = [a ]→ [a ]

The functions rep and abs, following the proof of Theorem 1.1, are:

rep :: [a ]→ EList a
rep xs = (λys → xs ++ ys)

abs :: EList a → [a ]
abs xs = xs [ ]

By the theorem above, we have that abs ◦ rep = id. The type EList a is no other than difference
lists [21]. Concatenation for standard lists is slow, as it is linear in the first argument. A well known
solution is to use a different representation of lists: the so-called “difference lists” or “Hughes’ lists”, in
which lists are represented by endofunctions of lists. For difference lists, concatenation is implemented
by function composition, and the empty list is implemented by the identity function. Hence we can
perform efficient concatenations on difference lists, and when we are done we can recover standard
lists by applying to the empty list.

2 Monoidal Categories

The notion of monoid in the category Set of sets and functions is too restrictive for expressing monads,
applicative functors, and arrows, so we are interested in generalising monoids to other categories. In
order to express a monoid, a category should have a notion of

1. a pairing operation for expressing the type of the multiplication,

2. and a type for expressing the unit.

In Set (in fact, in any category with finite products), we may define a binary operation on X as a
function X ×X → X, and the unit as a morphism 1 → X. However, a given category C may not have
finite products, or we may be interested in other monoidal structure of C, so we will be more general
and we will abstract the product by a ⊗ operation called a tensor, and the unit 1 by an object I of C.
Categories with a tensor ⊗ and unit I have the necessary structure for supporting an abstract notion of
monoid and are known as monoidal categories.

Definition 2.1 (Monoidal Category) A monoidal category is a tuple (C,⊗, I, α, λ, ρ), consisting of

• a category C,

• a bifunctor ⊗: C × C → C,

• an object I of C,

• natural isomorphisms αA,B,C : A ⊗ (B ⊗ C)→ (A ⊗ B) ⊗ C, λA : I ⊗ A→ A, and ρA : A ⊗ I →
A such that the following diagrams commute.

A ⊗ (B ⊗ (C ⊗ D))
α //

id⊗α
��

(A ⊗ B) ⊗ (C ⊗ D)
α // ((A ⊗ B) ⊗ C) ⊗ D

A ⊗ ((B ⊗ C) ⊗ D)
α

// (A ⊗ (B ⊗ C)) ⊗ D

α⊗id

OO
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A ⊗ (I ⊗ B)
α //

id⊗λ &&

(A ⊗ I) ⊗ B

ρ⊗idxx
A ⊗ B

A monoidal category is said to be strict when the natural isomorphisms α, λ and ρ are identities.
Note that in a strict monoidal category the diagrams necessarily commute.

A symmetric monoidal category, is a monoidal category with an additional natural isomorphism
γA,B : A ⊗ B → B ⊗ A subject to some coherence conditions [34].

The idea of currying a function can be generalised to a monoidal category with the following notion
of exponential.

Definition 2.2 (Exponential) Let A be an object of a monoidal category (C,⊗, I, α, λ, ρ). A right
exponential −A is the right adjoint to − ⊗ A. That is, the right exponential to A is characterised by an
isomorphism

b·c : C(X ⊗ A,B) ∼= C(X,BA) : d·e

natural in X and B. We call the counit of the adjunction evB = didBAe : BA ⊗ A → B the evaluation
morphism of the right exponential. Note that b·c generalises currying, and d·e generalises uncurrying.

Similarly, a left exponential is the right adjoint to A ⊗ −. In the rest of the paper we consider only
right exponentials, and call them simply exponentials. When the exponential to A exists, we say that
A is an exponent. When the exponential exists for every object we say that the monoidal category has
exponentials or that it is a right-closed monoidal category.

When working on the category Set, we will write the exponential BA simply as A → B, which
coincides with the set Set(A,B) of morphisms between A and B.

The next lemma about exponential objects is useful for equational reasoning in the following sections.

Lemma 2.3 Let A,B,C,D be objects of a monoidal category (C,⊗, I, α, λ, ρ), such that the exponential
−C exists. For every f : B ⊗ C → D and g : A→ B, we have

1. ev ◦ (bfc ⊗ id) = f .

2. bf ◦ (g ⊗ id)c = bfc ◦ g.

Proof

ev ◦ (bfc ⊗ id)

= { definition ev }
dide ◦ (bfc ⊗ id)

= { definition (− ⊗ C) functor }
dide ◦ (− ⊗ C)(bfc)

= { adjunction }
dbfce

= { adjunction }
f

bf ◦ (g ⊗ id)c
= { definition (− ⊗ C) functor }
bf ◦ (− ⊗ C)(g)c

= { adjunction }
(f ◦ (− ⊗ C)(g))C ◦ bidc

= { (−C) functor }
fC ◦ ((− ⊗ C)(g))C ◦ bidc

= { naturality }
fC ◦ bidc ◦ g

= { adjunction }
bfc ◦ g

ut
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2.1 Monoids in Monoidal Categories

With the definition of monoidal category in place we may define monoids.

Definition 2.4 (Monoid) A monoid in a monoidal category (C,⊗, I, α, λ, ρ) is a tuple (M,m, e) where
M ∈ C and m and e are morphisms in C

I
e // M M ⊗Mmoo

such that the following diagrams commute.

(M ⊗M) ⊗M m⊗id // M ⊗M

m

��
M ⊗ (M ⊗M)

α

OO

id⊗m
// M ⊗M

m
// M

M ⊗M
m

&&

M ⊗ Iid⊗eoo

ρ

��
I ⊗M

e⊗id

OO

λ
// M

Given two monoids (M1,m1, e1) and (M2,m2, e1), a monoid homomorphism between them is an
arrow f : M1 →M2 in C such that the following diagram commutes.

M1

f

��

M1 ⊗M1
m1oo

f⊗f

��

I

e1
55

e2 **
M2 M2 ⊗M2m2

oo

Monoids in a monoidal category C together with monoid homomorphisms form the category Mon(C).
For ordinary monoids one has the notion of free monoid over a set X, which consists of the set of

words (or, equivalently lists) over X. This notion can be generalised to monoidal categories as follows:

Definition 2.5 (Free Monoid) Let (C,⊗, I, α, λ, ρ) be a monoidal category. The free monoid over an
object X in C is a monoid (F,mF , eF ) together with a morphism ins : X → F such that for any monoid
(G,mG, eG) and any morphism f : X → G, there exists a unique monoid homomorphism free f : F → G
that makes the following diagram commute.

X
ins //

f
##

F

free f

��
G

The morphism ins is called the insertion of generators into the free monoid.

There is a forgetful functor U : Mon(C)→ C which forgets the monoid structure and maps a monoid
(M,m, e) to M . When the left-adjoint (−)∗ to U exists, it maps an object X to the free monoid on
X. There are several conditions that guarantee the existence of free monoids [18, 29, 31]. Of particular
importance to us is the following proposition, which generalises the construction of free monoid in Set
as the set of words.

Proposition 2.6 Let (C,⊗, I, α, λ, ρ) be a monoidal category with exponentials. If C has binary coprod-
ucts, and for each A ∈ C the initial algebra for the endofunctor I + A ⊗ − exists, then for each A the
monoid A∗ exists and its carrier is the carrier of the initial algebra, which we write as µX. I +A⊗X.

Proof A multiplication on A∗ has the form m : A∗ ⊗ A∗ → A∗. By Definition 2.2, it is equivalent
to define a morphism A∗ → A∗A

∗
, and then use d−e to get m. Exploiting the universal property of
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initial algebras, we define such a morphism by providing an algebra I + A ⊗ A∗A
∗
→ A∗A

∗
, given by1[

bλA∗c, bδ ◦ inr ◦ (id ⊗ ev) ◦ α−1c
]

where δ : I +A ⊗ A∗ ∼= A∗ is the initial algebra structure over A∗.
The monoid structure on A∗ is then

e = δ ◦ inl

m = dL[bλA∗c, bδ ◦ inr ◦ (id ⊗ ev) ◦ α−1c]Me

where the banana brackets L−M denote the universal morphism from an initial algebra [36].
The insertion of generators and the universal morphism from the free monoid over A to the monoid

(G,mG, eG) for f : A→ G are:
ins = δ ◦ inr ◦ (id ⊗ e) ◦ ρ−1

free f = L[eG,mG ◦ (f ⊗ id)]M
The remaining proofs, showing that A∗ is in fact a monoid and that it satisfies the universal property,
follow by exploiting the initiality of the carrier object.

As an example, we provide a proof of one of the monoid laws.

m ◦ (e ⊗ id)

= { definition m }
dL[bλA∗c, bδ ◦ inr ◦ (id ⊗ ev) ◦ αc]Me ◦ (e ⊗ id)

= { lemma }
dL[bλA∗c, bδ ◦ inr ◦ (id ⊗ ev) ◦ αc]M ◦ ee

= { definition e }
dL[bλA∗c, bδ ◦ inr ◦ (id ⊗ ev) ◦ αc]M ◦ δ ◦ inle

= { initial algebra }
d[bλA∗c, bδ ◦ inr ◦ (id ⊗ ev) ◦ αc] ◦ inle

= { coproduct }
dbλA∗ce

= { adjunction }
λA∗

ut

It is well known that the free monoid over a set A is the set of lists of A. Unsurprisingly, when
implementing in Haskell the formula of Proposition 2.6 for the case of Set monoids, where ⊗ is pairing,
and I is the unit type, we obtain lists.

data List a = Nil | Cons (a, List a)

Definition 2.7 (Sub-monoid) Given a monoid (M, e,m) in C, and a monic i : M ′ ↪→ M in C, such
that for some (unique) maps e′ and m′, we have a commuting diagram

M M ⊗Mmoo

I

e′ ))

e
55

M ′

i

OO

M ′ ⊗M ′

i⊗i

OO

m′
oo

1For given f : A → C and g : B → C, then [f, g] is the unique morphism A + B → C such that [f, g] ◦ inl = f and
[f, g] ◦ inr = g.
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then (M ′, e′,m′) is a monoid, called the sub-monoid of M induced by the monic i, and i is a monoid
monomorphism from M ′ to M . Equivalently, a sub-monoid of M is given by a monic monoid homomor-
phism.

2.2 Cayley Representation of a Monoid

Every exponent in a monoidal category induces a monoid of endomorphisms:

Definition 2.8 (Monoid of endomorphisms) Let (C,⊗, I, α, λ, ρ) be a monoidal category. The monoid
of endomorphisms on any exponent A ∈ C is given by the diagram

I
iA // AA AA ⊗ AAcAoo

where

iA = b I ⊗ A λA // A c

cA = b (AA ⊗ AA) ⊗ A α−1
// AA ⊗ (AA ⊗ A)

idAA⊗ evA // AA ⊗ A evA // A c

Here iA stands for identity and cA for composition.

The Cayley representation theorem tells us that every monoid (M,m, e) in a monoidal category is a
sub-monoid of a monoid of endomorphisms whenever M is an exponent.

Theorem 2.9 (Cayley) Let (C,⊗, I, α, λ, ρ) be a monoidal category, and let (M, e,m) be a monoid in
C. If M is an exponent then (M, e,m) is a sub-monoid of the monoid of endomorphisms (MM , cM , iM ),
as witnessed by the monic rep = bmc : M ↪→ MM . Moreover, rep is split monic with left inverse abs
(i.e. abs ◦ rep = idM ) given by

abs = MM
ρ−1

MM //MM ⊗ I
idMM⊗ e //MM ⊗M evM //M

Proof The morphism rep : M
bmc // MM is a monoid morphism.

bmc ◦ eM
= { lemma 2.3.2 }
bm ◦ (eM ⊗ id)c

= { monoid }
bλMc

= { definition of iM }
iM

cM ◦ (bmc ⊗ bmc)
= { definition cM }
bev ◦ (idMM ⊗ ev) ◦ α−1c ◦ bmc ⊗ bmc

= { lemma 2.3.2 }
bev ◦ (idMM ⊗ ev) ◦ α−1 ◦ ((bmc ⊗ bmc) ⊗ idM )c

= { naturality α−1 }
bev ◦ (idMM ⊗ ev) ◦ (bmc ⊗ (bmc ⊗ idM )) ◦ α−1c

= { lemma 2.3.1 }
bev ◦ (bmc ⊗ m) ◦ α−1c

= { lemma 2.3.1 }
bm ◦ (idM ⊗ m) ◦ α−1c

= { monoid }
bm ◦ (m ⊗ idM )c

= { lemma 2.3.2 }
bmc ◦m
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We have abs ◦ rep = idM , and hence rep is monic.

abs ◦ rep
= { definition of abs and rep }

ev ◦ (idMM ⊗ eM ) ◦ ρ−1
MM ◦ bmc

= { naturality of ρ−1 }
ev ◦ (idMM ⊗ eM ) ◦ (bmc ⊗ id) ◦ ρ−1M

= { tensor }
ev ◦ (bmc ⊗ idM ) ◦ (idM ⊗ eM ) ◦ ρ−1M

= { lemma 2.3.1 }
m ◦ (idM ⊗ eM ) ◦ ρ−1M

= { monoid }
ρM ◦ ρ−1M

= { isomorphism }
idM

ut
The Cayley theorem for sets (Theorem 1.1) is an instance of this theorem for the category Set. As

new monoidal categories are introduced in the following sections, more instances will be presented.

3 Monads as Monoids

For any two categories C and D we have a category [C,D] with functors from C to D as objects and
natural transformations as morphisms. Therefore, endofunctors on Set form the category [Set,Set].

Endofunctors are implemented in Haskell by the following type class:

class Functor f where
fmap :: (a → b)→ f a → f b

Natural transformations are implemented by the following type:

type f
q−→ g = ∀x . f x → g x

In Section 4 we will explain why this is a good implementation of natural transformations.

Consider the (strict) monoidal category Endo◦ = ([Set,Set], ◦, Id) of endofunctors on Set, functor
composition and the identity functor. A monoid in this category consists of

• an endofunctor M ,

• a natural transformation m : M ◦M →M ,

• and a unit e : Id→M ; such that the diagrams

(M ◦M) ◦M mM // M ◦M

m

��
M ◦ (M ◦M)

Mm
// M ◦M

m
// M

M ◦M
m

&&

M ◦ Id
Meoo

Id ◦M

eM

OO

M

commute.
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Hence, a monoid in Endo◦ is none other than a monad, leading to the following often-heard slogan:
A monad is a monoid in a category of endofunctors.

The monoidal structure of Endo◦ is given in terms of the identity functor and the composition of
functors, which are implemented in Haskell by the datatypes:

data Id a = Id a

data (f ◦ g) a = Comp (f (g a))

with the obvious Functor instances. A monoid in Endo◦ is implemented by a Functor m, a multiplication
m ◦ m

q−→ m and a unit Id
q−→ m. We capture these requirements in the type class Triple where, for

ease of use, we have unfolded the definitions of natural transformation, identity functor, and functor
composition.

class Functor m ⇒ Triple m where
η :: a → m a
join :: m (m a)→ m a

We have called the type class Triple in order not to clash with standard nomenclature in Haskell which
uses the name Monad for the presentation of a monad through its Kleisli extension.

class Monad m where
return :: a → m a
(>>=) :: m a → (a → m b)→ m b

The latter has the advantage of not needing a Functor instance and of being easier to use when
programming. The two presentations are equivalent, as one can be obtained from the other by taking
η = return, join = (>>=id), and (>>=f ) = join ◦ fmap f .

Monads for notions of computation should be strong [37]. In general, a functor is said to be strong
when it interacts coherently with the monoidal structure.

Definition 3.1 An endofunctor F : C → C is strong when it comes equipped with a natural transforma-
tion

stX,Y : F (X) ⊗ Y → F (X ⊗ Y )

called a strength, such that the following diagrams commute.

FX ⊗ I

st

��

ρ

%%
F (X ⊗ I)

F (ρ)
// FX

FX ⊗ (Y ⊗ Z)
st //

α

��

F (X ⊗ (Y ⊗ Z))

F (α)

��
(FX ⊗ Y ) ⊗ Z

st⊗id
// F (X ⊗ Y ) ⊗ Z

st
// F ((X ⊗ Y ) ⊗ Z)

All endofunctors on the (cartesian) monoidal category Set come with a unique strength, so all functors
in [Set,Set] are strong. As we are always interested in this kind of functors, we do not mention the strength
explicitly.

The Haskell implementation of the unique strength for functors is the following.

st :: Functor f ⇒ f a → b → f (a, b)
st v b = fmap (λa → (a, b)) v

A monad is said to be strong when the monadic structure interacts coherently with the strength. In
the case of functors in [Set,Set], we get this coherence for free.
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3.1 Exponentials in Endo◦

Finding an exponential in Endo◦ means finding a functor (−)
F

, such that we have an isomorphism natural
in G and H:

Nat(H ◦ F ,G) ∼= Nat(H,GF ) (3.1)

where we write Nat(F,G) instead of [C,D](F,G) for the collection of natural transformations between F
and G.

A useful technique for finding exponentials such as GF in a functor category is to turn to the famous
Yoneda Lemma.

Theorem 3.2 (Yoneda) Let C be a locally small category (i.e. a category such that the collection of
morphisms between any two objects is a set). Then, there is an isomorphism

F X ∼= Nat(C(X,−), F )

natural in object X : C and functor F : C → Set. That is, the set F X is naturally isomorphic to the set
of natural transformations between the functor C(X,−) and the functor F .

Now, if an exponential GF exists in the strict monoidal category ([Set,Set], ◦, Id), then the following
must hold:

GF X ∼= Nat(X → −, GF )
∼= Nat((X → −) ◦ F ,G)
= Nat(X → F−, G)

where the first isomorphism is by Yoneda, and the second is by equation 3.1. Therefore, whenever the
expression Nat(X → F−, G) makes sense, it can be taken to be the definition of the exponential GF .
Making sense in this case means that the collection of natural transformations between X → F− and
G is a set. The collection Nat(F,G) of natural transformation between two Set endofunctors F and
G is not always a set, i.e. [Set,Set] is not locally small. However, a sufficient condition for Nat(F,G)
to be a set is for F to be small. Small functors [17] are endofunctors on Set which have a particular
size restriction (they must be a left Kan extension along the inclusion from a small subcategory.) For
example, container functors [1] and finitary functors [30] are small. Intuitively, this means that a small
functor is essentially a functor from a small category, and therefore certain size problems do not occur.
If F is a small functor, then Nat(F,G) is a set, and by the reasoning above the functor F is an exponent

in Endo◦, with exponential (−)
F

given by

GF X = Nat(X → F−, G)

Remark 3.3 Equation 3.1 means that the exponential (−)F is a right adjoint to the functor (− ◦ F ).
This exponential is known as the right Kan extension along F .

The Haskell implementation of the exponential with respect to functor composition is the following.

data Exp f g x = Exp (∀y . (x → f y)→ g y)

The components of isomorphism 3.1 are:

b·c :: Functor h ⇒ (∀x . h (f x )→ g x )→ h y → Exp f g y
btc y = Exp (λk → t (fmap k y))

d·e :: (∀y . h y → Exp f g y)→ h (f x )→ g x
dte x = let Exp g = t x in g id

11



3.2 Free Monads

A finitary endofunctor on Set is an endofunctor whose image is described by its action on finite sets. A
finitary endofunctor is a particular kind of small functor, as it is equivalent to a left Kan extension of
its domain restriction to the category of finite sets along the inclusion. By restricting Endo◦ to finitary
endofunctors we obtain the locally small, right-closed monoidal category EndoFin

◦ [30]. In this category,
we may apply Proposition 2.6 and obtain the usual formula for the free monad of an endofunctor F .

F ∗ ∼= Id + F ◦ F ∗

The same formula instantiated on an object X yields:

F ∗X ∼= X + F (F ∗X)

The formula above can be readily implemented by the datatype:

data Free◦ f x = Ret x
| Con (f (Free◦ f x ))

with monad instance:

instance Functor f ⇒ Monad (Free◦ f ) where
return x = Ret x
(Ret x ) >>= f = f x
(Con m)>>= f = Con (fmap (>>=f ) m)

The insertion of generators and the universal morphism from the free monad are:

ins :: Functor f ⇒ f
q−→ Free◦ f

ins x = Con (fmap Ret x )

free :: (Functor f ,Monad m)⇒ (f
q−→ m)→ (Free◦ f

q−→ m)
free f (Ret x ) = return x
free f (Con t) = join (f (fmap (free f ) t))

3.3 Cayley Representation of Monads

For an exponent F , we may apply Theorem 2.9 and obtain the monad of endomorphisms FF , the monad
morphism rep, and the natural transformation abs. The monad FF corresponding to the monoid of
endomorphisms on a functor F is called the codensity monad on F [34, 26].

The codensity monad is implemented by the following datatype.

type Rep f = Exp f f

instance Monad (Rep f ) where
return x = Exp (λh → h x )
(Exp m)>>= f = Exp (λh → m (λx → let Exp t = f x in t h))

The definition follows from the general definition of monoid of endomorphisms. The morphisms
converting from a monad m to Rep m and back are the following.

rep :: Monad m ⇒ m x → Rep m x
rep m = Exp (λk → m >>= k)

12



abs :: Monad m ⇒ Rep m x → m x
abs (Exp m) = m return

By Theorem 2.9, we know that abs ◦ rep = id, and that abs is a monad morphism. Hence, we may
change the representation of monadic computations on m, and perform computations on Rep m. This
change of representation is exactly the optimisation introduced by Voigtländer [47] and shown correct
by Hutton et al. [23].

Therefore, difference lists and the codensity transformation are both instances of the same change
of representation: the Cayley representation.

4 Ends and Coends

In this section we review the concept of a special type of limit called end and its dual, a special type of
colimit called coend. These concepts will be instrumental in the development of the next sections.

4.1 Ends

A limit for a functor F : C → D is a universal cone to F , where a cone is a natural transformation
∆D → F from the functor which is constantly D, for a D ∈ D, into the functor F .

When working with functors with mixed variance F : Cop ×C → D, rather than considering its limit,
one is usually interested in its end. An end for a functor F : Cop×C → D is a universal wedge to F , where
a wedge is a dinatural transformation ∆D → F from the functor which is constantly D for a D ∈ D,
into the functor F . We make this precise with the following definitions.

Definition 4.1 A dinatural transformation α : F → G between two functors F,G : Cop × C → D is a
family of morphisms of the form αC : F (C,C)→ G(C,C), one morphism for each C ∈ C, such that for
every morphism f : C → C ′ the following diagram commutes.

F (C,C)
αC // G(C,C)

G(id,f)

&&
F (C ′, C)

F (f,id)
88

F (id,f) &&

G(C,C ′)

F (C ′, C ′)
αC′

// G(C ′, C ′)

G(f,id)

88

An important difference between natural transformations and dinatural transformations is that the
latter cannot be composed in general.

Definition 4.2 A wedge from an object V ∈ D to a functor F : Cop×C → D is a dinatural transformation
from the constant functor ∆V : Cop × C → D to F . Explicitly, an object V together with a family of
morphisms αX : V → F (X,X) such that for each f : C → C ′ the following diagram commutes.

F (C,C)

F (id,f)

&&
V

αC

;;

αC′ ##

F (C,C ′)

F (C ′, C ′)

F (f,id)

88

13



In the same way a limit is a final cone, an end is a final wedge.

Definition 4.3 The end of a functor F : Cop × C → D is a final wedge for F . Explicitly, it is an object
V ∈ D together with a family of morphisms ωC : V → F (C,C) such that the diagram

F (C,C)

F (id,f)

&&
V

ωC

;;

ωC′ ##

F (C,C ′)

F (C ′, C ′)

F (f,id)

88

commutes for each f : C → C ′, and such that for every wedge from V ′ ∈ D, given by a family of
morphisms γC : V ′ → F (C,C), there exists a unique morphism 〈γ〉 : V ′ → V such that ωC ◦ 〈γ〉 = γC .

The object V is usually denoted by
∫
X
F (X,X) and referred to as “the end of F”. The universal

property of ends tell us each morphism into an end is in a one-to-one correspondence with a dinatural
family of morphisms:

〈γ〉 : Y →
∫
X
F (X,X)

γX : Y → F (X,X), dinatural in X

Let F,G : Cop×C → Set, with C a small category. If we denote the dinatural transformations between
F and G by Dinat(F,G), then:

Dinat(F,G) ∼=
∫
X

F (X,X)→ G(X,X)

Natural transformations are a particular instance of dinatural transformations. More concretely, when
F and G are functors in one covariant variable (i.e. dummy in their contravariant variable), Dinat(F,G)
reduces to Nat(F,G) and we have

Nat(F,G) ∼=
∫
X

FX → GX

One nice feature of ends is that they lead to a natural implementation of categorical concepts in Haskell
by replacing the end by a universal quantifier [7]. For example, the class of natural transformations
between functors F and G is, ∫

X

FX → GX

By implementing this end as a universal quantifier we obtain the type constructor of natural trans-
formations which was introduced in Section 3.

type f
q−→ g = ∀x . f x → g x

4.2 Coends

There are dual notions of wedges and ends, namely cowedges and coends. We briefly summarise their
definitions.

Definition 4.4 A cowedge from F is an object V together with a dinatural transformation α : F → ∆V .
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Definition 4.5 A coend is an initial cowedge. Explicitly, a coend of F is an object V together with a
family of morphisms ιC : F (C,C) → V such that ιC ◦ F (f, id) = ιC′ ◦ F (id, f) for each f : C → C ′,
which is universal with respect to this property: for every cowedge given by an object V ′ and a family of
morphisms γC : F (C,C)→ V ′, there exists a unique morphism [γ] : V → V ′ such that γC = [γ] ◦ ιC .

The object V is usually denoted by
∫X

F (X,X) and referred to as “the coend of F”. The universal
property of coends tell us that each morphism out of a coend is in a one-to-one correspondence with a
family of dinatural morphisms.

[γ] :
∫X

F (X,X)→ Y

γX : F (X,X)→ Y, dinatural in X

In the same way an end can be implemented as a universal quantifier, a coend can be implemented
as an existential quantifier.

4.3 Yoneda Lemma in End and Coend Form

We can express the Yoneda Lemma using ends and coends [16]:

FX ∼=
∫
Y

C(X,Y )→ FY ∼=
∫ Y

FY × C(Y,X)

The end form and coend form of the Yoneda lemma lead to straightforward implementations in
Haskell. The components of the Yoneda isomorphism in end form are implemented as a polymorphic
function between types f x and ∀y . (x → y)→ f y .

ϕ :: Functor f ⇒ f x → (∀y . (x → y)→ f y)
ϕ v = λf → fmap f v

ϕ−1 :: (∀y . (x → y)→ f y)→ f x
ϕ−1 g = g id

Similarly, its coend form (also known as “coYoneda Lemma”) is expressed by

ψ :: Functor f ⇒ f x → (∃ y . (f y , y → x ))
ψ v = (v , id)

ψ−1 :: Functor f ⇒ (∃ y . (f y , y → x ))→ f x
ψ−1 (x , g) = fmap g x

5 Applicative Functors as Monoids

Similarly to monads, applicative functors [35] are a class of functors used to write effectful computations.
Compared to monads, applicative functors are a strictly weaker notion: every monad is an applicative
functor (see Section 8.3), but there are applicative functors that are not monads. The main difference
between monads and applicative functors is that the latter do not allow effects to depend on previous
values, i.e. the effects are fixed beforehand.

In Haskell, applicative functors are represented by the following type class:
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class Functor f ⇒ Applicative f where
pure :: x → f x
(~) :: f (x → y)→ f x → f y

Since their introduction, applicative functors have been characterised categorically as strong lax
monoidal functors [35]. In Section 3, we already explained the notion of strength for a functor. Now, we
explain what is a lax monoidal functor. In simple words, a lax monoidal functor is a functor preserving
the monoidal structure of the categories involved.

Definition 5.1 A lax monoidal functor F : C1 → C2 is a functor between the underlying categories of two
monoidal categories (C1,⊗, I1, α1, λ1, ρ1) and (C2,⊕, I2, α2, λ2, ρ2) together with a natural transformation

φX,Y : FX ⊕ FY → F (X ⊗ Y )

and a morphism
φ◦ : I2 → FI1

such that the following diagrams commute.

FX ⊕ (FY ⊕ FZ)
id⊕φY,Z //

α2

��

FX ⊕ F (Y ⊗ Z)
φX,(Y⊗Z) // F (X ⊗ (Y ⊗ Z))

F (α1)

��
(FX ⊕ FY ) ⊕ FZ

φX,Y ⊕id
// F (X ⊗ Y ) ⊕ FZ

φ(X⊗Y ),Z

// F ((X ⊗ Y ) ⊗ Z)

FX ⊕ I2
id⊕φ◦ //

ρ2

��

FX ⊕ FI1

φX,I1

��
FX F (X ⊗ I1)

F (ρ1)
oo

I2 ⊕ FX
φ◦⊕id //

λ2

��

FI1 ⊕ FX

φI1,X

��
FX F (I1 ⊗ X)

F (λ1)
oo

A monoidal functor is a lax monoidal functor in which φ and φ◦ are isomorphisms.

A strong lax monoidal functor is simply a lax monoidal functor which is also a strong functor and in
which the strength interacts coherently with the monoidal structure. In our setting of Set endofunctors
we get this coherence for free.

The categorical characterisation of applicative functors as strong lax monoidal functors gives rise to
an alternative (but equivalent) implementation of applicative functors:

class Functor f ⇒ Monoidal f where
unit :: f ()
(?) :: (f x , f y)→ f (x , y)

We saw in Section 3 how monads are monoids in a particular monoidal category. Applicative functors
can be shown to be monoids too. Interestingly, they are monoids in the same category as monads: An
applicative functor is a monoid in a category of endofunctors. However, it is not the same monoidal
category, as this time we must consider a different notion of tensor. For monads we used composition;
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for applicative functors we use a tensor called Day convolution [14]. Given a cartesian closed category
C, two functors F,G : C → C, and an object X in C, the Day convolution (F ? G)X is a new object in C
defined as:

(F ? G)X =

∫ Y,Z

FY ×GZ ×XY×Z

The coend does not necessarily exist for arbitrary Set endofunctors, but it is guaranteed to exist for
small functors [17]. In the remainder of the section we will work with [Set,Set]S , the category of small
Set endofunctors.

Proposition 5.2 1. The mapping of objects F ? G extends to a functor.

2. The Day convolution is a bifunctor − ? − : [Set,Set]S × [Set,Set]S → [Set,Set]S.

Proof (Sketch) Dualising theorem IX.7.1 of Mac Lane [34], which introduces the ends of natural trans-
formations, it can be shown that F ? G is not only a mapping between objects, but also a mapping
between morphisms, and that it respects the functor laws. Furthermore, given natural transformations
α : F → G and β : H → I, we can form a natural transformation α ? β : F ? H → G ? I. ut

The coend in the definition of the Day convolution can be implemented by an existential datatype. In
the definition below, done in GADT style [42], the type variables y and z are existentially quantified.

data (f ? g) x where
Day :: f y → g z → ((y , z )→ x )→ (f ? g) x

instance (Functor f ,Functor g)⇒ Functor (f ? g) where
fmap f (Day x y h) = Day x y (f ◦ h)

The Day convolution is a bifunctor with the following mapping of morphisms:

bimap :: (f
q−→ h)→ (g

q−→ i)→ (f ? g
q−→ h ? i)

bimap m1 m2 (Day x y f ) = Day (m1 x ) (m2 y) f

The following proposition is useful for writing morphisms from the convolution of two functors onto
another object.

Proposition 5.3 There is a one-to-one correspondence defining morphisms going out of a Day convo-
lution ∫

X

(F ? G)X → HX ∼=
∫
Y,Z

(FY ×GZ)→ H(Y × Z) (5.1)

which is natural in F , G, and H, and the morphisms witnessing the isomorphism can be written using
the universal property of ends.

Proof ∫
X

(F ? G)X → HX ∼=
∫
X

[∫ Y,Z

FY ×GZ × ((Y × Z)→ X)

]
→ HX

∼=
∫
X,Y,Z

[FY ×GZ × ((Y × Z)→ X)]→ HX

∼=
∫
X,Y,Z

(FY ×GZ)→ ((Y × Z)→ X)→ HX

∼=
∫
Y,Z

(FY ×GZ)→
∫
X

((Y × Z)→ X)→ HX

∼=
∫
Y,Z

(FY ×GZ)→ H(Y × Z)
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ut

Remark 5.4 (Day convolution as a left Kan extension) In view of Proposition 5.3, F ? G is the
left Kan extension of ×̄ ◦ (F × G) along ×̄, where ×̄ : C × C → C is the functor which takes an object
(X,Y ) of the product category into a product of objects X × Y .

Proposition 5.3 shows an equivalence between the type (f ? g)
q−→ h and the type ∀y z . (f y , g z )→

h (y , z ).

ϑ :: (f ? g
q−→ h)→ (f y , g z )→ h (y , z )

ϑ f (x , y) = f (Day x y id)

ϑ−1 :: Functor h ⇒ (∀y z . (f y , g z )→ h (y , z ))→ (f ? g
q−→ h)

ϑ−1 g (Day x y f ) = fmap f (g (x , y))

In contrast to the composition tensor, the Day convolution is not strict. Moreover, since we have an
isomorphism γ : (F ? G)X → (G ? F )X natural in F , G, and X, the Day convolution is a symmetric
tensor. This means that, together with appropriate natural transformations α, λ, and ρ, Endo? =
([Set,Set]S , ?, Id, α, λ, ρ, γ) is a symmetric monoidal category [14].

Here we present the natural isomorphisms of the monoidal category Endo?. One direction is given
by the following natural transformations:

λ :: Functor f ⇒ Id ? f
q−→ f

λ (Day (Id x ) y f ) = fmap (f ◦ (λy → (x , y))) y

ρ :: Functor f ⇒ f ? Id
q−→ f

ρ (Day x (Id y) f ) = fmap (f ◦ (λz → (z , y))) x

α :: f ? (g ? h)
q−→ (f ? g) ? h

α (Day x (Day y z f ) g) = Day (Day x y f1) z f2
where f1 = λ(c, e)→ (c, λh → f (e, h))

f2 = λ((c, h), d)→ g (c, h d)

γ :: (f ? g)
q−→ (g ? f )

γ (Day x y f ) = Day y x (f ◦ swap)
where swap (x , y) = (y , x )

Their respective inverses are defined as:

λ−1 :: Functor f ⇒ f
q−→ Id ? f

λ−1 x = Day (Id ()) x snd

ρ−1 :: Functor f ⇒ f
q−→ f ? Id

ρ−1 x = Day x (Id ()) fst

α−1 :: (f ? g) ? h
q−→ f ? (g ? h)

α−1 (Day (Day x y f ) z g) = Day x (Day y z f1) f2
where f1 = λ(d , b)→ ((λc → f (c, d)), b)

f2 = λ(c, (h, b))→ g (h c, b)

Remark 5.5 (Alternative presentations of the Day convolution) In our setting of Set endofunc-
tors, the Day convolution has different alternative representations [14]:

(F ? G)X ∼=
∫ Y

FY ×G(Y → X) ∼=
∫ Y

F (Y → X)×GY (5.2)
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The equivalences essentially follow from Yoneda and cartesian closure.

The corresponding implementations of the two alternative representations are:

data (f ?1 g) x where
Day1 :: f y → g (y → x )→ (f ?1 g) x

data (f ?2 g) x where
Day2 :: f (y → x )→ g y → (f ?2 g) x

In these two definitions, the type variable y is existentially quantified.

5.1 Monoids in Endo?

A monoid in Endo? amounts to:

• an endofunctor F ,

• a natural transformation m : F ? F → F ,

• and a unit e : Id→ F ; such that the following diagrams commute.

(F ? F ) ? F
m?F // F ? F

m

��
F ? (F ? F )

α

OO

F?m
// F ? F

m
// F

F ? F

m

%%

F ? Id
F?eoo

ρ

��
Id ? F

e?F

OO

λ
// F

From the unit e, one can consider the component e1 : 1 → F1. This component defines a mapping
that can be used as the unit morphism for a lax monoidal functor. Similarly, using Equation 5.1, the
morphism m : F ? F → F is equivalent to a family of morphisms

ϑ(m)X,Y : FX × FY → F (X × Y )

which is natural in X and Y . This family of morphisms corresponds to the multiplicative transformation
in a lax monoidal functor. Putting together F , ϑ(m) and e1, we obtain a strong lax monoidal functor
on Set. That is, we obtain an applicative functor.

It remains to be seen if the converse is true: can a monoid in Endo? be defined from an applicative
functor? Given an applicative functor (F, φ, φ◦), it easy to see that a multiplication for the monoid can
be given from φ, using Equation 5.1 again. What remains to be seen is if we can recover the whole
natural transformation e : Id → F out of only one component φ◦ : 1 → F1. We do so by using the
strength of F (which exists since it is an endofunctor on Set): the natural transformation e is recovered
by the following composition

X
〈!,id〉 // 1×X

φ◦×id // F1×X
st1,X // F (1×X)

Fπ2 // FX

which defines a morphism eX : X → FX for each X.
All things considered, applicative functors are monoids in the category of endofunctors which is

monoidal with respect to the Day convolution.

5.2 Exponentials in Endo?

To apply the Cayley representation, first it must be determined that the category Endo? is monoidal
closed. To do so, we use the same technique we used in section 3.1 for finding exponentials in Endo◦: we
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apply the Yoneda lemma and then the universal property of exponentials.

GFX ∼= Nat(X → −, GF )
∼= Nat((X → −) ? F ,G)

Therefore, whenever the last expression makes sense, it can be used as the definition of the exponential
object. Since we are working in a category of small functors, the expression always makes sense and the
exponential is always guaranteed to exist. Using Proposition 5.3 and Yoneda, an alternative form for
GF can be derived [15]:

GFX ∼= Nat(F,G(X ×−)) ∼=
∫
Y

FY → G(X × Y )

Using Haskell, this exponential can be represented as:

data Exp f g x = Exp (∀y . f y → g (x , y))

The components of the isomorphism showing it is an exponential are:

b·c :: (f ? g
q−→ h)→ f

q−→ Exp g h
bmc x = Exp (λy → m (Day x y id))

d·e :: Functor h ⇒ (f
q−→ Exp g h)→ f ? g

q−→ h
df e (Day x y h) = fmap h (t y)

where Exp t = f x

We therefore conclude that the symmetric monoidal category Endo? is closed.

5.3 Free Applicative Functor

By Proposition 2.6, the free monoid, viz. the free applicative functor, exists.

The direct application of Proposition 2.6 yields the following implementation of the free applicative
functor.

data Free? f x = Pure x | Rec ((f ? Free? f ) x )

Inlining the definition of ?, we obtain the simplified datatype

data Free? f a where
Pure :: x → Free? f x
Rec :: f y → Free? f z → ((y , z )→ x )→ Free? f x

with the following instances:

instance Functor f ⇒ Functor (Free? f ) where
fmap g (Pure x ) = Pure (g x )
fmap g (Rec x y f ) = Rec x y (g ◦ f )

instance Functor f ⇒ Applicative (Free? f ) where
pure = Pure
Pure g ~ z = fmap g z
(Rec x y f ) ~ z = Rec x (pure (, ) ~ y ~ z ) (λ(a, (b, c))→ f (a, b) c)
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The implementation of the insertion of generators and the universal morphism from the free applicative
is:

ins :: Functor a ⇒ f
q−→ Free? f

ins x = Rec x (Pure ()) fst

free :: (Functor f ,Applicative g)⇒ (f
q−→ g)→ (Free? f

q−→ g)
free f (Pure x ) = pure x
free f (Rec x y g) = pure (curry g) ~ f x ~ free f y

The alternative presentations of the Day convolution of Equation 5.2 result in the alternative types
?1 and ?2. Using these types instead of ? in the definition of the free applicative functor, results in
two alternative definitions:

data Free′? f x where
Pure′ :: x → Free′? f x
Rec′ :: f y → Free′? f (y → x )→ Free′? f x

data Free′′? f x where
Pure′′ :: x → Free′′? f x
Rec′′ :: f (y → x )→ Free′′? f y → Free′′? f x

Hence, the two alternative presentations of the Day convolution given in Equation 5.2 give rise to the
two notions of free applicative functor found by Capriotti and Kaposi [11].

5.4 Cayley Representation for Applicative Functors

Having found the exponentials in Endo?, we may apply Theorem 2.9 and construct the corresponding
Cayley representation.

The Cayley representation of an applicative functor is the exponential of the functor over itself.

type Rep f = Exp f f

instance Functor f ⇒ Functor (Rep f ) where
fmap f (Exp h) = Exp (fmap (λ(x , y)→ (f x , y)) ◦ h)

instance Functor f ⇒ Applicative (Rep f ) where
pure c = Exp (fmap (c, ))
Exp f ~ Exp a = Exp (fmap g ◦ a ◦ f )
where g (x , (f , c)) = (f x , c)

The Applicative instance is obtained from the general construction of the monoid of endomorphisms.
Finally, from Theorem 2.9, we obtain the applicative morphism rep and the natural transformation
abs, together with the property that abs ◦ rep = id.

rep :: Applicative f ⇒ f
q−→ Rep f

rep x = Exp (λy → pure (, ) ~ x ~ y)

abs :: Applicative f ⇒ Rep f
q−→ f

abs (Exp t) = fmap fst (t (pure ()))
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6 Weak Arrows as Monoids

Having successfully fit both monads and applicative functors as monoids in a monoidal category, we now
focus on a third popular notion of computation: arrows.

Arrows [22] are a generalisation of monads that can offer standardised interfaces to libraries that are
incompatible with the monadic interface, including parsers with static analysis, quantum computing [46],
secure information flow [32] and functional reactive programming [20].

Asada [4] characterised arrows as strong monads in a bicategory. Closer to our intentions of working
with monoids in a monoidal category, Jacobs et al. [24] showed that weak arrows (arrows without the
operation first) are monoids in the category of profunctors. They recover (strong) arrows by adding the
strength on top of the monoid structure.

We briefly review the results by Jacobs et al. on weak arrows and then proceed to obtain free weak
arrows, and a Cayley representation for weak arrows.

A profunctor from C to D is a functor Dop × C → Set, sometimes written as C −→+ D. In a sense,
profunctors are to relations what functors are to functions. A morphism between two profunctors is a
natural transformation between the profunctors considered as functors.

We indicate that a type constructor p :: ∗ → ∗ → ∗ is a profunctor by providing an instance of the
following type class.

class Profunctor p where
dimap :: (x ′ → x )→ (y → y ′)→ p x y → p x ′ y ′

such that the following laws hold

dimap id id = id

dimap (f ◦ g) (h ◦ i) = dimap g h ◦ dimap f i

Notice how, as opposed to a bifunctor, the type constructor is contravariant in its first argument.

Definition 6.1 The category of profunctors from C to D, denoted Prof(C,D), has as objects profunctors
from C to D, and as morphisms natural transformations between functors Dop × C → Set.

From now on, we will focus on profunctors C −→+ C, where C is a small cartesian closed subcategory
of Set with inclusion J : C → Set. To avoid notational clutter, we omit the functor J when considering
elements of C as elements of Set.

Profunctors can be composed in such a way that gives a notion of tensor.

Definition 6.2 (Profunctor tensor [9]) Given two profunctors P,Q : C −→+ C, their composition is

(P ⊗ Q)(X,Y ) =

∫ Z

P (X,Z)×Q(Z, Y )

The profunctor tensor is implemented in Haskell as follows:

data (p ⊗ q) x y where
PCom :: p x z → q z y → (p ⊗ q) x y

instance (Profunctor p,Profunctor q)⇒ Profunctor (p ⊗ q) where
dimap m1 m2 (PCom p q) = PCom (dimap m1 id p) (dimap id m2 q)
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This tensor is analogous to the composition of relations, replacing the existential quantification by a
coend. The functor Hom : Cop × C → Set mapping two objects to the set of morphisms between them is
a small functor and it is the unit for profunctor composition:

(P ⊗ Hom)(X,Y ) =

∫ Z

P (X,Z)× (Z → Y ) ∼= P (X,Y )

The equality holds by definition of profunctor composition, and the isomorphism holds by the Yoneda
Lemma. Thus, we may define a natural isomorphism ρ : P ⊗ Hom ∼= P . Analogously, we can define the
other two natural isomorphisms λ : Hom ⊗ P ∼= P and α : P ⊗ (Q ⊗ R) ∼= (P ⊗ Q) ⊗ R and obtain a
monoidal structure for [Cop × C,Set], with profunctor composition ⊗ as its tensor, and the Hom functor
as its unit. We denote this monoidal category by Pro.

We have shown how to implement the objects of Pro as instances of the type class ProFunctor.
Morphisms between profunctors are implemented as

type p
q q−→ q = ∀x y . p x y → q x y

The unit Hom is simply the type of functions.

type Hom = (→)

The natural isomorphisms λ, ρ, and α are implemented as

λ :: Profunctor p ⇒ Hom⊗ p
q q−→ p

λ (PCom f x ) = dimap f id x

ρ :: Profunctor p ⇒ p ⊗ Hom
q q−→ p

ρ (PCom x f ) = dimap id f x

α :: p ⊗ (q ⊗ r)
q q−→ (p ⊗ q)⊗ r

α (PCom p (PCom q r)) = PCom (PCom p q) r

with inverses

λ−1 :: Profunctor p ⇒ p
q q−→ Hom⊗ p

λ−1 f = PCom id f

ρ−1 :: Profunctor p ⇒ p
q q−→ p ⊗ Hom

ρ−1 f = PCom f id

α−1 :: (p ⊗ q)⊗ r
q q−→ p ⊗ (q ⊗ r)

α−1 (PCom (PCom p q) r) = PCom p (PCom q r)

What are the monoids in this monoidal category? A monoid in Pro amounts to:

• a profunctor A,

• a natural transformation m : A ⊗ A→ A,

• and a unit e : Hom→ A; such that the diagrams

(A ⊗ A) ⊗ A m⊗A // A ⊗ A

m

��
A ⊗ (A ⊗ A)

α

OO

A⊗m
// A ⊗ A

m
// A

A ⊗ A
m

''

A ⊗ Hom
A⊗eoo

ρ

��
Hom ⊗ A

e⊗A

OO

λ
// A

commute.
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Using the isomorphism(∫ Z

A(X,Z)×A(Z, Y )

)
→ A(X,Y ) ∼=

∫
Z

A(X,Z)×A(Z, Y )→ A(X,Y )

we get that a natural transformation m : A ⊗ A → A is equivalent to a family of morphisms mX,Y,Z :
A(X,Z)×A(Z, Y )→ A(X,Y ) which is natural in X and Y and dinatural in Z.

This presentation leads naturally to the following implementation of monoids in the monoidal category
Pro.

class Profunctor a ⇒WeakArrow a where
arr :: (x → y)→ a x y
(≫) :: a x y → a y z → a x z

The laws that must hold are:

(a ≫ b) ≫ c = a ≫ (b ≫ c)

arr f ≫ a = dimap f id a

a ≫ arr f = dimap id f a

arr (g ◦ f ) = arr f ≫ arr g
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6.1 Exponentials in Pro

Exponential objects in Pro exist [9] and can be calculated with the help of the Yoneda Lemma. The
calculation of the exponential of Q to P is:

QP (X,Y ) ∼= Nat((Cop × C)((X,Y ),−), QP )
∼= Nat((Cop × C)((X,Y ),−) ⊗ P ,Q)

∼=
∫
V,W

((Cop × C)((X,Y ),−) ⊗ P )(V,W )→ Q(V,W )

∼=
∫
V,W

[∫ Z

(Cop × C)((X,Y ), (V,Z))× P (Z,W )

]
→ Q(V,W )

∼=
∫
V,W

[∫ Z

Cop(X,V )× C(Y,Z)× P (Z,W )

]
→ Q(V,W )

∼=
∫
V,W

[
Cop(X,V )×

∫ Z

C(Y,Z)× P (Z,W )

]
→ Q(V,W )

∼=
∫
V,W

[Cop(X,V )× P (Y,W )]→ Q(V,W )

∼=
∫
V,W

[P (Y,W )× Cop(X,V )]→ Q(V,W )

∼=
∫
V,W

P (Y,W )→ (Cop(X,V )→ Q(V,W ))

∼=
∫
W

P (Y,W )→
∫
V

Cop(X,V )→ Q(V,W )

∼=
∫
W

P (Y,W )→ Q(X,W )

∼=
∫
Z

P (Y,Z)→ Q(X,Z)

The implementation of exponentials in Pro follows the definition above:

data Exp p q x y = Exp (∀z . p y z → q x z )

instance (Profunctor p,Profunctor q)⇒ Profunctor (Exp p q) where
dimap m1 m2 (Exp pq) = Exp (dimap m1 id ◦ pq ◦ dimap m2 id)

The components of the isomorphism which shows that Exp is an exponential are:

b·c :: (p ⊗ q
q q−→ r)→ (p

q q−→ Exp q r)
bmc f = Exp (λg → m (PCom f g))

d·e :: (p
q q−→ Exp q r)→ (p ⊗ q

q q−→ r)
dme (PCom f g) = e g where Exp e = m f

6.2 Free Weak Arrows

By Proposition 2.6, the free monoid, viz. the free weak arrow, exists.

The direct application of Proposition 2.6 yields the following implementation of the free weak arrow.
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data Free⊗ a x y where
Hom :: (x → y)→ Free⊗ a x y
Comp :: a x z → Free⊗ a z y → Free⊗ a x y

with the following instances:

instance Profunctor a ⇒ Profunctor (Free⊗ a) where
dimap f g (Hom h) = Hom (g ◦ h ◦ f )
dimap f g (Comp x y) = Comp (dimap f id x ) (dimap id g y)

instance Profunctor a ⇒WeakArrow (Free⊗ a) where
arr f = Hom f
(Hom f ) ≫ c = dimap f id c
(Comp x y) ≫ c = Comp x (y ≫ c)

The insertion of generators ins and the universal morphism free from the free weak arrow are:

ins :: Profunctor a ⇒ a
q q−→ Free⊗ a

ins x = Comp x (arr id)

free :: (Profunctor a,WeakArrow b)⇒ (a
q q−→ b)→ (Free⊗ a

q q−→ b)
free f (Hom g) = arr g
free f (Comp x y) = f x ≫ free f y

6.3 Cayley Representation of Weak Arrows

Having found the exponentials in Pro, we may apply Theorem 2.9 and construct the corresponding Cayley
representation.

The Cayley representation is the exponential of a profunctor over itself.

type Rep a = Exp a a

instance Profunctor a ⇒WeakArrow (Rep a) where
arr f = Exp (λy → dimap f id y)
(Exp f ) ≫ (Exp g) = Exp (λy → f (g y))

The instance is derived from the general construction of the monoid of endomorphisms. Finally, from
Theorem 2.9, we obtain the weak arrow morphism rep and the natural transformation abs, together
with the property that abs ◦ rep = id.

rep :: WeakArrow a ⇒ a
q q−→ Rep a

rep x = Exp (λy → x ≫ y)

abs :: WeakArrow a ⇒ Rep a
q q−→ a

abs (Exp f ) = f (arr id)

7 Arrows as Monoids

Arrows are weak arrows with an additional operation called first. In order to see arrows as monoids,
we need to internalise the first operation in the categorical presentation. Jacobs et al. [24] solve this
problem by adjoining a first operator to monoids in Pro: an arrow is a monoid (A,m, e) together with a
family of morphisms first : A(X,Y ) → A(X × Z, Y × Z). We take an alternative path. We work on a
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category of strong profunctors (profunctors with a first-like operator), and then consider monoids in this
new monoidal category. This approach mirrors the manner in which (strong) monads and applicative
functors were obtained, and therefore we gain uniformity.

Definition 7.1 A strength for a profunctor P : Cop × C → Set is a family of morphisms

stX,Y,Z : P (X,Y )→ P (X × Z, Y × Z)

that is natural in X, Y and dinatural in Z, such that the following diagrams commute.

P (X,Y )

st1

��

P (π1,id)

**
P (X × 1, Y × 1)

P (id,π1)
// P (X × 1, Y )

P (X,Y )

stV×W

��

stV // P (X × V, Y × V )

stW

��
P (X × (V ×W ), Y × (V ×W ))

P (α−1,α)

// P ((X × V )×W, (Y × V )×W )

We say that a pair (P, st) is a strong profunctor. The diagrams that must commute here are analogous
to those for a tensorial strength of an endofunctor (Definition 3.1).

The type class of strong profunctors is a simple extension of Profunctor.

class Profunctor p ⇒ StrongProfunctor p where
first :: p x y → p (x , z ) (y , z )

Instances of the StrongProfunctor class are subject to the following laws.

dimap id π1 (first a) = dimap π1 id a

first (first a) = dimap α−1 α (first a)

dimap (id × f ) id (first a) = dimap id (id × f ) (first a)

The first two laws correspond to the two diagrams above, while the third one corresponds to dinatu-
rality of first in the z variable.

In contrast to strong functors on Set, the strength of a profunctor may not exist, and when it does,
it may not be unique.

As an example of strengths not being unique, consider the following profunctor:

data Double x y = Double ((x , x )→ (y , y))

instance Profunctor Double where
dimap f g (Double h) = Double ((g × g) ◦ h ◦ (f × f ))

There exist two possible instances satisfying the strength axioms.

instance StrongProfunctor Double where
first (Double f ) = Double g
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where g ((x , z ), (x ′, z ′)) = ((y , z ), (y ′, z ′))
where (y , y ′) = f (x , x ′)

instance StrongProfunctor Double where
first (Double f ) = Double g

where g ((x , z ), (x ′, z ′)) = ((y , z ), (y ′, z ))
where (y , y ′) = f (x , x ′)

Therefore, the profunctor Double does not have a unique strength.

Given two strong profunctors (P, stP ), (Q, stQ), a strong natural transformation is a natural trans-
formation α : P → Q that is compatible with the strengths:

P (X,Y )
stP //

α

��

P (X × Z, Y × Z)

α

��
Q(X,Y )

stQ
// Q(X × Z, Y × Z)

Following the approach to strong monads of Moggi [39], we work with the category [Cop × C,Set]str
of strong profunctors.

Definition 7.2 The category [Cop × C,Set]str consists of pairs (P, st) as objects, where P is a profunctor
and st is a strength for it, and of strong natural transformations as morphisms.

Even though the strength for a profunctor is not unique, we usually write (P, stP ). Here the super-
script P in stP is just syntax to distinguish between various strengths for different profunctors, but it
does not mean that stP is the strength for P .

We now seek to equip the category of strong profunctors with a monoidal structure. The monoidal
structure of Pro can be used for strong profunctors. The unit Hom has an obvious strength. The
strength for the composition of two profunctors, however, is a bit more involved. Given two strong
profunctors (P, stP ) and (Q, stQ), one can use the universal property of coends and define the strength

of their composition as stP⊗QZ = [h], where h is a dinatural transformation on V defined as the following
composition:

P (X,V )×Q(V, Y )
stPZ×st

Q
Z

−−−−−→ P (X × Z, V × Z)×Q(V × Z, Y × Z)
ιV×Z

−−−−−→ (P ⊗ Q) (X × Z, Y × Z)

It is not difficult to verify that such a family is indeed a strength for the profunctor P ⊗ Q. The monoidal
category of strong profunctors with tensor defined in this way is denoted by SPro.

A monoid in SPro amounts to the same data that we had in the case of Pro. This time, however, the
morphisms m and e (being morphisms of SPro) must be compatible with the strength as well.

Arrows can be implemented as strong profunctors which are weak arrows.

class (StrongProfunctor a,WeakArrow a)⇒ Arrow a

Instance declarations of Arrow are empty, but the programmer should check the compatibility of the
unit and multiplication of the weak arrow with the strength:

first (arr f ) = arr (f × id)

first (a ≫ b) = first a ≫ first b
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These two laws, together with the laws for profunctors, weak arrows, and strength, constitute the
arrows laws proposed by Hughes [22].

7.1 Exponentials in SPro

We have not managed to find exponentials in SPro. Part of the difficulty in finding one seems to stem
from the fact that strengths for profunctors may not exist, and when they do, they may not be unique.
In particular, given two strong profunctors P and Q, the obvious candidate for an exponential in SPro is
the exponential in Pro, namely the profunctor QP defined in Section 6.1. However, this profunctor does
not seem to have a strength.

Fortunately, as shown in Section 8.5, two canonical strong profunctors can be derived from any
profunctor. Using one of these, we may lift representations for weak arrows and obtain representations
for arrows (as shown in Section 8.6).

7.2 Free Arrows

Having failed to find exponentials in SPro, we cannot apply Proposition 2.6 to obtain the free monoid in
SPro and therefore we fall back to finding it directly. Fortunately, this is not difficult, as the free monoid
on Pro is equipped with an obvious strength whenever it is built over a strong profunctor, and indeed
one can verify that the obtained monoid is the free monoid in SPro.

The free weak arrow can be equipped with a strength when defined over a strong profunctor.

instance StrongProfunctor a ⇒ StrongProfunctor (Free⊗ a) where
first (Hom f ) = Hom (λ(x , z )→ (f x , z ))
first (Comp x y) = Comp (first x ) (first y)

Since the unit and multiplication of the free arrow are compatible with the strength, it is a correct
Arrow instance.

instance StrongProfunctor a ⇒ Arrow (Free⊗ a)

The insertion of generators and the universal morphism are the same as the ones from weak arrows.
The only difference is that now we require StrongProfunctors instead of plain Profunctors.

ins :: StrongProfunctor a ⇒ a
q q−→ Free⊗ a

ins x = Comp x (arr id)

free :: (StrongProfunctor a,Arrow b)⇒ (a
q q−→ b)→ (Free⊗ a

q q−→ b)
free f (Hom g) = arr g
free f (Comp x y) = f x ≫ free f y

Here, we would really like the type (a
q q−→ b) to represent strength preserving morphisms between

strong profunctors. Therefore, free f is guaranteed to preserve the strength only when f does.

8 On Functors Between Monoidal Categories

Monads, applicative functors, and arrows have been introduced as monoids in monoidal categories. Now
we ask what is the relation between these monoidal categories. It is well-known that starting from a
monad we can derive both an applicative functor and an arrow. In this section we explain these and
other derivations from the point of view of monoidal categories. For example, in order to obtain a weak
arrow from a monad, we are interested in creating a monoid in Pro, given a monoid in Endo◦. Instead

29



of trying to make up a monoid in Pro directly, we will define a monoidal functor between the underlying
monoidal categories (in this case Endo◦ and Pro), and then use the following theorem to obtain a functor
between the corresponding monoids.

Theorem 8.1 Let (F, φ, φ◦) : C → D be a lax monoidal functor (see definition 5.1). If (M,m, e) is a
monoid in C, then (FM,Fm ◦ φ, Fe ◦ φ◦) is a monoid in D.

Proof

Fm ◦ φ ◦ (id ⊗ (Fe ◦ φ◦))
= { tensor }
Fm ◦ φ ◦ (id ⊗ Fe) ◦ (id ◦ φ◦)

= { naturality }
Fm ◦ F (id ⊗ e) ◦ φ ◦ (id ◦ φ◦)

= { F functor }
F (m ◦ (id ⊗ e)) ◦ φ ◦ (id ◦ φ◦)

= { monoid }
FρC ◦ φ ◦ (id ◦ φ◦)

= { monoidal functor }
ρD

Fm ◦ φ ◦ (id ⊗ (Fm ◦ φ))
= { tensor }
Fm ◦ φ ◦ (id ⊗ Fm) ◦ (id ◦ φ)

= { natural }
Fm ◦ F (id ⊗ m) ◦ φ ◦ (id ◦ φ)

= { F functor }
F (m ◦ (id ⊗ m)) ◦ φ ◦ (id ◦ φ)

= { monoid }
F (m ◦ (m ⊗ id) ◦ α) ◦ φ ◦ (id ◦ φ)

= { F functor }
Fm ◦ F (m ⊗ id) ◦ Fα ◦ φ ◦ (id ◦ φ)

= { monoidal functor }
Fm ◦ F (m ⊗ id) ◦ φ ◦ (φ ◦ id) ◦ α

= { natural }
Fm ◦ φ ◦ (Fm ⊗ id) ◦ (φ ◦ id) ◦ α

= { tensor }
Fm ◦ φ ◦ ((Fm ◦ φ) ⊗ id) ◦ α

ut
The above construction extends to a functor, and therefore we can induce functors between monoids by
way of lax monoidal functors between their underlying monoidal categories.

8.1 The Cayley Monoidal Functor

Applicative functors can be used to create arrows, here we present a monoidal functor that gives rise to
such construction. We consider the Cayley functor [40]

Cayley : Endo? → Pro
Cayley(F )(X,Y ) = F (X → Y )

Despite its name, this functor bears no direct relation to the Cayley representation.
The Cayley functor is monoidal, as shown by Pastro and Street [40], and therefore by Theorem 8.1

it extends to a functor between the corresponding categories of monoids. That is, it takes applicative
functors to weak arrows. Moreover, the functor is also a monoidal functor from Endo? to SPro, as each
Cayley(F ) has a strength. By Theorem 8.1, the functor also extends to a functor from applicative
functors to arrows.

The implementation of the Cayley functor is as follows [35].

data Cayley f x y = Cayley (f (x → y))

For every applicative functor, the Cayley functor constructs an arrow.

instance Applicative f ⇒WeakArrow (Cayley f ) where
arr f = Cayley (pure f )
(Cayley x ) ≫ (Cayley y) = Cayley (pure (◦) ~ y ~ x )

30



instance Applicative f ⇒ StrongProfunctor (Cayley f ) where
first (Cayley x ) = Cayley (pure (λf → λ(y , z )→ (f y , z )) ~ x )

instance Applicative f ⇒ Arrow (Cayley f )

8.2 The Kleisli Monoidal Functor

The well-known Kleisli category of a monad allows us to construct an arrow from any monad. This can
be seen as a consequence of applying Theorem 8.1 to the following lax monoidal functor which we call
Kleisli.

Kleisli : Endo◦ → SPro
Kleisli(F )(X,Y ) = X → FY

The implementation of the Kleisli functor is as follows.

data Kleisli f x y = Kleisli (x → f y)

instance Monad f ⇒WeakArrow (Kleisli f ) where
arr f = Kleisli (λx → return (f x ))
(Kleisli f ) ≫ (Kleisli g) = Kleisli (λx → f x >>= g)

instance Monad f ⇒ StrongProfunctor (Kleisli f ) where
first (Kleisli f ) = Kleisli (λ(x , z )→ f x >>= λy → return (y , z ))

instance Monad f ⇒ Arrow (Kleisli f )

8.3 The Day Monoidal Functor

We equip the identity endofunctor Id : [Set,Set] → [Set,Set] with monoidal compatibility morphisms φ
and φ◦. In this way (Id, φ, φ◦) is a lax monoidal functor from Endo◦ to Endo? which we call Day. The
φ◦ morphism is the identity on the identity functor. The morphism φF,G : F ? G→ F ◦G is given by:

(F ? G)X =

∫ Y,Z

FY ×GZ × (Y × Z → X)

∫
st

−−−−−→
∫ Y,Z

F (Y ×GZ × (Y × Z → X))

∼=
−−−−−→

∫ Y,Z

F (GZ × Y × (Y × Z → X))∫
F st

−−−−−→
∫ Y,Z

F (G(Z × Y × (Y × Z → X)))

∼=
−−−−−→

∫ Y,Z

F (G(Y × Z × (Y × Z → X)))∫
F (G ev)

−−−−−→
∫ Y,Z

F (GX)

∼=
−−−−−→ F (GX)

Hence, we obtain the lax monoidal functor Day : Endo◦ → Endo?.

By applying Theorem 8.1 to Day, we obtain the well-known result that every monad is an applicative
functor.

instance Monad f ⇒ Applicative f where
pure = return
f ~ x = f >>= (λg → x >>= return ◦ g)
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8.4 The Reversed Monoid

For every monoidal category C⊗ = (C,⊗, I, α, λ, ρ), there is a reverse monoidal category C⊗rev , with
monoidal operator X⊗revY = Y ⊗ X. Every monoid in a monoidal category determines a monoid in the
reverse monoidal category:

Theorem 8.2 If (M,m, e) is a monoid in C⊗, then (M,m, e) is a monoid in C⊗rev .

In the case where the monoidal structure is symmetric, there is an isomorphism between X⊗revY and
X ⊗ Y . We can use this isomorphism to equip the identity endofunctor over C with a monoidal structure,
yielding a monoidal functor from C⊗ to C⊗rev .

Theorem 8.3 Let C⊗ = (C,⊗, I, α, λ, ρ, γ) be a symmetric monoidal category, then we have a monoidal
functor (Id, γ, id) : C⊗ → C⊗rev .

If we apply Theorem 8.1 to a monoid M in C⊗, we obtain a monoid in C⊗rev . From Theorem 8.2, this
monoid can be converted to a monoid in C⊗. This last monoid is what we call the reversed monoid of
M .

As already mentioned, Endo? is a symmetric monoidal category, and therefore the reverse monoid
construction can be applied to a monoid in Endo?. The resulting monoid is known as the reversed
applicative [10].

The reversed applicative is implemented as:

data Rev f x = Rev (f x ) deriving Functor

instance Applicative f ⇒ Applicative (Rev f ) where
pure = Rev ◦ pure
Rev f ~ Rev x = Rev (pure (flip ($)) ~ x ~ f )

In intuitive terms, the difference between f and Rev f as applicative functors is that Rev f sequences
the order of effects in the reverse order [10].

8.5 The Tambara and Pastro Monoidal Functors

Not every profunctor is strong. Therefore, we are interested in investigating how to add a strength to
profunctors in Pro. In the following we show that there are two canonical functors from Pro to SPro.

There is an obvious monoidal functor that goes from the monoidal category of strong profunctors
SPro to the monoidal category of profunctors Pro that forgets the additional structure. More precisely,
the functor U : SPro→ Pro forgets the strength.

U(P, stP ) = P

Interestingly, this functor has right and left adjoints, yielding two canonical constructions to obtain a
strong profunctor from any profunctor. We start by giving its right adjoint, that is, a functor Tambara
such that we have a natural isomorphism:

φ : Pro(U(P, stP ), Q) ∼= SPro((P, stP ),Tambara Q) (8.1)

The monoidal functor Tambara : Pro → SPro is given by Tambara Q = (TQ, st), where the first
component is

TQ(X,Y ) =

∫
Z

Q(X × Z, Y × Z)
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and the strength stZ is 〈h〉, with h a dinatural transformation on V defined by the composition:

TQ(X,Y ) =

∫
Z

Q(X × Z, Y × Z)
ωZ×V

−−−−−→ Q(X × (Z × V ), Y × (Z × V ))

Q(α−1,α)

−−−−−→ Q((X × Z)× V, (Y × Z)× V )

In the definition above, α is one of the isomorphisms of the monoidal category Pro and ω is the family
of morphisms arising from the universal property of ends.

The adjunction U a Tambara tells us that the Tambara functor completes a profunctor by cofreely
adding a strength. The name of the functor is due to a similar construction defined by Pastro and
Street [40], when working on Tambara modules. This functor is monoidal [40] and therefore by Theo-
rem 8.1, it maps weak arrows to arrows.

The Tambara functor may be implemented as follows.

data Tambara p x y = Tambara (∀z . p (x , z ) (y , z ))

instance Profunctor p ⇒ Profunctor (Tambara p) where
dimap f g (Tambara x ) = Tambara (dimap (lift f ) (lift g) x )

where lift f (a, b) = (f a, b)

instance Profunctor p ⇒ StrongProfunctor (Tambara p) where
first (Tambara x ) = Tambara (dimap α−1 α x )

where α (x , (y , z )) = ((x , y), z )
α−1 ((x , y), z ) = (x , (y , z ))

The components of the isomorphism 8.1 are implemented in Haskell as follows.

φ :: (StrongProfunctor p,Profunctor q)⇒ (p
q q−→ q)→ (p

q q−→ Tambara q)
φ f p = Tambara (f (first p))

φ−1 :: (StrongProfunctor p,Profunctor q)⇒ (p
q q−→ Tambara q)→ (p

q q−→ q)

φ−1 f p = dimap fst−1 fst b
where Tambara b = f p

fst−1 x = (x , ())

The forgetful functor U also has a left adjoint Pastro : Pro→ SPro [40]. That is, there is a functor
Pastro such that

ψ : SPro(Pastro P, (Q, stQ)) ∼= Pro(P,U(Q, stQ)) (8.2)

holds. The functor is defined as Pastro P = (FP , st), with components

FP (X,Y ) = P (X,X → Y )

st = P (π1, b〈ev ◦ (id× π1), π2 ◦ π2〉c)

In this case, the functor Pastro is not lax monoidal, but instead oplax monoidal. This means there
are natural transformations:

τ : Pastro(P ⊗ Q)→ Pastro P ⊗ Pastro Q

θ : Pastro Hom→ Hom

Note that Theorem 8.1 can not be used to map weak arrows to arrows since it requires lax monoidal
functors and Pastro is oplax.
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The Pastro functor is implemented as follows.

data Pastro p x y = Pastro (p x (x → y))

instance Profunctor p ⇒ Profunctor (Pastro p) where
dimap f g (Pastro v) = Pastro (dimap f (λh x → g (h (f x ))) v)

instance Profunctor p ⇒ StrongProfunctor (Pastro p) where
first (Pastro v) = Pastro (dimap fst (λf (x , z )→ (f x , z )) v)

In Haskell, the components of the isomorphism are:

ψ :: (Profunctor p,StrongProfunctor q)⇒ (Pastro p
q q−→ q)→ (p

q q−→ q)
ψ f p = f (Pastro (dimap id (λx y → x ) p))

ψ−1 :: (Profunctor p,StrongProfunctor q)⇒ (p
q q−→ q)→ (Pastro p

q q−→ q)
ψ−1 f (Pastro p) = dimap (λx → (x , x )) (λ(f , v)→ f v) (first (f p))

The two functors Pastro and Tambara provide two ways of constructing strong profunctors from
profunctors.

Using the adjunctions Pastro a U a Tambara, we obtain a monad (U ◦ Pastro) and a comonad
(U ◦ Tambara), both on Pro. The corresponding categories of Eilenberg-Moore algebras for a monad
and coalgebras for a comonad are both equivalent to SPro.

We develop the case of Tambara briefly. Since we have an adjunction U a Tambara, we can
form a comonad N = U ◦ Tambara : Pro → Pro. The counit of N is the counit of the adjunction:
εP = φ−1(id : P → P ) = P (π1

−1, π1)◦ω1, and its comultiplication is δP = Uφ(id : NP → NP )Tambara.

Proposition 8.4 The category SPro is equivalent to the (co)Eilenberg-Moore category for the comonad
N .

Proof A coalgebra for this comonad is an object P from Pro together with a morphism σ : P → NP
such that these diagrams commute:

NP
σ // N(NP )

ε

��
NP

P
σ //

σ

��

NP

Nσ

��
NP

δ
// N(NP )

The morphism σ is a family of morphisms

σX,Y : P (X,Y )→
∫
Z

P (X × Z, Y × Z)

natural in X and Y . By the universal property of ends, the family σX,Y is equivalent to a family of
morphisms

σ̄X,Y,Z : P (X,Y )→ P (X × Z, Y × Z)

natural in X and Y, and dinatural in Z. Such a family has exactly the form of a strength. Using the
laws for coalgebras of a comonad, one can prove that σ̄ is indeed a strength for P . ut

8.6 An Application of the Tambara Functor: A Representation of Arrows

Although we have not found the form of exponential objects in SPro, we can lift the exponential in SPro
in such a way that we obtain an alternative representation for arrows.
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The idea is to take a monoid in SPro and forget the strength structure using the forgetful functor
U . Then, use the Cayley representation for monoids in Pro, and finally apply the Tambara functor to
obtain a new strength on this monoid. That is, given a monoid (M,m, e) in SPro, its representation
is Tambara(UMUM ). The functor Tambara is monoidal and therefore, as shown by Theorem 8.1, it
takes monoids in Pro to monoids in SPro.

More concretely, given a monoid ((A, stA),m, e) in SPro (i.e. an arrow), we construct a representation
morphism as

rep = A
〈stA〉 // Tambara A

Tambara(repw) // Tambara (AA)

where repw takes a weak arrow into its (weak arrow) Cayley representation. This is a well-defined
morphism in SPro, i.e. it commutes with the strengths of A and Tambara (AA). Using the abstraction
function absw from the Cayley representation for weak arrows we can define an abstraction function for
our arrow representation:

abs = Tambara (AA)
Tambara(absw) // Tambara A

ω1 // A

This is a left inverse to rep, and therefore, rep is a monomorphism. This proves that Tambara (AA) is
a representation for (A, stA).

The implementation in Haskell of the representation, after inlining some definitions in order to simplify
the code, is as follows:

data Rep a x y = Rep (∀z ′ z . a (y , z ′) z → a (x , z ′) z )

instance Profunctor a ⇒ Profunctor (Rep a) where
dimap f g (Rep x ) = Rep (λy → dimap (lift f ) id (x (dimap (lift g) id y)))
where lift f (a, b) = (f a, b)

The representation constructs an arrow from any profunctor.

instance Profunctor a ⇒WeakArrow (Rep a) where
arr f = Rep (dimap (lift f ) id) where lift f (a, b) = (f a, b)
Rep x ≫ Rep y = Rep (λv → x (y v))

instance Profunctor a ⇒ StrongProfunctor (Rep a) where
first (Rep x ) = Rep (λz → dimap α−1 id (x (dimap α id z )))

where α (x , (y , z )) = ((x , y), z )
α−1 ((x , y), z ) = (x , (y , z ))

Since we verified that the strength is compatible with the weak arrow structure, we may declare the
Arrow instance.

instance Profunctor a ⇒ Arrow (Rep a)

Any arrow a can be embedded into Rep a using the arrow morphism rep. Moreover, abs ◦ rep = id.

rep :: Arrow a ⇒ a x y → Rep a x y
rep x = Rep (λz → first x ≫ z )

abs :: Arrow a ⇒ Rep a x y → a x y

abs (Rep x ) = arr fst−1 ≫ x (arr fst)

where fst−1 y = (y , ())
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8.7 The Final Picture

The following picture summarises the different categories and functors presented in the previous sections:

Endo◦

Day

��

Kleisli

&&
SPro U // Pro

Pastro

>
ff

Tambara

>ww

Endo? Cayley

88

Both Kleisli and Cayley map into SPro: a functor mapping to Pro can be recovered by post-composing
with U . There is an alternative functor mapping from Endo◦ to SPro by composing Day with Cayley.
All the functors in the picture are lax monoidal, except for Pastro which is oplax monoidal, as indicated
by the squiggly arrow.

9 Conclusion

We have shown how monads, applicative functors and arrows can be seen in a uniform manner as
monoids in a monoidal category. We exploited this uniformity in order to obtain free constructions and
representations for the three notions of computation as instances of more general constructions. All
these constructions were implemented in Haskell rather straightforwardly, showing that the ideas can
be transferred to code without difficulty. The representations for applicative functors and arrows are
new. We expect them to optimise code in the same cases for which the codensity transformation and
difference lists work well: when the binary operation of the monoid is expensive on its first argument
and, therefore, we want to associate a sequence of computations to the right. However, an in-depth
analysis of the performance of the new representations is left as future work, which could be done by
benchmarking, or through formal verification [19].

The constructions presented for monads are well known [34]. Day has shown the equivalence of lax
monoidal functors and monoids with respect to the Day convolution [14]. However, in the functional
programming community, this fact is not well-known. The construction of free applicative functors is
described by Capriotti and Kaposi [11]. While they provide plenty of motivation for the use of the free
applicative functor, we give a detailed description of its origin, as we arrive at it by instantiating a general
description of free monoids to the category of endofunctors which is monoidal with respect to the Day
convolution.

There are several works analysing the formulation of arrows as monoids [24, 6, 4, 5]. We differ from
their work in our treatment of the strength. We believe our approach leads to simpler definitions, as
only standard monoidal categories are used. Moreover, our definition of the free arrow is possible thanks
to this simpler approach.

Jaskelioff and Moggi [27] use the Cayley representation for monoids in a monoidal category in order
to lift operations through monoid transformers. However, they only considered monads as instances.

For the sake of simplicity, we analysed the above notions of computations as Set functors. However, for
size reasons, many constructions were restricted to small functors, which are extensions of functors from
small categories. Alternatively, we could have worked with accessible functors [2] (which are equivalent
to small functors), or we could have worked directly with functors from small categories, as it is done in
relative monads [3]. However, by working with small functors the category theory is less heavy and the
implementation in Haskell is more direct.

In functional programming, for each of the three notions of computation that we considered, there
are variants which add structure. For example, monads can be extended with MonadPlus, applicative
functors with Alternative, and arrows with ArrowChoice, to name just a few. Rivas et al. [44] analysed the
cases of MonadPlus and Alternative based on a generalisation of monoidal categories to categories with a
notion of near-semiring.
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The relation between the different monoidal categories that support monads, applicative functors,
and arrows, deserves a deeper analysis. For example, it would be interesting to study the relation between
monoidal categories supporting computational effects which are not Set-based.

Unifying different concepts under one common framework is a worthy goal as it deepens our un-
derstanding and it allows us to relate, compare, and translate ideas. It has long been recognised that
category theory is an ideal tool for this task [43] and this article provides a bit more evidence of it.
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[2] Jǐri Adámek and Jǐri Rosický. Locally Presentable and Accessible Categories. Number 189 in London
Mathematical Society Lecture Notes. Cambridge University Press, 1994.

[3] Thorsten Altenkirch, James Chapman, and Tarmo Uustalu. Monads need not be endofunctors. In
Luke Ong, editor, Foundations of Software Science and Computational Structures, volume 6014 of
Lecture Notes in Computer Science, pages 297–311. Springer Berlin Heidelberg, 2010.

[4] Kazuyuki Asada. Arrows are strong monads. In Venanzio Capretta and James Chapman, edi-
tors, Proceedings of the Third ACM SIGPLAN Workshop on Mathematically Structured Functional
Programming, MSFP ’10, pages 33–42. ACM, 2010.

[5] Kazuyuki Asada and Ichiro Hasuo. Categorifying computations into components via arrows as
profunctors. Electronic Notes in Theoretical Computer Science, 264(2):25–45, 2010.

[6] Robert Atkey. What is a categorical model of arrows? Electronic Notes in Theoretical Computer
Science, 229(5):19–37, March 2011.

[7] E.S. Bainbridge, Peter J. Freyd, Andre Scedrov, and Philip J. Scott. Functorial polymorphism.
Theoretical Computer Science, 70(1):35–64, 1990.

[8] Michael Barr and Charles Wells. Toposes, Triples and Theories, volume 278 of Grundlehren der
Mathematischen Wissenschaften. Springer-Verlag, 1985.

[9] Jean Bénabou. Les distributeurs: d’après le cours de Questions spéciales de mathématique. Rap-
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