
Modular Monad Transformers

Mauro Jaskelioff

Functional Programming Laboratory
School of Computer Science

University of Nottingham

ESOP 2009, University of York, UK

In this talk

Monadic semantics and modularity.

The monad transformers approach.

Well-behaved operations and their lifting.

General lifting of operations.

Monads and Computational Effects

Monads model computational effects.

Monads structure functional programs.

Basic monadic approach:
Distinguish computations and values.

Explain a language in terms of an abstract computation
type.

Explain the computation types.

Effectful Operations

Computational monads come equipped with operations.

Examples:
State Monad: get and put .
Exception monad: throw and handle.
Continuation monad: callcc and abort .

(Slightly refined) monadic approach:
Distinguish computations and values.

Explain a language in terms of an abstract computation
type and effect-manipulating operations.

Explain the computation types and the operations.

Effectful Operations

Computational monads come equipped with operations.

Examples:
State Monad: get and put .
Exception monad: throw and handle.
Continuation monad: callcc and abort .

(Slightly refined) monadic approach:
Distinguish computations and values.

Explain a language in terms of an abstract computation
type and effect-manipulating operations.

Explain the computation types and the operations.

Modular Approaches

More complex monads⇒ more complex semantics.

How to construct complex monads modularly?
Distributive laws.
Coproducts of monads.
Monad transformers.
Combination of algebraic theories.

Monad transformers construct monads incrementally.

Are easily implementable (ideal for DSL).

Lifting Problem

A monad which supports state and exceptions should
support get , put , throw , and handle.

Let’s extend the exception monad with the state monad
transformer.

What are the corresponding throw and handle operations
for the combined monad?

In general: How to lift operations of the underlying monad
to the transformed monad?

Liang et al.(1995) non-modular workaround:
“Provide ad-hoc liftings of each operation through
each monad transformer”

Goal

Identify classes of operations and classes of
monad transformers with a uniform lifting

System Fω

We will work in system Fω.
(Higher-order polymorphic lambda-calculus)

kinds k ::= ∗ | k → k
type constuctors U ::= X | U → U | ∀X : k . U | ΛX : k . U | U U

terms e ::= x | λx : X .e | e e | ΛX : k . e | e U

Can be considered as:
A meta-language for a programming language.
A programming language in which we embed a DSL.

We will express categorical constructions in Fω.

Functors and Natural Transformations

Definition (Expressible functor)

A pair F̂ = (F ,mapF) of
a type constructor F : ∗ → ∗,
a term mapF : ∀X ,Y : ∗. (X → Y)→ FX → FY such that
mapF respects identities and composition.

Definition (Expressible natural transformation from F̂ to Ĝ)

Terms τ : F̂ →• Ĝ = ∀X : ∗.FX → GX such that

mapG
A,B f · τA = τB ·mapF

A,B f

Functors and Natural Transformations

Definition (Expressible functor)

A pair F̂ = (F ,mapF) of
a type constructor F : ∗ → ∗,
a term mapF : ∀X ,Y : ∗. (X → Y)→ FX → FY such that
mapF respects identities and composition.

Definition (Expressible natural transformation from F̂ to Ĝ)

Terms τ : F̂ →• Ĝ = ∀X : ∗.FX → GX such that

mapG
A,B f · τA = τB ·mapF

A,B f

Monads and Monad Morphisms

Definition (Expressible monad)

A triple M̂ = (M, retM ,bindM) of
a type constructor M : ∗ → ∗,
a term retM : ∀X : ∗.X → MX ,
a term bindM : ∀X ,Y : ∗.MX → (X → MY)→ MY

such that some coherence conditions hold.

Monads and Monad Morphisms

Definition (Expressible monad)

A triple M̂ = (M, retM ,bindM) of
a type constructor M : ∗ → ∗,
a term retM : ∀X : ∗.X → MX ,
a term bindM : ∀X ,Y : ∗.MX → (X → MY)→ MY

such that some coherence conditions hold.

Examples,
State monad SX = S → (X ,S).
Exception monad XX = X + Z .
Continuation monad CX = (X → R)→ R.

Monads and Monad Morphisms

Definition (Expressible monad)

A triple M̂ = (M, retM ,bindM) of
a type constructor M : ∗ → ∗,
a term retM : ∀X : ∗.X → MX ,
a term bindM : ∀X ,Y : ∗.MX → (X → MY)→ MY

such that some coherence conditions hold.

Definition (Expressible monad morphism from M̂ to N̂)

A terms ξ : ∀X .MX → NX such that the monad operations are
respected.

Monad Transformers

Definition (Expressible monad transformer)

A tuple T̂ = (T , retT ,bindT , liftT) of
a type constructor T : (∗ → ∗)→ (∗ → ∗) and terms,
retT : M̂ → ∀X : ∗.X → TMX ,
bindT : M̂ → ∀X ,Y : ∗.TMX → (X → TMY)→ TMY
liftT : M̂ →• T M̂

such that for every monad M̂, the triple (TM, retT
M̂
,bindT

M̂
) is a

monad and liftT
M̂

is a monad morphism.

Examples,
State monad transformer S(M)X = S → M(X ,S).
Exception monad transformer X (M)X = M(X + Z).
Continuation monad transf. C(M)X = (X → MR)→ MR.

Monad Transformers

Definition (Expressible monad transformer)

A tuple T̂ = (T , retT ,bindT , liftT) of
a type constructor T : (∗ → ∗)→ (∗ → ∗) and terms,
retT : M̂ → ∀X : ∗.X → TMX ,
bindT : M̂ → ∀X ,Y : ∗.TMX → (X → TMY)→ TMY
liftT : M̂ →• T M̂

such that for every monad M̂, the triple (TM, retT
M̂
,bindT

M̂
) is a

monad and liftT
M̂

is a monad morphism.

Examples,
State monad transformer S(M)X = S → M(X ,S).
Exception monad transformer X (M)X = M(X + Z).
Continuation monad transf. C(M)X = (X → MR)→ MR.

Operations and Lifting

Definition (Σ-operation for a monad M̂)

A natural transformation op : Σ ◦M →• M, where Σ̂ is a functor.

Examples:
getA : (S → SA)→ SA Σg X = (S → X)
setA : (S,SA)→ SA Σs X = S × X

throwA : 1→ XA Σt X = 1
handleA : XA→ (Z → XA)→ XA Σh X = X × (Z → X)

callccA : ((CA→ R)→ CA)→ CA Σc X = (X → R)→ X
abortA : R → CA Σa X = R

Operations and Lifting

Definition (Σ-operation for a monad M̂)

A natural transformation op : Σ ◦M →• M, where Σ̂ is a functor.

Examples:
getA : (S → SA)→ SA Σg X = (S → X)
setA : (S,SA)→ SA Σs X = S × X

throwA : 1→ XA Σt X = 1
handleA : XA→ (Z → XA)→ XA Σh X = X × (Z → X)

callccA : ((CA→ R)→ CA)→ CA Σc X = (X → R)→ X
abortA : R → CA Σa X = R

Operations and Lifting

Definition (Σ-operation for a monad M̂)

A natural transformation op : Σ ◦M →• M, where Σ̂ is a functor.

Definition (Lifting along a monad morphism ξ : M̂ →• N̂)

Σ(NA)
opN

A // NA

Σ(MA) opA
//

mapΣ ξA

OO

MA

ξA

OO

Well-behaved Operations

Definition (Σ-algebraic operation for a monad M̂)

A Σ-operation for M̂ such that for any f : A→ MB:

Σ(MA)

hA
��

mapΣ(bindM (−,f)) // Σ(MB)

hB
��

MA
(bindM (−,f))

// MB

Examples:
get and set
throw
callcc and abort

Non-example:
handle

Well-behaved Operations

Definition (Σ-algebraic operation for a monad M̂)

A Σ-operation for M̂ such that for any f : A→ MB:

Σ(MA)

hA
��

mapΣ(bindM (−,f)) // Σ(MB)

hB
��

MA
(bindM (−,f))

// MB

Examples:
get and set
throw
callcc and abort

Non-example:
handle

Lifting of algebraic operations

Proposition

Σ-algebraic Σ ◦M →• M ∼= Σ→• M.

Theorem (Unique Algebraic Lifting)

Σ-algebraic operations have a unique lifting through a monad
morphism ξ : M̂ →• N̂.

Lifting of algebraic operations

Proposition

Σ-algebraic Σ ◦M →• M ∼= Σ→• M.

Theorem (Unique Algebraic Lifting)

Σ-algebraic operations have a unique lifting through a monad
morphism ξ : M̂ →• N̂.

Σ ◦M →• M algebraic

Lifting of algebraic operations

Proposition

Σ-algebraic Σ ◦M →• M ∼= Σ→• M.

Theorem (Unique Algebraic Lifting)

Σ-algebraic operations have a unique lifting through a monad
morphism ξ : M̂ →• N̂.

Σ→• M

Lifting of algebraic operations

Proposition

Σ-algebraic Σ ◦M →• M ∼= Σ→• M.

Theorem (Unique Algebraic Lifting)

Σ-algebraic operations have a unique lifting through a monad
morphism ξ : M̂ →• N̂.

Σ→• M
ξ−→ N

Lifting of algebraic operations

Proposition

Σ-algebraic Σ ◦M →• M ∼= Σ→• M.

Theorem (Unique Algebraic Lifting)

Σ-algebraic operations have a unique lifting through a monad
morphism ξ : M̂ →• N̂.

Σ ◦ N →• N algebraic

Functorial Monad Transformers

Definition (Functorial monad transformer)

A monad transformer (T , retT ,bindT , liftT)

A map hmapT : ∀M̂, N̂. (M →• N)→ (TM →• TN)

Additional coherence conditions
hmapT should preserve natural transformations and monad
morphisms,
respect identities and composition of natural
transformations,
liftT should be natural (behave well wrt hmapT).

Examples:
State monad transformer
Exception monad
transformer

Non-example:
Continuation monad
transformer

Functorial Monad Transformers

Definition (Functorial monad transformer)

A monad transformer (T , retT ,bindT , liftT)

A map hmapT : ∀M̂, N̂. (M →• N)→ (TM →• TN)

Additional coherence conditions
hmapT should preserve natural transformations and monad
morphisms,
respect identities and composition of natural
transformations,
liftT should be natural (behave well wrt hmapT).

Examples:
State monad transformer
Exception monad
transformer

Non-example:
Continuation monad
transformer

Codensity Monad Transformer

KMX =̂ ∀Y : ∗. (X → MY)→ MY is part of a monad
transformer.

Exploits impredicativity of system Fω.

Properties of K̂:
Every Σ-operation op : Σ ◦M →• M induces a
Σ-algebraic operation opK : Σ ◦ KM →• KM.

from : KM →• M, such that from · liftK = id .

op = from · opK ·mapΣ liftK.

General Lifting

Theorem (Lifting)

Given
op : Σ ◦M →• M
Functorial monad transformer T̂ .

There is a lifting opT : Σ ◦ TM →• TM of op along liftT .

opT = Σ ◦ TM
Σ◦T liftK //Σ ◦ T (KM)

opK,T
//T (KM)

from //TM

Σ◦T liftK=mapΣ(hmapT (liftK))

If op is Σ-algebraic, the algebraic lifting and the general
lifting coincide.

General Lifting

Theorem (Lifting)

Given
op : Σ ◦M →• M
Functorial monad transformer T̂ .

There is a lifting opT : Σ ◦ TM →• TM of op along liftT .

opT = Σ ◦ TM
Σ◦T liftK //Σ ◦ T (KM)

opK,T
//T (KM)

from //TM

Σ◦T liftK=mapΣ(hmapT (liftK))

If op is Σ-algebraic, the algebraic lifting and the general
lifting coincide.

Example of lifted operations

For a concrete functorial monad transformer, the lifting
simplifies to:
SMX = S → M(X×S)

opSX (t : Σ(SMX)) : SMX = λs.opX×S(mapΣ τ s t)

where τ s(f : S → M(X×S)) = f s.

XMX = M(Z + X)

opXX (t : Σ(XMX)) : XMX = opZ+X t .

Example of lifted operations

For a concrete functorial monad transformer, the lifting
simplifies to:
SMX = S → M(X×S)

opSX (t : Σ(SMX)) : SMX = λs.opX×S(mapΣ τ s t)

where τ s(f : S → M(X×S)) = f s.

XMX = M(Z + X)

opXX (t : Σ(XMX)) : XMX = opZ+X t .

Summary

Uniform liftings for a wide class of operations and monad
transformers.

Expressible categorical constructs essential for finding a
solution to the problem.

Future Work.
Extend to “mixed-variant” transformers.
Give a purely abstract account.
General lifting without relying on impredicativity.
Extend these results beyond monads.

	Introduction and Motivation
	Constructions Expressible in Fw
	Operations and Liftings

