Modular Monad Transformers

Mauro Jaskelioff

Functional Programming Laboratory School of Computer Science University of Nottingham

ESOP 2009, University of York, UK

• □ > • □ > • □ > • □ > • □ >

- Monadic semantics and modularity.
- The monad transformers approach.
- Well-behaved operations and their lifting.
- General lifting of operations.

Nottingham

・ロット (雪) (日) (日)

э

- Monads model computational effects.
- Monads structure functional programs.
- Basic monadic approach:
 - Distinguish computations and values.
 - Explain a language in terms of an abstract computation type.

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

• Explain the computation types.

Effectful Operations

- Computational monads come equipped with operations.
- Examples:
 - State Monad: get and put.
 - Exception monad: throw and handle.
 - Continuation monad: *callcc* and *abort*.

イロト イポト イヨト イヨト

Effectful Operations

- Computational monads come equipped with operations.
- Examples:
 - State Monad: get and put.
 - Exception monad: *throw* and *handle*.
 - Continuation monad: *callcc* and *abort*.
- (Slightly refined) monadic approach:
 - Distinguish computations and values.
 - Explain a language in terms of an abstract computation type and effect-manipulating operations.

くしゃ 人間 マイボットボット 日 うんの

Explain the computation types and the operations.

- More complex monads \Rightarrow more complex semantics.
- How to construct complex monads modularly?
 - Distributive laws.
 - Coproducts of monads.
 - Monad transformers.
 - Combination of algebraic theories.
- Monad transformers construct monads incrementally.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Are easily implementable (ideal for DSL).

Lifting Problem

- A monad which supports state and exceptions should support *get*, *put*, *throw*, and *handle*.
- Let's extend the exception monad with the state monad transformer.
- What are the corresponding *throw* and *handle* operations for the combined monad?
- In general: How to lift operations of the underlying monad to the transformed monad?
- Liang et al.(1995) non-modular workaround:
 "Provide ad-hoc liftings of each operation through each monad transformer"

Identify classes of operations and classes of monad transformers with a uniform lifting

Nottingham

ヘロト ヘ戸ト ヘヨト ヘ

We will work in system *F*ω.
 (Higher-order polymorphic lambda-calculus)

kinds $k ::= * | k \to k$ type constuctors $U ::= X | U \to U | \forall X : k. U | \land X : k. U | UU$ terms $e ::= x | \lambda x : X. e | e e | \land X : k. e | e U$

- Can be considered as:
 - A meta-language for a programming language.
 - A programming language in which we embed a DSL.
- We will *express* categorical constructions in $F\omega$.

Functors and Natural Transformations

Definition (Expressible functor)

- A pair $\hat{F} = (F, map^F)$ of
 - a type constructor $F : * \to *$,
 - a term map^F: ∀X, Y : *. (X → Y) → FX → FY such that map^F respects identities and composition.

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

Definition (Expressible functor)

A pair $\hat{F} = (F, map^F)$ of

- a type constructor $F : * \to *$,
- a term map^F: ∀X, Y : *. (X → Y) → FX → FY such that map^F respects identities and composition.

Definition (Expressible natural transformation from \hat{F} to \hat{G})

Terms $\tau : \hat{F} \twoheadrightarrow \hat{G} = \forall X : *. FX \to GX$ such that

$$map_{A,B}^{G} f \cdot \tau_{A} = \tau_{B} \cdot map_{A,B}^{F} f$$

くしゃ 人間 マイボットボット 日 うんの

Definition (Expressible monad)

A triple $\hat{M} = (M, ret^M, bind^M)$ of

- a type constructor $M : * \to *,$
- a term ret^M : $\forall X : *. X \to MX$,
- a term $bind^M$: $\forall X, Y$: *. $MX \rightarrow (X \rightarrow MY) \rightarrow MY$

such that some coherence conditions hold.

The University of Nottingham

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Definition (Expressible monad)

A triple $\hat{M} = (M, ret^M, bind^M)$ of

- a type constructor $M : * \to *,$
- a term $ret^M : \forall X : *. X \to MX$,
- a term $bind^M$: $\forall X, Y$: *. $MX \rightarrow (X \rightarrow MY) \rightarrow MY$

くしゃ 人間 マイボットボット 日 うんの

such that some coherence conditions hold.

Examples,

- State monad $SX = S \rightarrow (X, S)$.
- Exception monad XX = X + Z.
- Continuation monad $CX = (X \rightarrow R) \rightarrow R$.

Definition (Expressible monad)

A triple $\hat{M} = (M, ret^M, bind^M)$ of

- a type constructor $M : * \to *,$
- a term ret^M : $\forall X : *. X \to MX$,
- a term $bind^M$: $\forall X, Y$: *. $MX \rightarrow (X \rightarrow MY) \rightarrow MY$

such that some coherence conditions hold.

Definition (Expressible monad morphism from \hat{M} to \hat{N})

A terms $\xi : \forall X. MX \rightarrow NX$ such that the monad operations are respected.

Monad Transformers

Definition (Expressible monad transformer)

A tuple $\hat{T} = (T, ret^T, bind^T, lift^T)$ of

- a type constructor $\mathcal{T}: (* \to *) \to (* \to *)$ and terms,
- $ret^T : \hat{M} \to \forall X : *. X \to TMX,$
- bind^T : $\hat{M} \rightarrow \forall X, Y : *. TMX \rightarrow (X \rightarrow TMY) \rightarrow TMY$
- $lift^T : \hat{M} \twoheadrightarrow T\hat{M}$

such that for every monad \hat{M} , the triple $(TM, ret_{\hat{M}}^T, bind_{\hat{M}}^T)$ is a monad and $lift_{\hat{M}}^T$ is a monad morphism.

うつん 川 ・ ・ 川 ・ ・ 一 ・ うくの

Monad Transformers

Definition (Expressible monad transformer)

A tuple $\hat{T} = (T, ret^T, bind^T, lift^T)$ of

- a type constructor $\mathcal{T}: (* \to *) \to (* \to *)$ and terms,
- $ret^T : \hat{M} \to \forall X : *. X \to TMX,$
- $bind^T : \hat{M} \to \forall X, Y : *. TMX \to (X \to TMY) \to TMY$

• $lift^T : \hat{M} \twoheadrightarrow T\hat{M}$

such that for every monad \hat{M} , the triple $(TM, ret_{\hat{M}}^T, bind_{\hat{M}}^T)$ is a monad and $lift_{\hat{M}}^T$ is a monad morphism.

Examples,

- State monad transformer $\mathcal{S}(M)X = S \rightarrow M(X, S)$.
- Exception monad transformer $\mathcal{X}(M)X = M(X + Z)$.
- Continuation monad transf. $C(M)X = (X \rightarrow MR) \rightarrow MR$.

くしゃ 人間 マイボットボット 日 うんの

Definition (Σ -operation for a monad \hat{M})

A natural transformation $op : \Sigma \circ M \twoheadrightarrow M$, where $\hat{\Sigma}$ is a functor.

The University of Nottingham

・ロト・西ト・田・・田・ シック

Definition (Σ -operation for a monad \hat{M})

A natural transformation $op : \Sigma \circ M \twoheadrightarrow M$, where $\hat{\Sigma}$ is a functor.

Examples:

- $\begin{array}{ll} \bullet \hspace{0.5cm} get_{A}: (S \rightarrow \mathsf{S}A) \rightarrow \mathsf{S}A \\ set_{A}: (S, \mathsf{S}A) \rightarrow \mathsf{S}A \end{array} \hspace{1cm} \Sigma_{g} \hspace{0.5cm} X = (S \rightarrow X) \\ \Sigma_{s} \hspace{0.5cm} X = S \times X \end{array}$
- throw_A : 1 \rightarrow XA $\Sigma_t X = 1$ handle_A : XA \rightarrow (Z \rightarrow XA) \rightarrow XA $\Sigma_h X = X \times (Z \rightarrow X)$
- $callcc_A : ((CA \rightarrow R) \rightarrow CA) \rightarrow CA$ $\Sigma_c X = (X \rightarrow R) \rightarrow X$ $abort_A : R \rightarrow CA$ $\Sigma_a X = R$

Definition (Σ -operation for a monad \hat{M})

A natural transformation $op : \Sigma \circ M \twoheadrightarrow M$, where $\hat{\Sigma}$ is a functor.

Definition (Lifting along a monad morphism $\xi : \hat{M} \rightarrow \hat{N}$)

くしゃ 人間 マイボットボット 日 うんの

Well-behaved Operations

Definition (Σ -algebraic operation for a monad \hat{M})

A Σ -operation for \hat{M} such that for any $f : A \rightarrow MB$:

・ロト ・ 四ト ・ ヨト ・ ヨト

Well-behaved Operations

Definition (Σ -algebraic operation for a monad \hat{M})

A Σ -operation for \hat{M} such that for any $f : A \to MB$:

Non-example:

handle

・ コ ト ・ 雪 ト ・ ヨ ト ・ ヨ ト

Examples:

- get and set
- throw
- callcc and abort

 Σ -algebraic $\Sigma \circ M \twoheadrightarrow M \cong \Sigma \twoheadrightarrow M$.

Theorem (Unique Algebraic Lifting)

 Σ -algebraic operations have a unique lifting through a monad morphism $\xi : \hat{M} \rightarrow \hat{N}$.

Nottingham

・ロン ・四 と ・ 回 と ・ 日

ъ

 Σ -algebraic $\Sigma \circ M \twoheadrightarrow M \cong \Sigma \twoheadrightarrow M$.

Theorem (Unique Algebraic Lifting)

 Σ -algebraic operations have a unique lifting through a monad morphism $\xi : \hat{M} \rightarrow \hat{N}$.

 $\Sigma \circ M \twoheadrightarrow M$ algebraic

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 Σ -algebraic $\Sigma \circ M \twoheadrightarrow M \cong \Sigma \twoheadrightarrow M$.

Theorem (Unique Algebraic Lifting)

 Σ -algebraic operations have a unique lifting through a monad morphism $\xi : \hat{M} \rightarrow \hat{N}$.

$\Sigma \xrightarrow{\bullet} M$

・ コ ト ・ 雪 ト ・ ヨ ト ・ ヨ ト

 Σ -algebraic $\Sigma \circ M \twoheadrightarrow M \cong \Sigma \twoheadrightarrow M$.

Theorem (Unique Algebraic Lifting)

 Σ -algebraic operations have a unique lifting through a monad morphism $\xi : \hat{M} \rightarrow \hat{N}$.

$\Sigma \twoheadrightarrow M \xrightarrow{\xi} N$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 Σ -algebraic $\Sigma \circ M \twoheadrightarrow M \cong \Sigma \twoheadrightarrow M$.

Theorem (Unique Algebraic Lifting)

 Σ -algebraic operations have a unique lifting through a monad morphism $\xi : \hat{M} \rightarrow \hat{N}$.

 $\Sigma \circ N \twoheadrightarrow N$ algebraic

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Functorial Monad Transformers

Definition (Functorial monad transformer)

- A monad transformer $(T, ret^T, bind^T, lift^T)$
- A map $hmap^T$: $\forall \hat{M}, \hat{N}. (M \twoheadrightarrow N) \rightarrow (TM \twoheadrightarrow TN)$
- Additional coherence conditions
 - hmap^T should preserve natural transformations and monad morphisms,

・ロト ・四ト ・ヨト ・ヨト

- respect identities and composition of natural transformations,
- $lift^{T}$ should be natural (behave well wrt $hmap^{T}$).

Nottingham

Functorial Monad Transformers

Definition (Functorial monad transformer)

- A monad transformer $(T, ret^T, bind^T, lift^T)$
- A map $hmap^T$: $\forall \hat{M}, \hat{N}. (M \twoheadrightarrow N) \rightarrow (TM \twoheadrightarrow TN)$
- Additional coherence conditions
 - hmap^T should preserve natural transformations and monad morphisms,
 - respect identities and composition of natural transformations,
 - $lift^{T}$ should be natural (behave well wrt $hmap^{T}$).

Examples:

- State monad transformer
- Exception monad transformer

Non-example:

 Continuation monad transformer

くしゃ 人間 マイボットボット 日 うんの

- $\mathcal{K}MX \doteq \forall Y : *. (X \to MY) \to MY$ is part of a monad transformer.
- Exploits impredicativity of system $F\omega$.
- Properties of $\hat{\mathcal{K}}$:
 - Every Σ-operation *op* : Σ ∘ M → M induces a Σ-algebraic operation *op*^K : Σ ∘ KM → KM.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- *from* : $\mathcal{K}M \twoheadrightarrow M$, such that *from* · *lift*^{\mathcal{K}} = *id*.
- $op = from \cdot op^{\mathcal{K}} \cdot map^{\Sigma} lift^{\mathcal{K}}$.

Theorem (Lifting)

Given

• $op: \Sigma \circ M \twoheadrightarrow M$

• Functorial monad transformer \hat{T} .

There is a lifting $op^T : \Sigma \circ TM \twoheadrightarrow TM$ of op along lift^T.

$$op^{T} = \Sigma \circ TM \xrightarrow{\Sigma \circ T \text{ lift}^{\mathcal{K}}} \Sigma \circ T(\mathcal{K}M) \xrightarrow{op^{\mathcal{K},T}} T(\mathcal{K}M) \xrightarrow{\text{from}} TM$$

 $\Sigma \circ T lift^{\mathcal{K}} = map^{\Sigma}(hmap^{T}(lift^{\mathcal{K}}))$

◇□▶ ▲□▶ ▲目▶ ▲目▶ ▲□▶

Theorem (Lifting)

Given

• $op: \Sigma \circ M \twoheadrightarrow M$

• Functorial monad transformer \hat{T} .

There is a lifting $op^T : \Sigma \circ TM \twoheadrightarrow TM$ of op along lift^T.

$$op^{T} = \Sigma \circ TM \xrightarrow{\Sigma \circ T \text{ lift}^{\mathcal{K}}} \Sigma \circ T(\mathcal{K}M) \xrightarrow{op^{\mathcal{K},T}} T(\mathcal{K}M) \xrightarrow{\text{from}} TM$$

 $\Sigma \circ T lift^{\mathcal{K}} = map^{\Sigma}(hmap^{T}(lift^{\mathcal{K}}))$

 If op is Σ-algebraic, the algebraic lifting and the general lifting coincide.

- For a concrete functorial monad transformer, the lifting simplifies to:
- $SMX = S \rightarrow M(X \times S)$

 $op_X^{\mathcal{S}}(t : \Sigma(\mathcal{S}MX)) : \mathcal{S}MX = \lambda s. op_{X \times S}(map^{\Sigma} \tau^s t)$

where $\tau^{s}(f: S \rightarrow M(X \times S)) = f s$.

The University of **Nottingham**

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- For a concrete functorial monad transformer, the lifting simplifies to:
- $SMX = S \rightarrow M(X \times S)$

 $op_X^{\mathcal{S}}(t : \Sigma(\mathcal{S}MX)) : \mathcal{S}MX = \lambda s. op_{X \times S}(map^{\Sigma} \tau^s t)$ where $\tau^s(f : S \to M(X \times S)) = f s.$ • $\mathcal{X}MX = M(Z + X)$ $op_X^{\mathcal{X}}(t : \Sigma(\mathcal{X}MX)) : \mathcal{X}MX = op_{Z+X} t.$

(日) (日) (日) (日) (日) (日) (日)

- Uniform liftings for a wide class of operations and monad transformers.
- Expressible categorical constructs essential for finding a solution to the problem.
- Future Work.
 - Extend to "mixed-variant" transformers.
 - Give a purely abstract account.
 - General lifting without relying on impredicativity.

・ コ ト ・ 雪 ト ・ ヨ ト ・ ヨ ト

• Extend these results beyond monads.