Modular Monad Transformers

Mauro Jaskelioff

Functional Programming Laboratory
School of Computer Science
University of Nottingham

ESOP 2009, University of York, UK

In this talk

@ Monadic semantics and modularity.
@ The monad transformers approach.
@ Well-behaved operations and their lifting.

@ General lifting of operations.

Monads and Computational Effects

@ Monads model computational effects.

@ Monads structure functional programs.

@ Basic monadic approach:
e Distinguish computations and values.

e Explain a language in terms of an abstract computation
type.

e Explain the computation types.

Effectful Operations

@ Computational monads come equipped with operations.

@ Examples:
e State Monad: get and put.
e Exception monad: throw and handle.
e Continuation monad: callcc and abort.

Effectful Operations

@ Computational monads come equipped with operations.

@ Examples:

e State Monad: get and put.
e Exception monad: throw and handle.
e Continuation monad: callcc and abort.

@ (Slightly refined) monadic approach:
e Distinguish computations and values.

e Explain a language in terms of an abstract computation
type and effect-manipulating operations.

e Explain the computation types and the operations.

Modular Approaches

@ More complex monads = more complex semantics.

@ How to construct complex monads modularly?
Distributive laws.

Coproducts of monads.

Monad transformers.

Combination of algebraic theories.

@ Monad transformers construct monads incrementally.

@ Are easily implementable (ideal for DSL).

Lifting Problem

@ A monad which supports state and exceptions should
support get, put, throw, and handle.

@ Let’s extend the exception monad with the state monad
transformer.

@ What are the corresponding throw and handle operations
for the combined monad?

@ In general: How to lift operations of the underlying monad
to the transformed monad?

@ Liang et al.(1995) non-modular workaround:

“Provide ad-hoc liftings of each operation through
each monad transformer”

Goal

Identify classes of operations and classes of
monad transformers with a uniform lifting

@ We will work in system Fuw.
(Higher-order polymorphic lambda-calculus)

kinds k:=x|k—k
type constuctors U:=X|U—- U|VX:k. U|AX:k.U|UU
terms e:=x| x:X.e|ee|ANX:k.e|eU

@ Can be considered as:

e A meta-language for a programming language.
e A programming language in which we embed a DSL.

@ We will express categorical constructions in Fw.

Functors and Natural Transformations

Definition (Expressible functor)
A pair F = (F, map©) of
@ atype constructor F : x — x,

@ aterm map© VX, Y : % (X — Y) — FX — FY such that
map’ respects identities and composition.

Functors and Natural Transformations

Definition (Expressible functor)
A pair F = (F, map") of
@ atype constructor F : x — x,

@ aterm map© VX, Y : % (X — Y) — FX — FY such that
map’ respects identities and composition.

Definition (Expressible natural transformation from F to G)
Terms 7 : F = G = VX : . FX — GX such that

mapg g f-7a =15 mapjp f

Monads and Monad Morphisms

Definition (Expressible monad)
A triple M = (M, ret™, bind™) of

@ atype constructor M : x — x,

@ aterm ret” : VX : x. X — MX,

@ aterm bind” : VX, Y : . MX — (X — MY) — MY
such that some coherence conditions hold.

Monads and Monad Morphisms

Definition (Expressible monad)
A triple M = (M, ret™, bind™) of

@ atype constructor M : x — x,

@ aterm ret” : VX : x. X — MX,

@ aterm bind” : VX, Y : . MX — (X — MY) — MY
such that some coherence conditions hold.

Examples,
@ State monad SX = S — (X, S).
@ Exception monad XX = X + Z.
@ Continuation monad CX = (X — R) — RA.

Monads and Monad Morphisms

Definition (Expressible monad)
A triple M = (M, ret™, bind™) of

@ atype constructor M : x — x,

@ aterm ret” : VX : x. X — MX,

@ aterm bind” : VX, Y : . MX — (X — MY) — MY
such that some coherence conditions hold.

Definition (Expressible monad morphism from M to N)

Aterms £ : VX. MX — NX such that the monad operations are
respected.

Monad Transformers

Definition (Expressible monad transformer)
Atuple T = (T, ret”, bind, lift™) of
@ atype constructor T : (x — %) — (* — *) and terms,
@ ret’ : M — VX :x X — TMX,
@ bindT : M — VX, Y : x. TMX — (X — TMY) — TMY
o lift" : [= TM
such that for every monad , the triple (TM, ret[bind]) is a
monad and liftl\gl is a monad morphism.

Monad Transformers

Definition (Expressible monad transformer)
Atuple T = (T, ret”, bind, lift™) of
@ atype constructor T : (x — %) — (* — *) and terms,
@ ret’ : M — VX :x X — TMX,
@ bindT : M — VX, Y : x. TMX — (X — TMY) — TMY
o lift" : [= TM
such that for every monad , the triple (TM, ret[bind]) is a
monad and liftl\gl is a monad morphism.

Examples,
@ State monad transformer S(M)X = S — M(X, S).
@ Exception monad transformer X (M)X = M(X + 2).
@ Continuation monad transf. C(M)X = (X — MR) — MR.

Operations and Lifting

Definition (X-operation for a monad M)

A natural transformation op : = o M = M, where Y is a functor.

Operations and Lifting

Definition (X-operation for a monad M)

A natural transformation op : = o M = M, where Y is a functor.

Examples:
® gets: (S — SA) — SA Yg X =(S— X)
sety : (S,SA) — SA Y X=8SxX
@ throwy : 1 — XA X =1

hand/eA:XA—>(Z—>XA)—>XA ZhX:XX(Z—>X)

@ callccy: (CA— R) —-CA) —-CA L X=X—-R)—-X
abort, : R — CA YaX=R

Operations and Lifting

Definition (X-operation for a monad M)

A natural transformation op : = o M = M, where 3 is a functor.

Definition (Lifting along a monad morphism ¢ : M - N)

N

¥ (NA) e NA
map* fAT &a
Y (MA) MA

opa

Well-behaved Operations

Definition (E-algebraic operation for a monad i)

A ¥-operation for M such that for any 7 : A — MB:

map*™ (bind"(—,f))

¥ (MA) ¥ (MB)
hAi J/hs
MA MB

(bindM(—,f))

Well-behaved Operations

Definition (E-algebraic operation for a monad i)

A ¥-operation for M such that for any 7 : A — MB:

map*™ (bind"(—,f))

Y (MA) Y (MB)
hAl lhs
i (bindM(—f)) 2
Examples:
@ get and set Non-example:
@ throw @ handle

@ callcc and abort

Lifting of algebraic operations

> -algebraic > o M = M = > = M.

Theorem (Unique Algebraic Lifting)

x-algebraic operations have a unique lifting through a monad
morphism & - M = N.

Lifting of algebraic operations

> -algebraic > o M = M = > = M.

Theorem (Unique Algebraic Lifting)

x-algebraic operations have a unique lifting through a monad
morphism & - M = N.

> o M = M algebraic

Lifting of algebraic operations

> -algebraic > o M = M = > = M.

Theorem (Unique Algebraic Lifting)

x-algebraic operations have a unique lifting through a monad
morphism & - M = N.

Lifting of algebraic operations

> -algebraic > o M = M = > = M.

Theorem (Unique Algebraic Lifting)

x-algebraic operations have a unique lifting through a monad
morphism & - M = N.

Z%MiN

Lifting of algebraic operations

> -algebraic > o M = M = > = M.

Theorem (Unique Algebraic Lifting)

x-algebraic operations have a unique lifting through a monad
morphism & - M = N.

> o N = N algebraic

Functorial Monad Transformers

Definition (Functorial monad transformer)

@ A monad transformer (T, ret”, bind ", lift")
® A map hmap” : VM, N. (M = N) — (TM = TN)
@ Additional coherence conditions
e hmap' should preserve natural transformations and monad
morphisms,
e respect identities and composition of natural

transformations,
e /ift" should be natural (behave well wrt hmap’).

Functorial Monad Transformers

Definition (Functorial monad transformer)

@ A monad transformer (T, ret”, bind ", lift")
® A map hmap” : VM, N. (M = N) — (TM = TN)
@ Additional coherence conditions

e hmap' should preserve natural transformations and monad
morphisms,

e respect identities and composition of natural
transformations,

e /ift" should be natural (behave well wrt hmap’).

Examples:
@ State monad transformer

@ Exception monad
transformer

Non-example:

@ Continuation monad
transformer

Codensity Monad Transformer

@ KMX =VY : % (X — MY)— MY is part of a monad
transformer.

@ Exploits impredicativity of system Fw.

@ Properties of £:

e Every Y-operation op : ¥ o M - M induces a
¥ -algebraic operation op™ : ¥ o KM = [CM.

e from: ICM - M, such that from - lift* = id.

e op = from - op* - map* lift".

General Lifting

Theorem (Lifting)

Given
@eop:XoM-=M
@ Functorial monad transformer T .
There is a lifting op” : © o TM = TM of op along lift".

o Tliftk K, T
>oTlift ZOT(ICM) op

op’ =T oTM T(CM)—"™ . T

Yo Tlift* =map>(hmap’ (lift’*))

General Lifting

Theorem (Lifting)

Given
@eop:XoM-=M
@ Functorial monad transformer T .
There is a lifting op” : © o TM = TM of op along lift".

o Tliftk K, T
>oTlift ZOT(ICM) op

op’ =T oTM T(CM)—"™ . T
Yo Tlift* =map>(hmap’ (lift’*))

@ If op is X-algebraic, the algebraic lifting and the general
lifting coincide.

Example of lifted operations

@ For a concrete functorial monad transformer, the lifting
simplifies to:
@ SMX=8— M(XxS)

opy (t: Z(SMX)) : SMX = \s. opxs(map* 75 t)

where 7°(f: S — M(Xx S)) = fs.

Example of lifted operations

@ For a concrete functorial monad transformer, the lifting
simplifies to:
@ SMX=8— M(XxS)

opx (t : T(SMX)) : SMX =)\s. opxs(map™ 75t)
where 7°(f: S — M(Xx S)) = fs.
® XMX = M(Z + X)

opx (t : L(XMX)) : XMX = opz, x t.

@ Uniform liftings for a wide class of operations and monad
transformers.

@ Expressible categorical constructs essential for finding a
solution to the problem.

@ Future Work.

Extend to “mixed-variant” transformers.

Give a purely abstract account.

General lifting without relying on impredicativity.
Extend these results beyond monads.

	Introduction and Motivation
	Constructions Expressible in Fw
	Operations and Liftings

