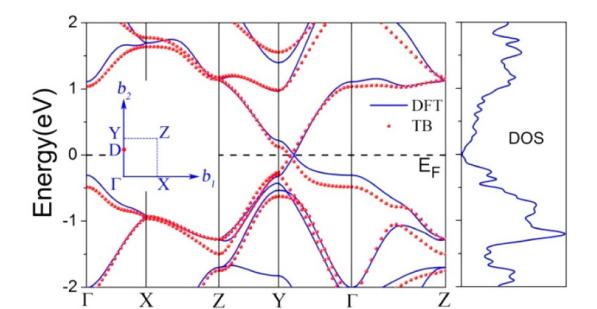


Capítulo 6: Electrones en un potencial periódico – Teoría de bandas



Desde un punto de vista fundamental, se debe resolver el siguiente problema para obtener los niveles de energía de los electrones en un cristal:

$$H\Psi = \sum_{i=1}^{N} \left(-\frac{\hbar^2}{2m} \nabla_i^2 \Psi - Ze^2 \sum_{\mathbf{R}} \frac{1}{|\mathbf{r}_i - \mathbf{R}|} \Psi \right) + \frac{1}{2} \sum_{i \neq j} \frac{e^2}{|\mathbf{r}_i - \mathbf{r}_j|} \Psi = E\Psi.$$

donde
$$\Psi(\mathbf{r}_1 s_1, \mathbf{r}_2 s_2, \dots, \mathbf{r}_N s_N)$$

Diferentes aproximaciones que se utilizan conducen a la ecuación de Schrodinger para 1 electrón en un potencial efectivo :

$$-\frac{\hbar^2}{2m}\nabla^2\psi(\mathbf{r}) + U(\mathbf{r})\psi(\mathbf{r}) = \varepsilon\psi(\mathbf{r})$$

one electron approximation

donde
$$U(\vec{r} + \vec{R}) = U(\vec{r})$$
, $\forall \vec{R} \in \text{Red de Bravais}$.

Ejemplo:

$$H\Psi = \sum_{i=1}^{N} \left(-\frac{\hbar^2}{2m} \nabla_i^2 \Psi - Ze^2 \sum_{\mathbf{R}} \frac{1}{|\mathbf{r}_i - \mathbf{R}|} \Psi \right) + \frac{1}{2} \sum_{i \neq j} \frac{e^2}{|\mathbf{r}_i - \mathbf{r}_j|} \Psi = E\Psi.$$

$$U^{\text{ion}}(\mathbf{r}) = -Ze^2 \sum_{\mathbf{R}} \frac{1}{|\mathbf{r} - \mathbf{R}|}.$$

Aproximación:

$$U^{\text{el}}(\mathbf{r}) = -e \int d\mathbf{r}' \, \rho(\mathbf{r}') \frac{1}{|\mathbf{r} - \mathbf{r}'|}.$$

En el marco de la one electron approximation:

$$\rho(\mathbf{r}) = -e \sum_{i} |\psi_{i}(\mathbf{r})|^{2},$$

$$-\frac{\hbar^2}{2m}\nabla^2\psi_i(\mathbf{r}) + U^{\text{ion}}(\mathbf{r})\psi_i(\mathbf{r}) + \left[e^2\sum_j\int d\mathbf{r}'\,|\psi_j(\mathbf{r}')|^2\frac{1}{|\mathbf{r}-\mathbf{r}'|}\right]\psi_i(\mathbf{r}) = \varepsilon_i\psi_i(\mathbf{r}).$$

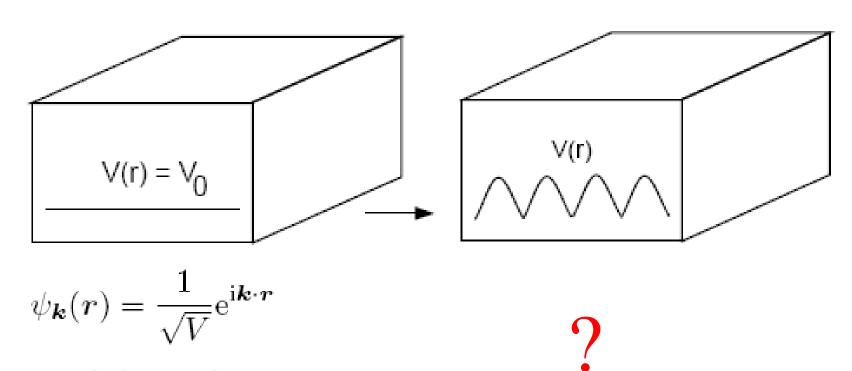
Ecuaciones de Hartree

$$U(r) = U^{ion}(r) + U^{ee}(r)$$

Se resuelven en forma autoconsistente $U^{ee}(\Psi)$!!!

$$\check{H}\Psi(\vec{r}) = \left[-\frac{\hbar^2}{2m} \bigtriangledown^2 + U(\vec{r}) \right] \Psi(\vec{r}) = \epsilon \Psi(\vec{r})$$

donde $U(\vec{r} + \vec{R}) = U(\vec{r})$, $\forall \vec{R} \in \text{Red de Bravais}$.



$$\varepsilon_{\mathbf{k}} = \frac{\hbar^2 k^2}{2m_o} = \frac{\hbar^2}{2m_o} (k_x^2 + k_y^2 + k_z^2)$$

Por lo tanto, es de suma importancia el problema de un electrón en un potencial periódico:

$$\check{H}\Psi(\vec{r}) = \left[-\frac{\hbar^2}{2m} \bigtriangledown^2 + U(\vec{r}) \right] \Psi(\vec{r}) = \epsilon \Psi(\vec{r})$$

donde $U(\vec{r} + \vec{R}) = U(\vec{r})$, $\forall \vec{R} \in \text{Red de Bravais}$.

Teorema de Bloch

Las soluciones son del forma
$$\Psi(\vec{r}) = e^{i\vec{K}\cdot\vec{r}}u_{\vec{k}}(\vec{r})$$

donde

$$u_{\vec{K}}(\vec{r} + \vec{R}) = u_{\vec{K}}(\vec{r})$$
 para todo $\vec{R} \in \text{red de Bravais}$

Notemos que

$$\Psi(\vec{r} + \vec{R}) = e^{i\vec{K}\cdot\vec{R}}\Psi(\vec{r})$$

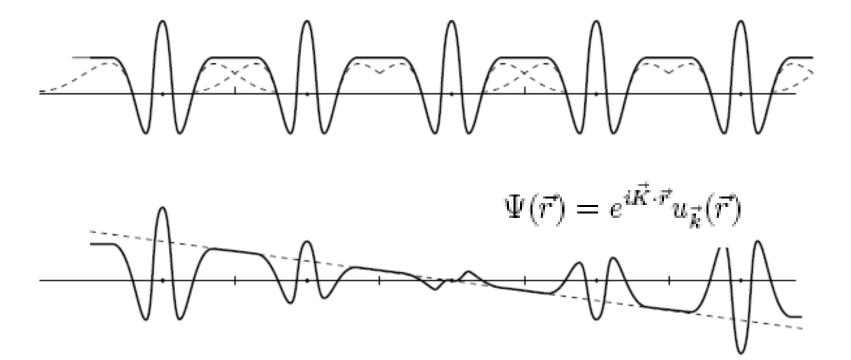
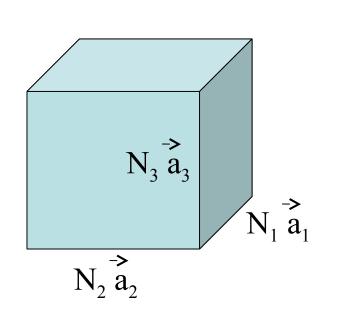


Fig. 17.1. A lattice-periodic function u(x) and the real part of the corresponding

Condiciones periódicas de contorno (Born-von Karman)

Sean $\vec{a_1}$, $\vec{a_2}$, $\vec{a_3}$ vectores primitivos, definamos



$$N \equiv N_1 N_2 N_3$$
 Número de celdas

$$\Psi(\vec{r} + N_i \vec{a_i}) = \Psi(\vec{r}) , \quad i = 1, 2, 3 .$$

$$\Psi(\vec{r} + N_i \vec{a_i}) = \underbrace{e^{i\vec{K} \cdot N_i \vec{a_i}}}_{1} \Psi(\vec{r}) \quad i = 1, 2, 3$$

$$N_i \vec{K} \cdot \vec{a_i} = 2\pi m_i$$
, $m_i \in \mathbb{Z}$

Los valores permitidos de k son:

$$\mathbf{k} = \sum_{i=1}^{3} \frac{m_i}{N_i} \mathbf{b}_i,$$

Comentarios:

1- El número de k permitidos que pertenecen a la primer zona de Brillouin es igual al número de celdas del cristal N.

2- El volumen del espacio k asociado a cada punto k permitido es:

$$\Delta \mathbf{k} = \frac{\mathbf{b}_1}{N_1} \cdot \left(\frac{\mathbf{b}_2}{N_2} \times \frac{\mathbf{b}_3}{N_3} \right) = \frac{1}{N} \mathbf{b}_1 \cdot (\mathbf{b}_2 \times \mathbf{b}_3).$$

Pero:
$$\mathbf{b}_1 \cdot (\mathbf{b}_2 \times \mathbf{b}_3) = \frac{(2\pi)^3}{\mathbf{a}_1 \cdot (\mathbf{a}_2 \times \mathbf{a}_3)}$$
.

El volumen de la celda primitiva de la red directa v = V/N

$$\Delta \mathbf{k} = \frac{(2\pi)^3}{V}$$
 Lo mismo que para el gas de e

$$g(k) = \frac{2}{(2\pi)^3}$$

3- $\Psi(\vec{r}) = e^{i\vec{R}\cdot\vec{r}}u_{\vec{k}}(\vec{r})$ no son autofunciones del momento lineal

$$\begin{split} -i\hbar\vec{\nabla}\Psi(\vec{r}) &= -i\hbar\vec{\nabla}(e^{i\vec{K}\cdot\vec{r}}u_{\vec{k}}) \\ &= \hbar\vec{K}e^{i\vec{K}\cdot\vec{r}}u_{\vec{k}} - i\hbar e^{i\vec{K}\cdot\vec{r}}\vec{\nabla}u_{\vec{k}} \end{split}$$

4- El vector \vec{K} siempre se puede restringir a la 1 zona de Brillouin.

En efecto, todo vector \vec{K} se puede escribir:

$$\vec{K} = \vec{k} + \vec{G}$$

Donde G pertenece a la red recíproca y k a la 1ZB.



Si para
$$ec{K}$$
 se cumple $\Psi(ec{r}+ec{R})=e^{iec{K}\cdotec{R}}\Psi(ec{r})$

Esta condición también se cumple para k ya que

$$e^{i\vec{G}.\vec{R}} = \hat{I}$$

Demostración del Teorema de Bloch

Expando la función de onda en una base de ondas planas (satisfacen las condiciones periódicas de contorno)

$$\psi(\mathbf{r}) = \sum_{\mathbf{q}} c_{\mathbf{q}} e^{i\mathbf{q}\cdot\mathbf{r}}.$$

Como U(r) es periódico:
$$U(\mathbf{r}) = \sum_{\mathbf{k}} U_{\mathbf{k}} e^{i\mathbf{k} \cdot \mathbf{r}}$$
.

donde
$$U_{K} = \frac{1}{v} \int_{\text{cell}} d\mathbf{r} \ e^{-i\mathbf{K} \cdot \mathbf{r}} U(\mathbf{r}).$$

- Se fija el nivel de energía /
$$U_0 = \frac{1}{v} \int_{\text{cell}} d\mathbf{r} \ U(\mathbf{r}) = 0.$$

$$U_{-K} = U_{K}^{*}$$
.

-Para cristales con simetría de inversión: $U_{-K} = U_{K} = U_{K}^{*}$ $U(\mathbf{r}) = U(-\mathbf{r}),$

$$\frac{p^{2}}{2m}\psi = -\frac{\hbar^{2}}{2m}\nabla^{2}\psi = \sum_{\mathbf{q}}\frac{\hbar^{2}}{2m}q^{2}c_{\mathbf{q}}e^{i\mathbf{q}\cdot\mathbf{r}}.$$

$$U\psi = \left(\sum_{\mathbf{K}}U_{\mathbf{K}}e^{i\mathbf{K}\cdot\mathbf{r}}\right)\left(\sum_{\mathbf{q}}c_{\mathbf{q}}e^{i\mathbf{q}\cdot\mathbf{r}}\right)$$

$$= \sum_{\mathbf{K}\mathbf{q}}U_{\mathbf{K}}c_{\mathbf{q}}e^{i(\mathbf{K}+\mathbf{q})\cdot\mathbf{r}} = \sum_{\mathbf{K}\mathbf{q}}U_{\mathbf{K}}c_{\mathbf{q}'-\mathbf{K}}e^{i\mathbf{q}'\cdot\mathbf{r}}.$$

$$K+q=q'$$
(1)

Cambio los índices de suma Kq' por K'q (1) + (2):

$$\sum_{\mathbf{q}} e^{i\mathbf{q}\cdot\mathbf{r}} \left\{ \left(\frac{\hbar^2}{2m} q^2 - \varepsilon \right) c_{\mathbf{q}} + \sum_{\mathbf{K'}} U_{\mathbf{K'}} c_{\mathbf{q}-\mathbf{K'}} \right\} = 0.$$

Como la base es ortogonal y completa:

$$\left(\frac{\hbar^2}{2m}q^2-\varepsilon\right)c_{\mathbf{q}}+\sum_{\mathbf{K'}}U_{\mathbf{K'}}c_{\mathbf{q}-\mathbf{K'}}=0.$$

Se puede escribir $\mathbf{q} = \mathbf{k} - \mathbf{K}$, con k pertenece a la 1ZB

$$\left(\frac{\hbar^2}{2m}\left(\mathbf{k}-\mathbf{K}\right)^2-\varepsilon\right)c_{\mathbf{k}-\mathbf{K}}+\sum_{\mathbf{K'}}U_{\mathbf{K'}}c_{\mathbf{k}-\mathbf{K}-\mathbf{K'}}=0,$$

Haciendo el cambio $K' \rightarrow K' - K$,

$$\left(\frac{\hbar^2}{2m}(\mathbf{k}-\mathbf{K})^2-\varepsilon\right)c_{\mathbf{k}-\mathbf{K}}+\sum_{\mathbf{K'}}U_{\mathbf{K'}-\mathbf{K}}c_{\mathbf{k}-\mathbf{K'}}=0.$$

Ecuación de Schrodinger en el espacio k

Dado un k dentro de la 1ZB, la ecuación anterior acopla solamente

$$k, k - K', k - K'', \ldots,$$

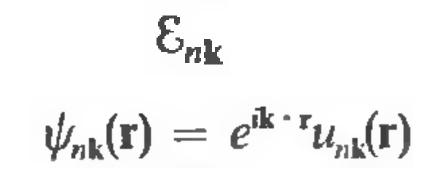
Entonces:
$$\psi_{\mathbf{k}} = \sum_{\mathbf{K}} c_{\mathbf{k}-\mathbf{K}} e^{i(\mathbf{k}-\mathbf{K}) \cdot \mathbf{r}}$$
.

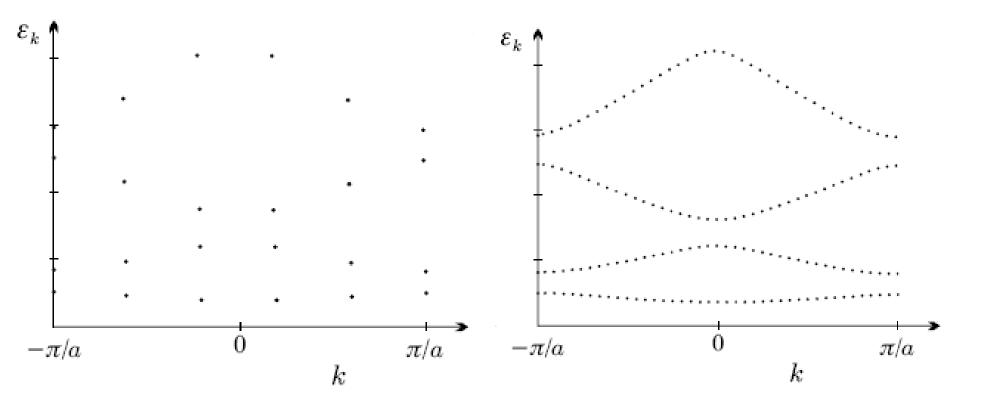
$$\psi_{\mathbf{k}}(\mathbf{r}) = e^{i\mathbf{k}\cdot\mathbf{r}} \left(\sum_{\mathbf{K}} c_{\mathbf{k}-\mathbf{K}} e^{-i\mathbf{K}\cdot\mathbf{r}}\right),$$

Queda demostrado el teorema de Bloch, ya que la función

$$u(\mathbf{r}) = \sum_{\mathbf{k}} c_{\mathbf{k} - \mathbf{K}} e^{-i\mathbf{K} \cdot \mathbf{r}}$$
 es una función periódica

5- Fijado k, existen diferentes soluciones



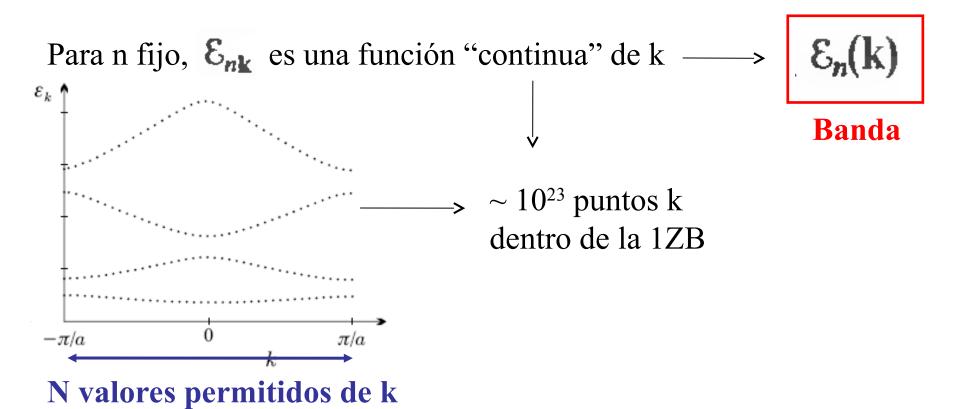


Se puede demostrar que:

$$\psi_{n, k+K}(\mathbf{r}) = \psi_{nk}(\mathbf{r}),$$

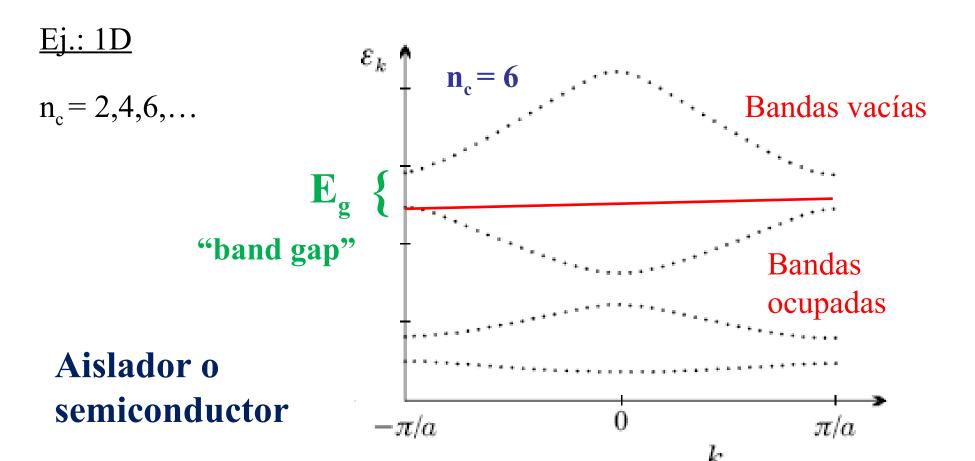
$$\varepsilon_{n, k+K} = \varepsilon_{nk}.$$

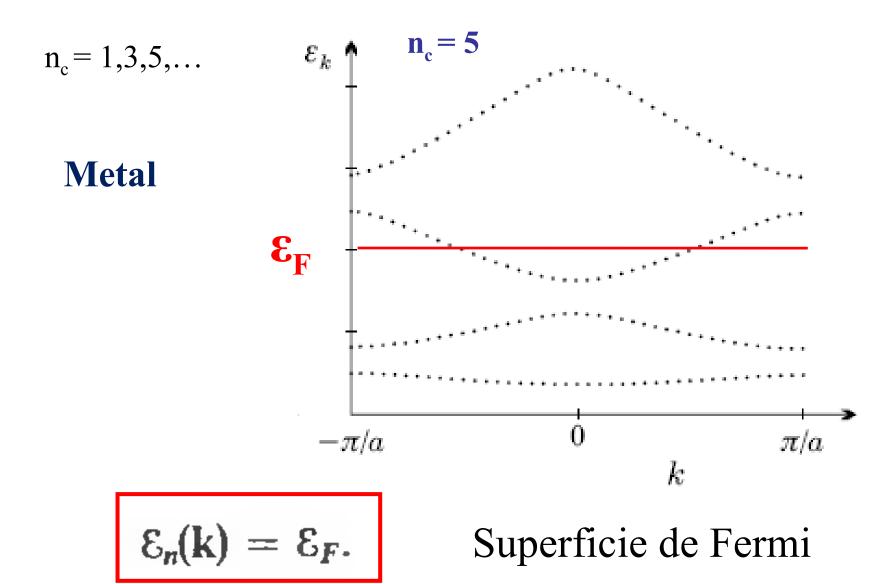
El conjunto de todas las energías y autoestados del sistema se obtiene resolviendo el problema para los k dentro de la 1ZB



El estado fundamental de N_e electrones se obtiene ocupando con 2 electrones ($\uparrow\downarrow$) cada uno de los niveles $\mathcal{E}_n(k)$ de menor a mayor energía, hasta ubicar todos los electrones

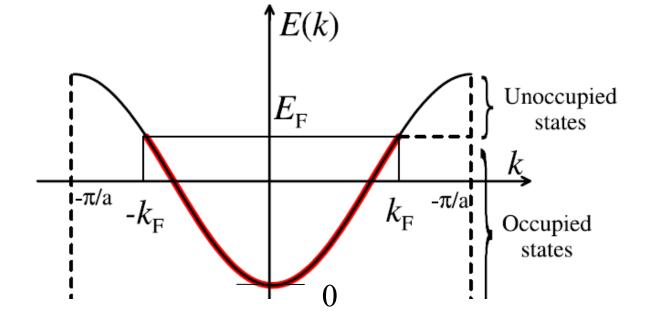
 $N_e = n_c N$ donde n_c es el número de electrones por celda





Puede ocurrir que el nivel de Fermi cruce varias bandas

Una superficie para cada banda



Energía total del estado fundamental

$$E_0 = \sum_{|\mathbf{k}| \le k_F} \sum_{\sigma} E(\mathbf{k}) = 2 \sum_{|\mathbf{k}| \le k_F} E(\mathbf{k})$$

$$2\sum_{k} \rightarrow \int d^3k \rightarrow \int d\varepsilon \implies \text{DOS: g(k)} \text{ g(\epsilon)}$$

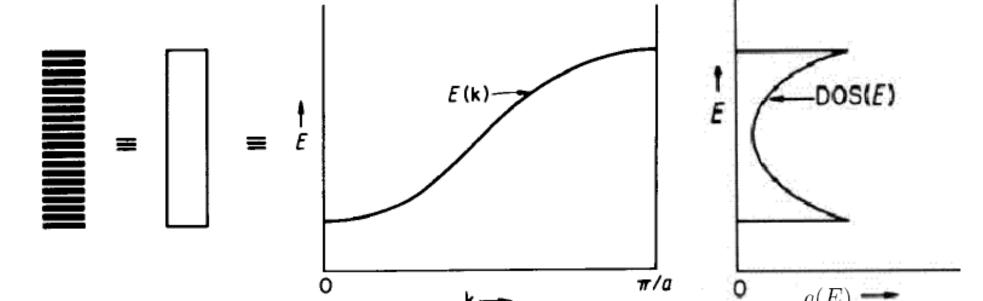
$$g(k) = \frac{2}{(2\pi)^3}$$

$$g(arepsilon)$$
 ?

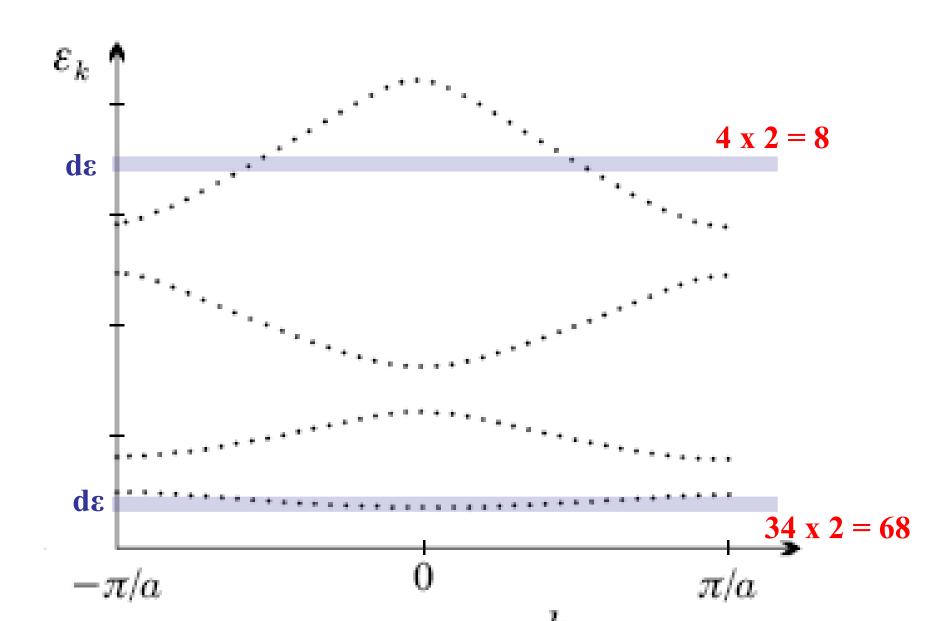
Depende de la relación de dispersión de la banda

$g(\epsilon)$ d ϵ = número de estados electrónicos (por unidad de volumen) comprendidos entre ϵ y ϵ +d ϵ

$$g(E) = \sum_k \delta(E - E(k))$$



DOS es proporcional a la inversa de dE/dk

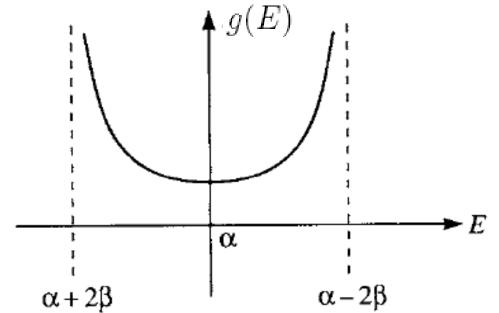


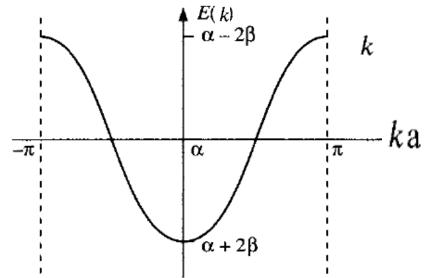
$$N-2$$
 $N-1$ N

$$\langle p|H|p\rangle = \alpha$$

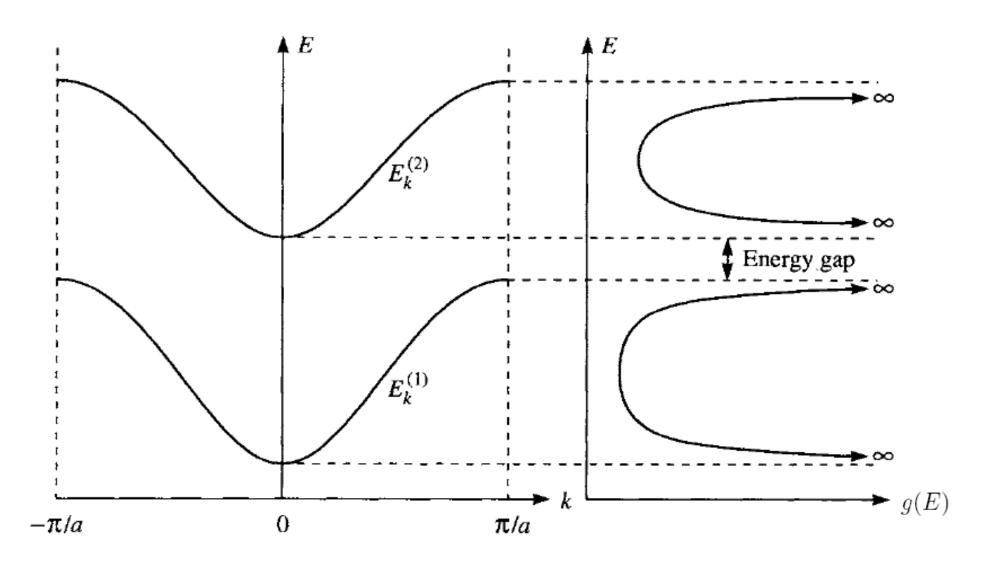
$$\langle p|H|p\rangle = \alpha \qquad \langle p|H|j\rangle = \beta \text{ 'hopping'}$$

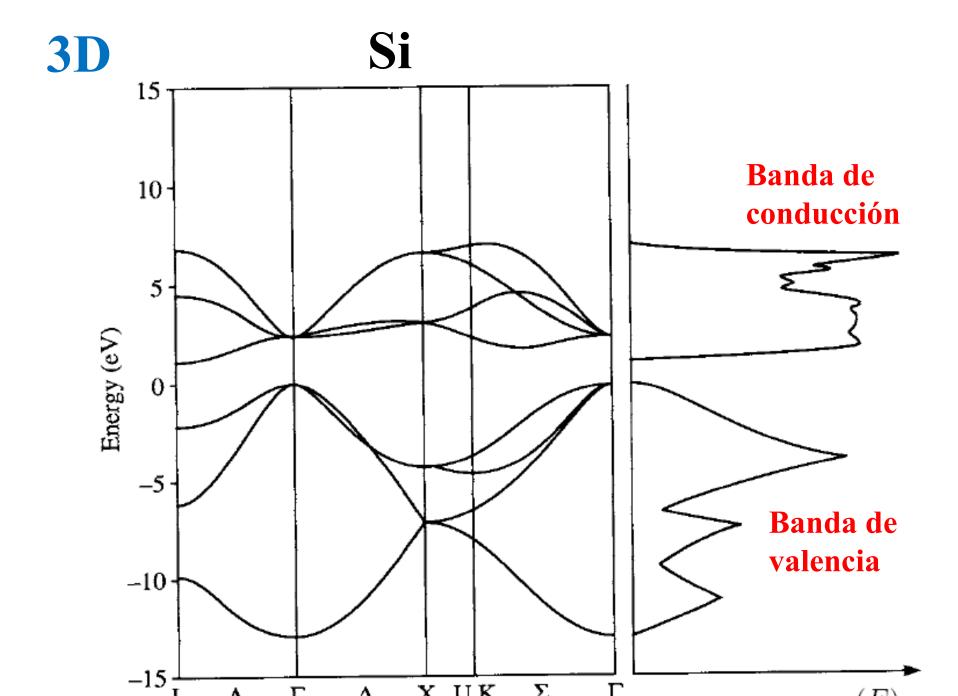
$$E = \alpha + 2\beta \cos ka$$





2 bandas





Electrones en un potencial periódico débil

U(r) lo tratamos como una perturbación —> Modelo de electrones casi libres

Empty Lattice Approximation (orden cero)

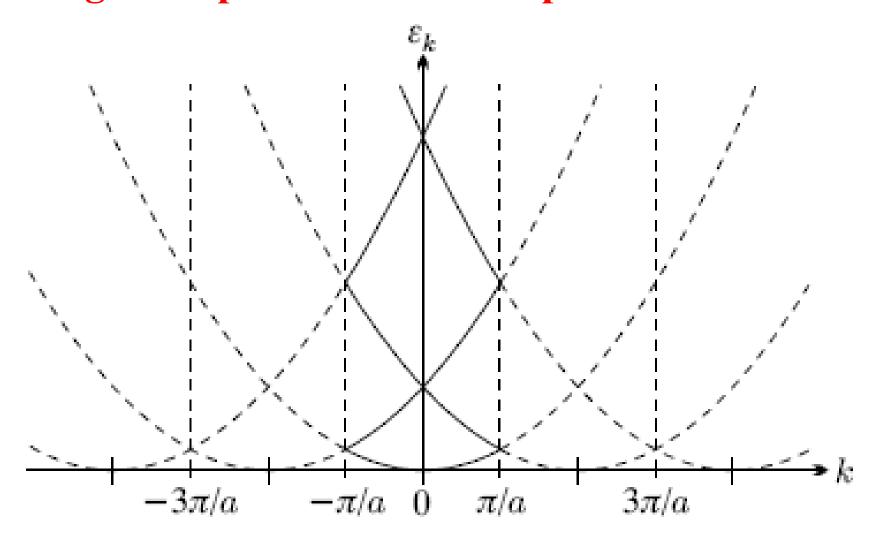
$$\mathbf{U(r)} = \mathbf{0} \quad \longrightarrow \quad \mathbf{e}^{-} \, \mathbf{libres} \qquad \qquad \varepsilon_{\mathbf{k}}^{(0)} = \frac{\hbar^{2}}{2m_{o}} k^{2}$$

Pero: hay que imponer la condición de periodicidad (se tiene que cumplir el Teorema de Bloch)

$$\psi_{n, k+K}(\mathbf{r}) = \psi_{nk}(\mathbf{r}),$$

$$\varepsilon_{n, k+K} = \varepsilon_{nk}.$$

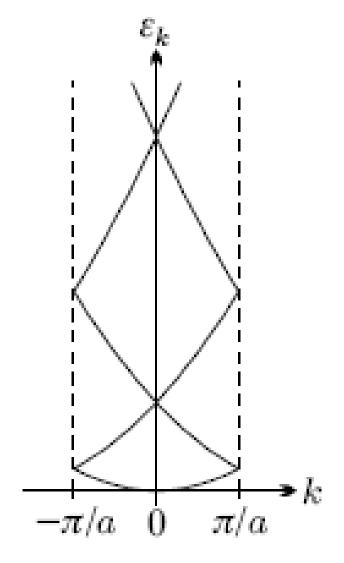
Pongo una parábola en cada punto de la RR

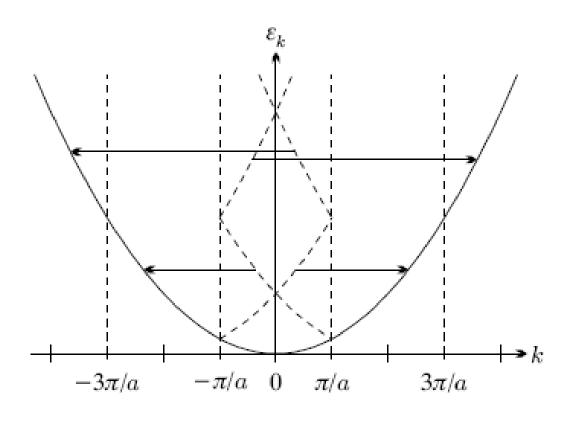


Esquema de zona repetida

$$\varepsilon = \varepsilon_{\mathbf{k}-\mathbf{K}}^0$$

$$\varepsilon = \varepsilon_{\mathbf{k}-\mathbf{K}}^0, \quad \psi_{\mathbf{k}} \propto e^{i(\mathbf{k}-\mathbf{K})\cdot\mathbf{r}}.$$





Esquema de zona reducida

Esquema de zona extendida

Usando teoría de perturbaciones se puede mostrar que :

-Niveles no degenerados

$$\varepsilon = \varepsilon_{k-K_1}^0 + \sum_{K} \frac{|U_{K-K_1}|^2}{\varepsilon_{k-K_1}^0 - \varepsilon_{k-K}^0} + O(U^3).$$

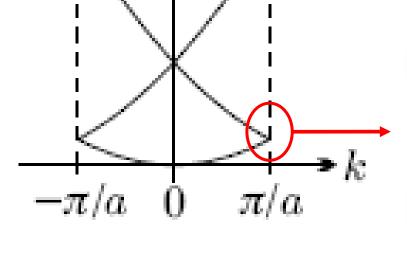
-Degeneración orden m $\mathcal{E}_{\mathbf{k}-\mathbf{K}_1}^0 = \cdots = \mathcal{E}_{\mathbf{k}-\mathbf{K}_{--}}^0$

$$\mathcal{E}_{\mathbf{k}-\mathbf{K}_1}^0 = \cdots = \mathcal{E}_{\mathbf{k}-\mathbf{K}_m}^0$$

$$(\varepsilon - \varepsilon_{k-K_i}^0)c_{k-K_i} = \sum_{j=1}^m U_{K_j-K_i}c_{k-K_j}, \qquad i = 1, \ldots, m,$$

La corrección a la energía de los niveles **no degenerados** es de segundo orden en U_k

Para los niveles degenerados la corrección es de primer orden Sólo corregiremos los niveles degenerados

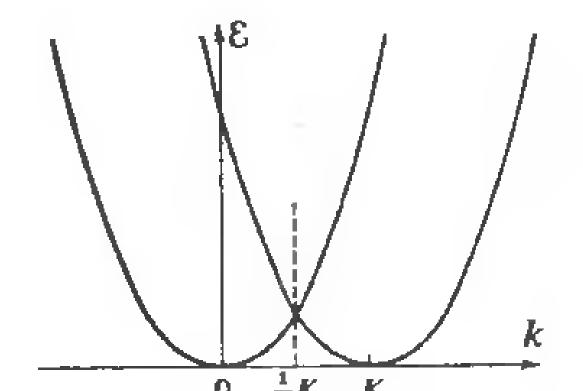


$$(\varepsilon - \varepsilon_{k-K_i}^0)c_{k-K_i} = \sum_{j=1}^m U_{K_j-K_i}c_{k-K_j},$$

2 niveles degenerados

$$(\varepsilon - \varepsilon_{k-K_1}^0)c_{k-K_1} = U_{K_2-K_1}c_{k-K_2},$$

$$(\varepsilon - \varepsilon_{k-K_2}^0)c_{k-K_2} = U_{K_1-K_2}c_{k-K_1}.$$



$$\mathbf{K}_1 = \mathbf{0}$$

$$K_2=2\pi/a$$

$$k = \pi / a$$

Llamando $\mathbf{q} = \mathbf{k} - \mathbf{K_1}$ y $\mathbf{K} = \mathbf{K_2} - \mathbf{K_1}$

$$(\varepsilon - \varepsilon_{\mathbf{q}}^{0})c_{\mathbf{q}} = U_{\mathbf{K}}c_{\mathbf{q}-\mathbf{K}},$$
 $(\varepsilon - \varepsilon_{\mathbf{q}-\mathbf{K}}^{0})c_{\mathbf{q}-\mathbf{K}} = U_{-\mathbf{K}}c_{\mathbf{q}} = U_{\mathbf{K}}^{*}c_{\mathbf{q}}.$

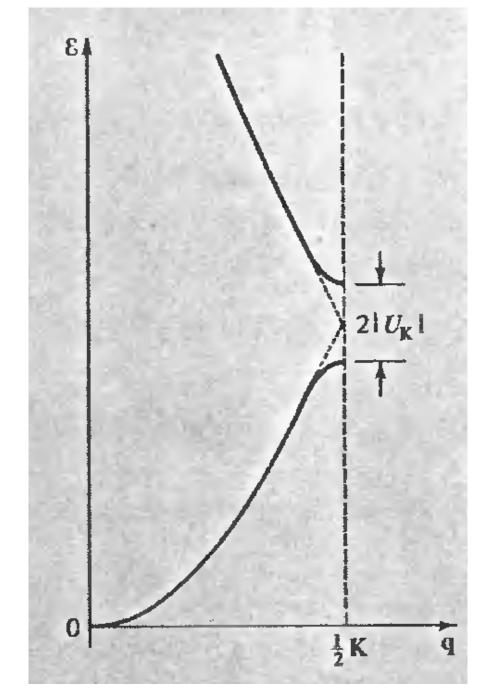
$$\begin{vmatrix} \varepsilon - \varepsilon_{\mathbf{q}}^{0} & -U_{\mathbf{K}} \\ -U_{\mathbf{K}}^{*} & \varepsilon - \varepsilon_{\mathbf{q}-\mathbf{K}}^{0} \end{vmatrix} = 0. \implies (\varepsilon - \varepsilon_{\mathbf{q}}^{0})(\varepsilon - \varepsilon_{\mathbf{q}-\mathbf{K}}^{0}) = |U_{\mathbf{K}}|^{2}.$$

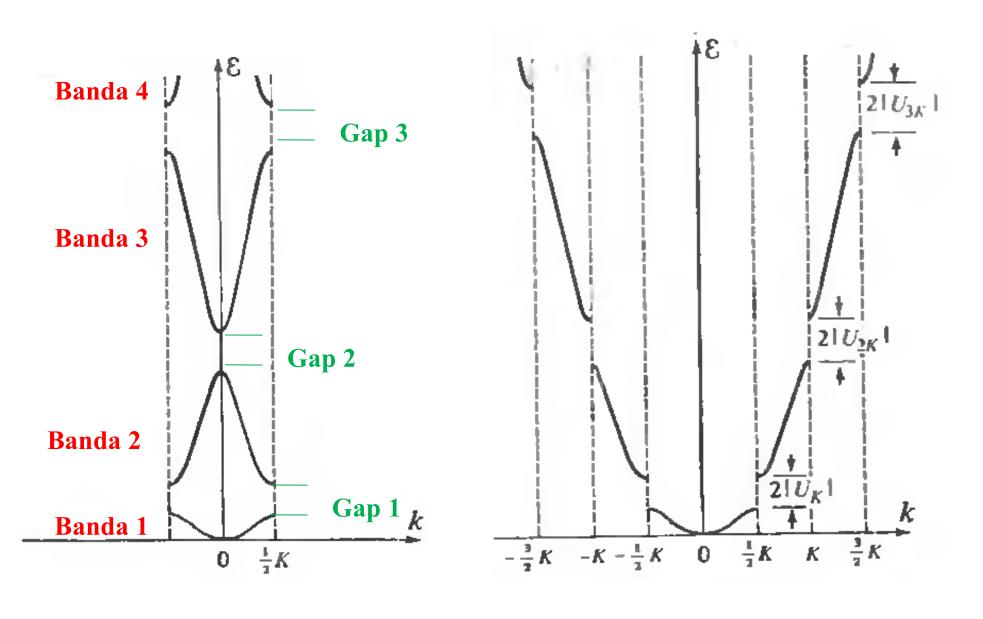
$$\varepsilon = \frac{1}{2} (\varepsilon_{\mathbf{q}}^{0} + \varepsilon_{\mathbf{q}-\mathbf{K}}^{0}) \pm \left[\left(\frac{\varepsilon_{\mathbf{q}}^{0} - \varepsilon_{\mathbf{q}-\mathbf{K}}^{0}}{2} \right)^{2} + |U_{\mathbf{K}}|^{2} \right]^{1/2}$$

En el plano de Bragg $(q=\pi/a)$

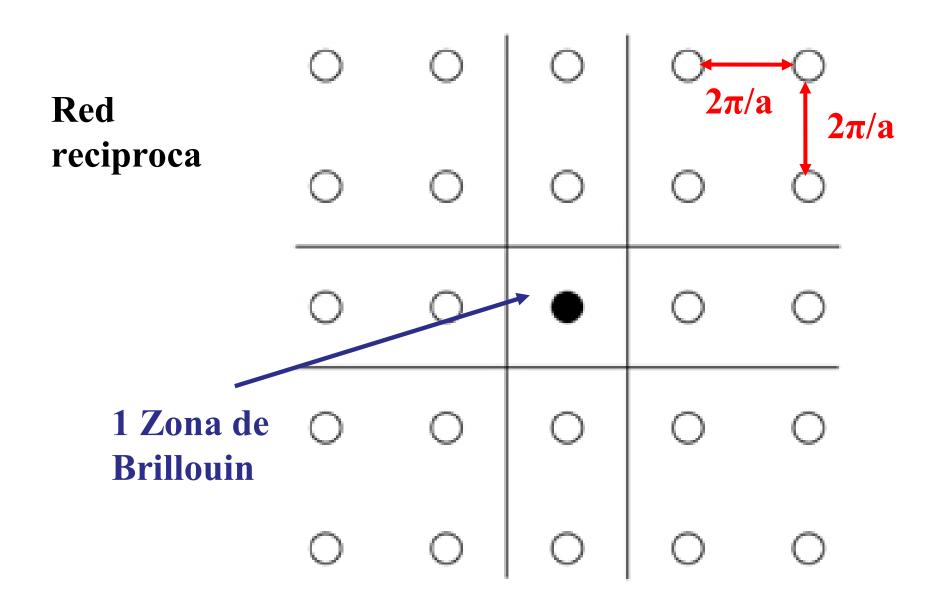
$$\mathcal{E} = \mathcal{E}_{\mathbf{q}}^{0} \pm |U_{\mathbf{K}}|,$$

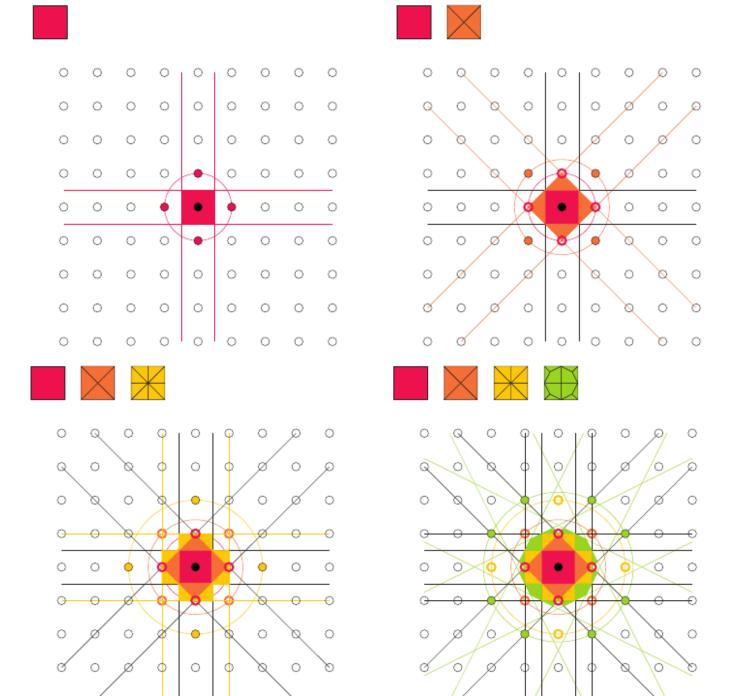
con $K=2\pi/a$

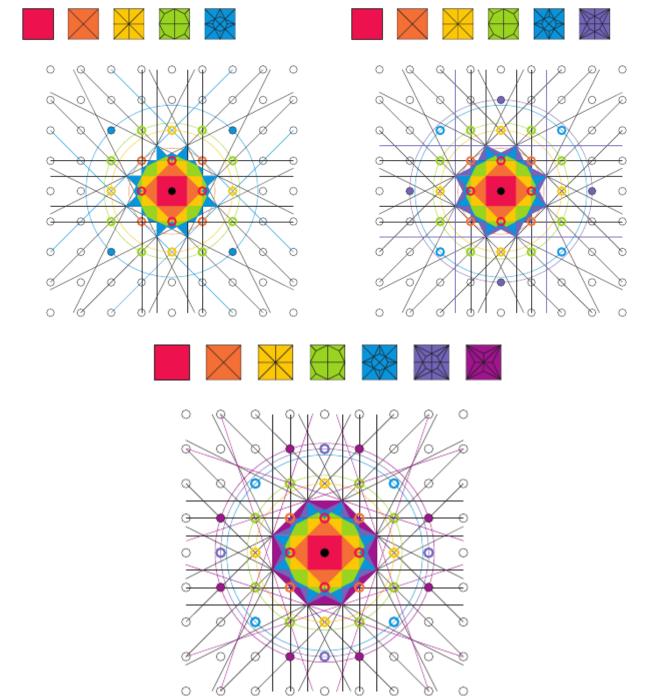


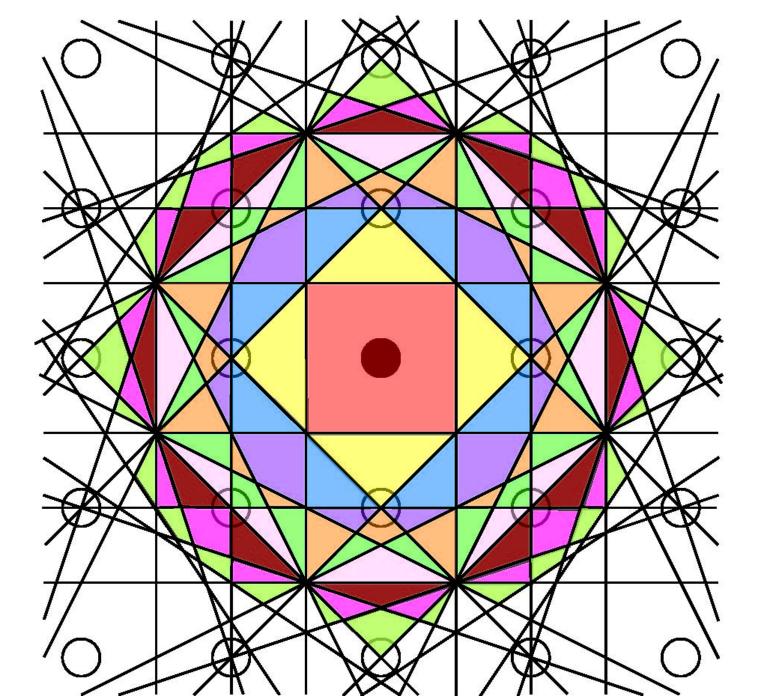


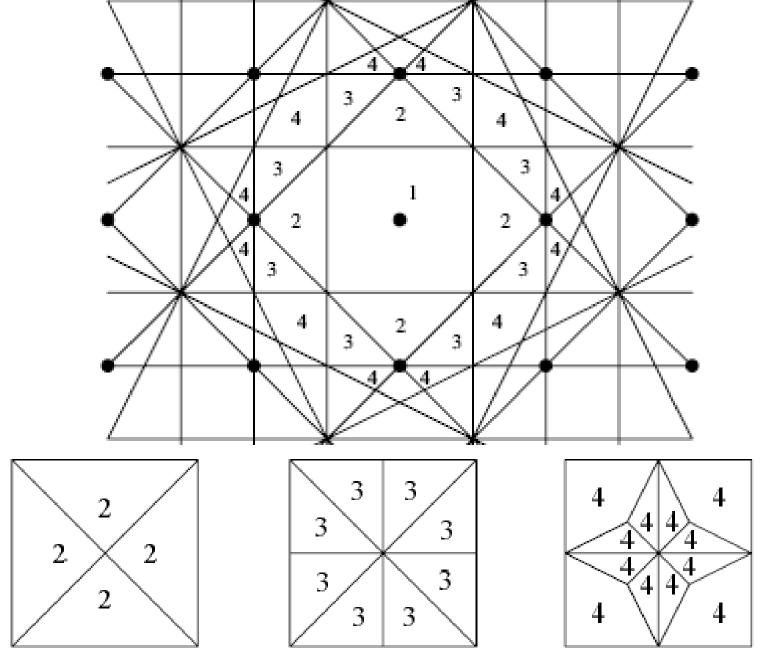
Nearly free en una red cuadrada en 2D





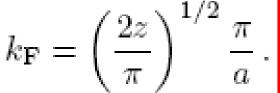




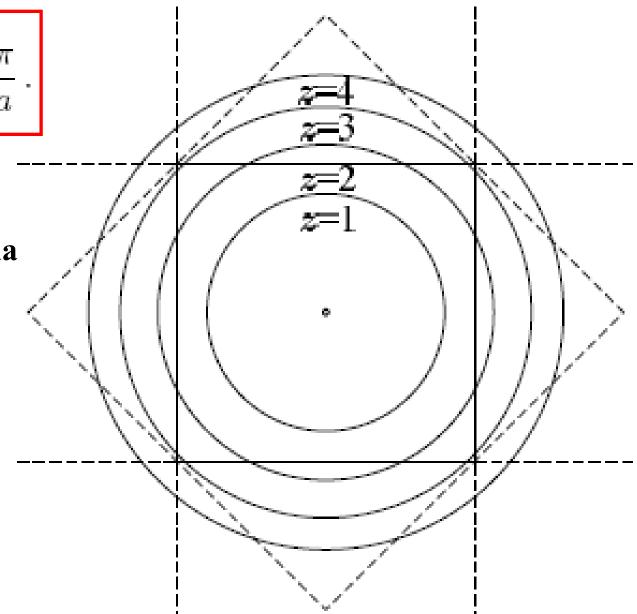


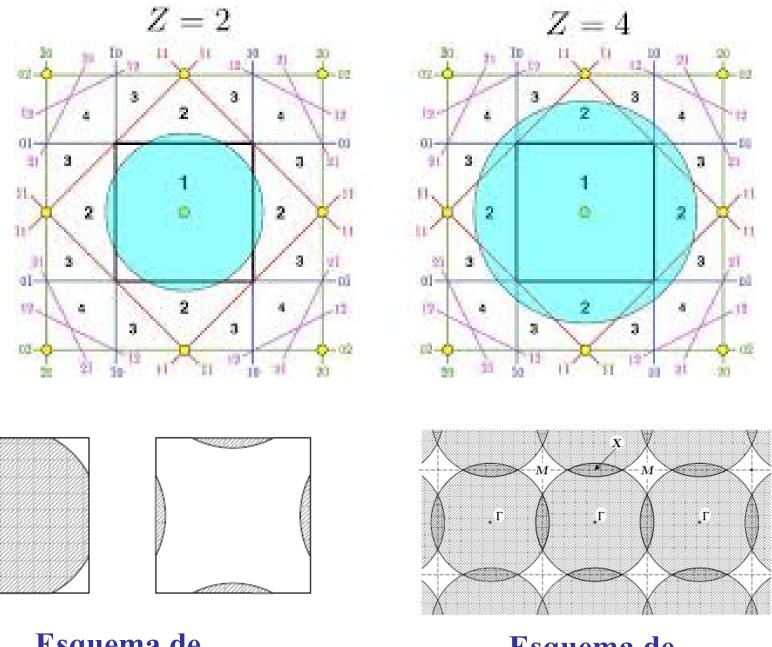
Todas las zonas ocupan el mismo volumen

Superficies de Fermi



z: número de electrones por celda

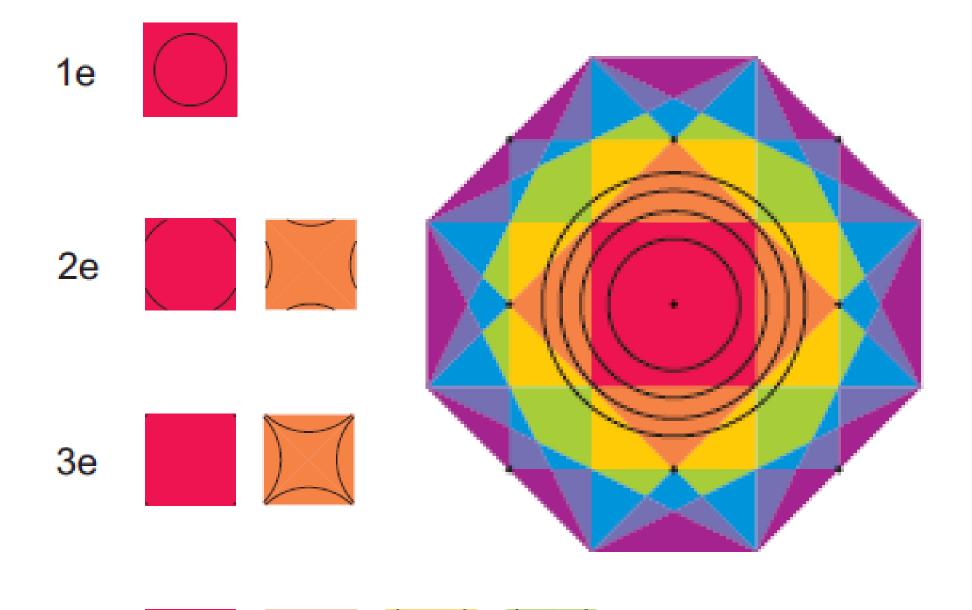


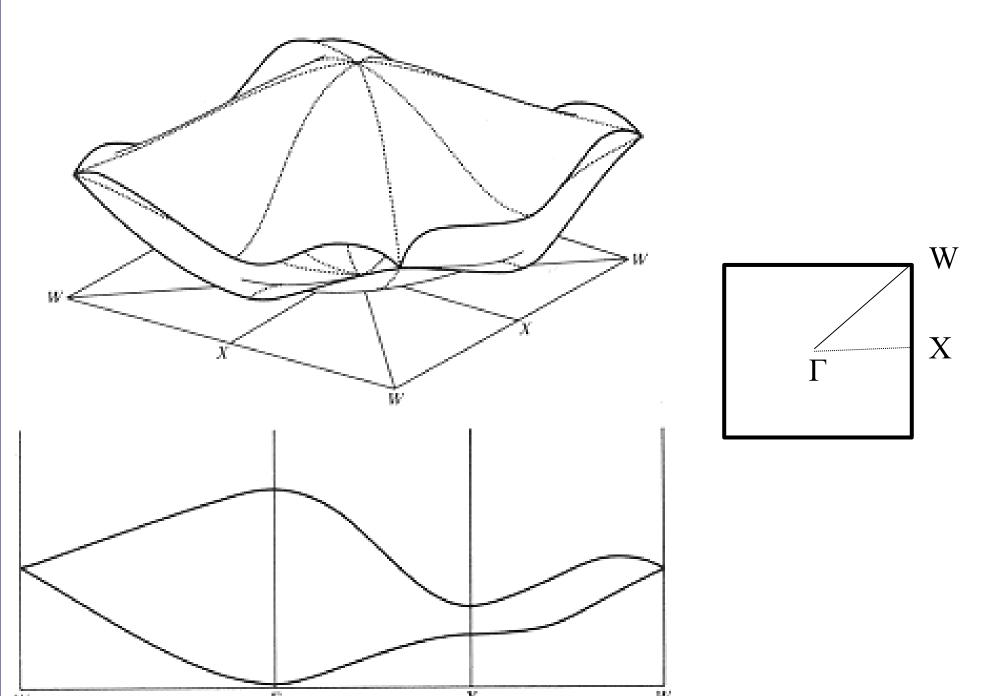


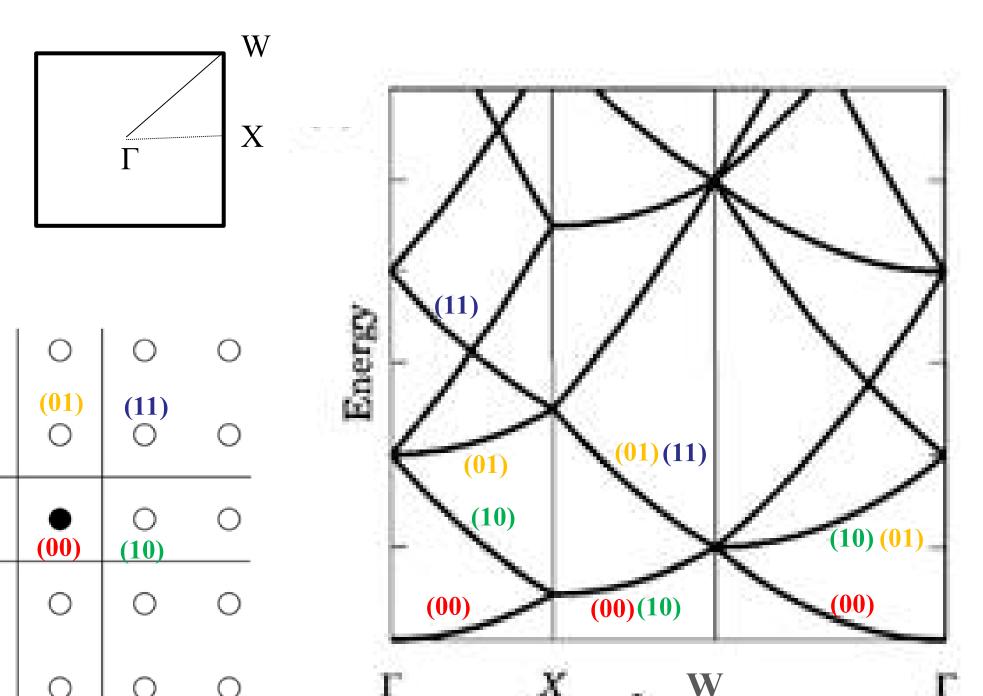
Esquema de zona reducida

z=2

Esquema de

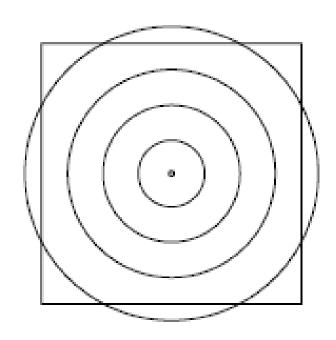


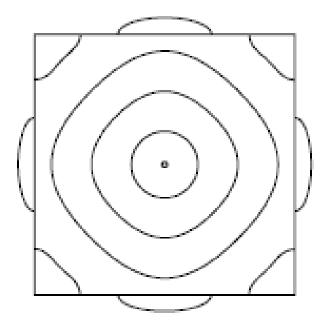




Como se modifica la estructura de bandas de electrones libres un potencial periódico débil ?

Se abren gaps en los planos de Bragg y las bandas degeneradas se splitean

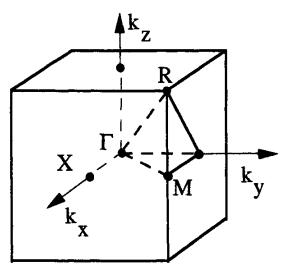


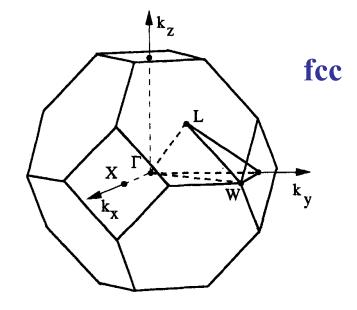


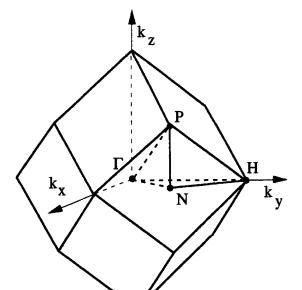
Empty lattice approx.

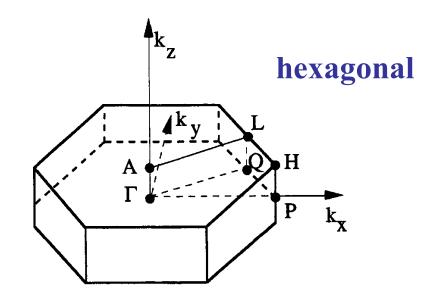
Nearly free electron approx.

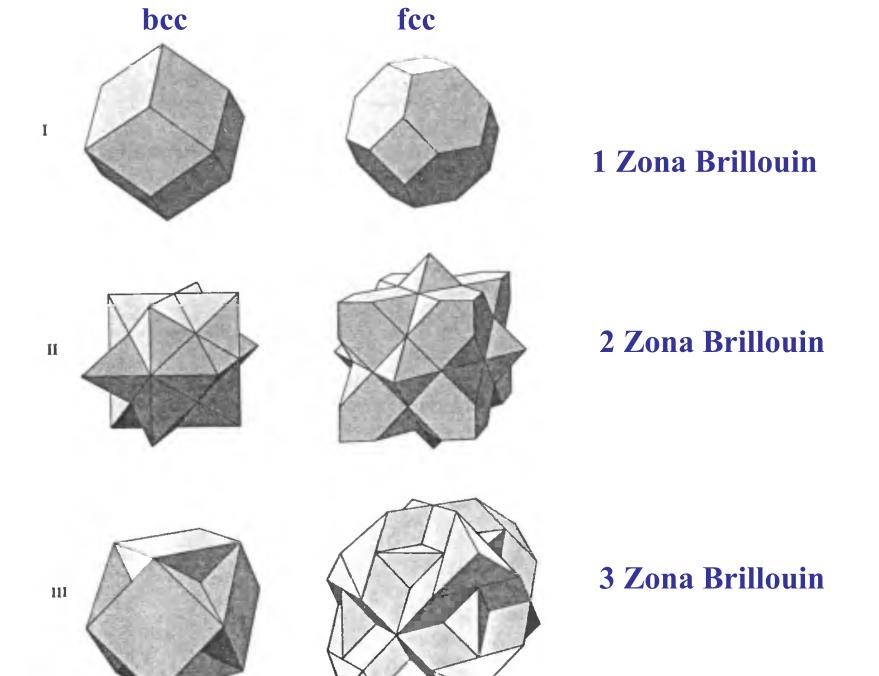
Redes en 3D



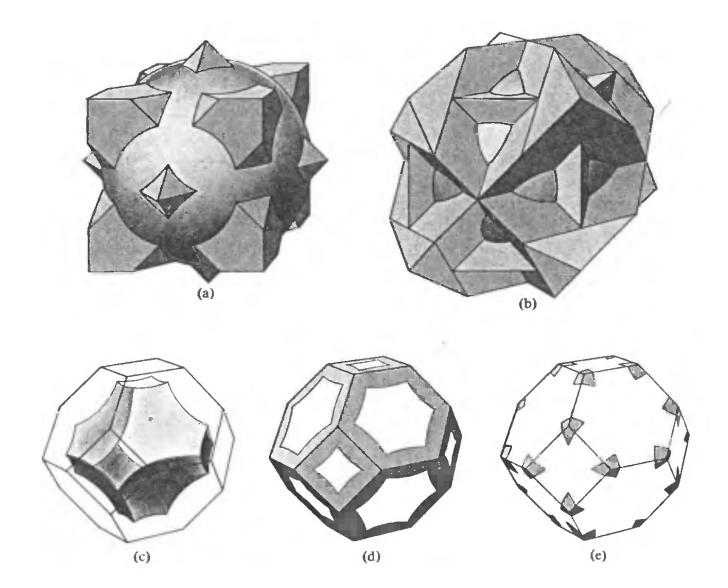


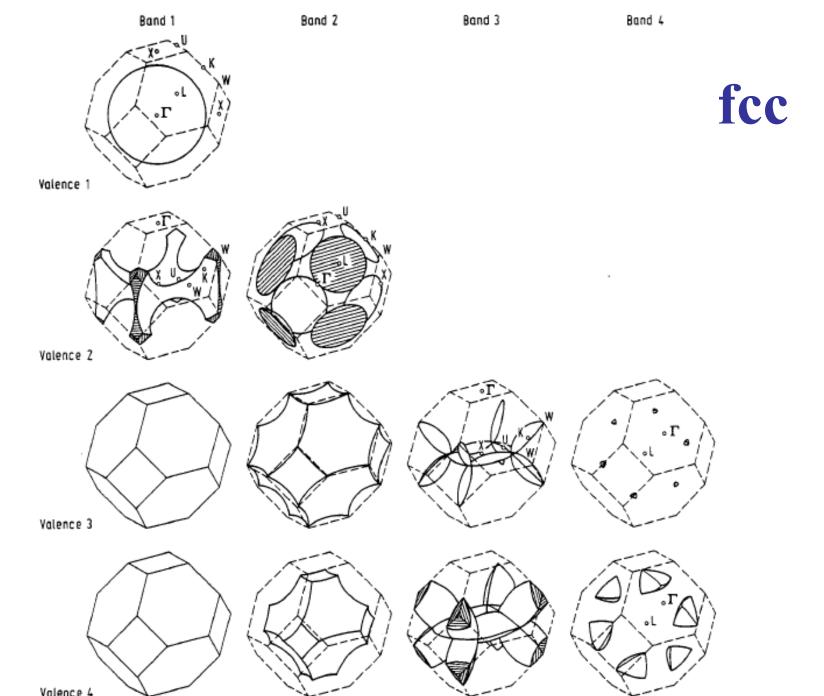


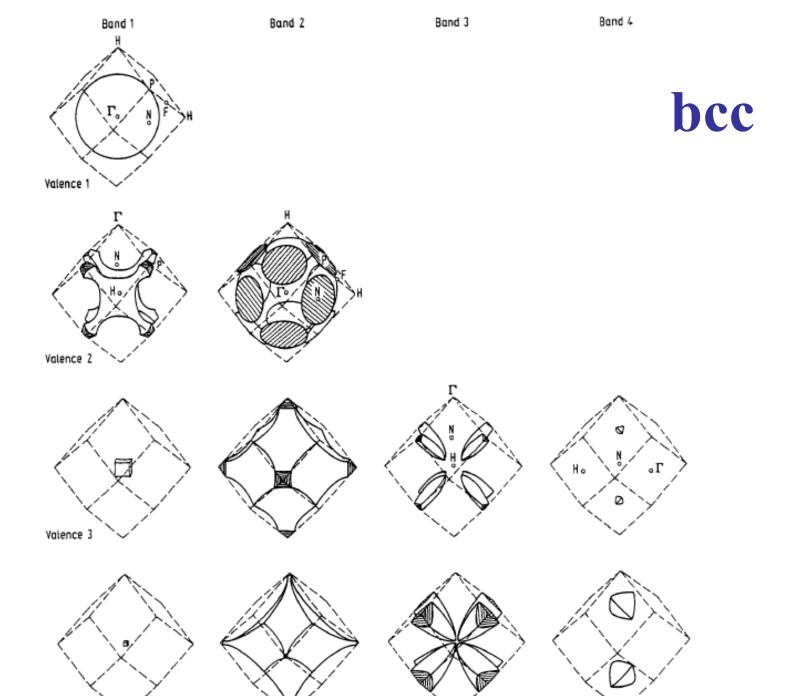




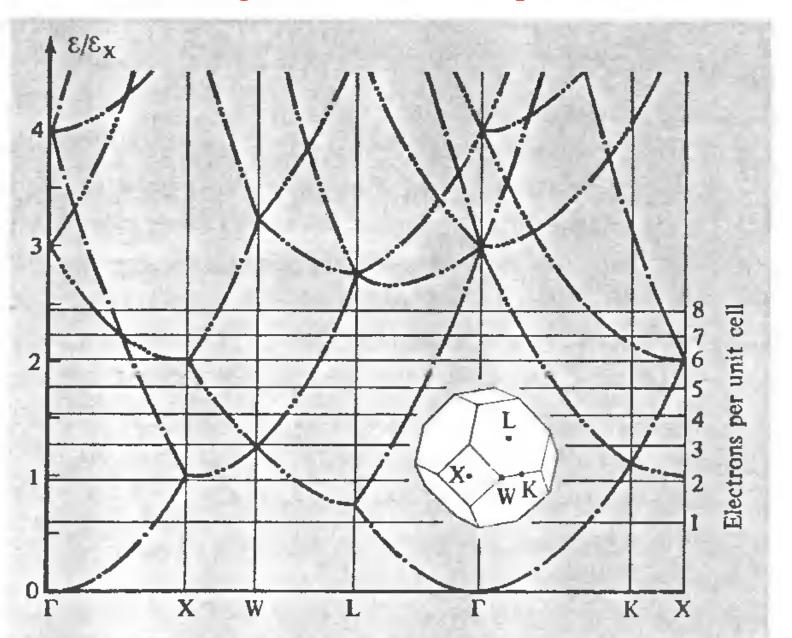
Superficie de Fermi de electrón libre para una estructura fcc (z=4)



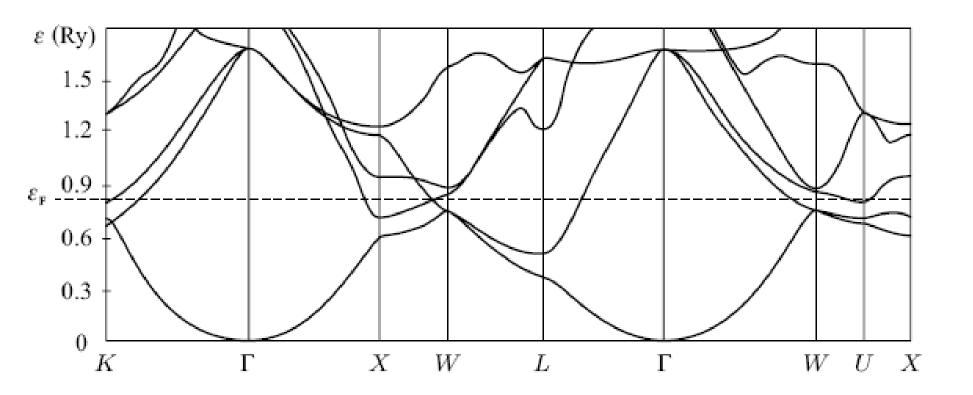




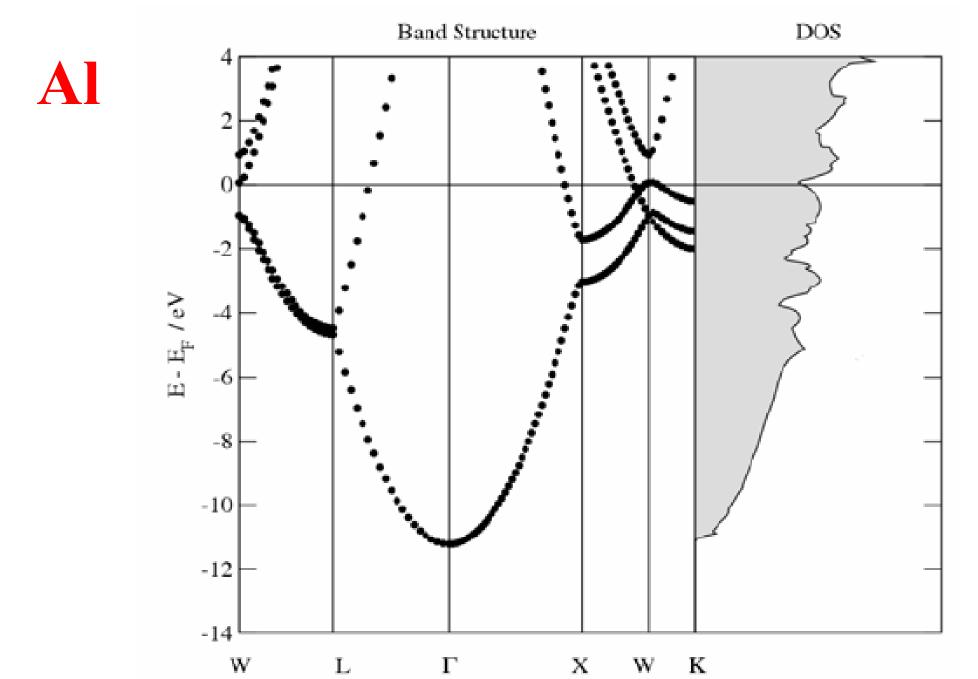
Bandas de energía de electrón libre para una red fcc



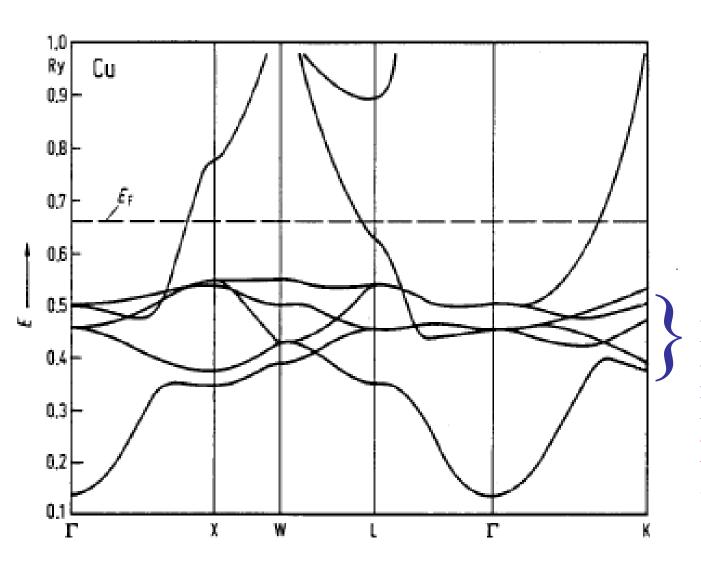
Estructura de bandas del Alumnio



Se pueden describir con la aproximación electrones casi-libres



Estructura de bandas del Cobre



Bandas chatas provenientes de los orbitales 3d No se pueden obtener con NFE

Método Tight-Binding

Escribir la función de onda de Bloch como una combinación lineal de orbitales atómicos (LCAO).

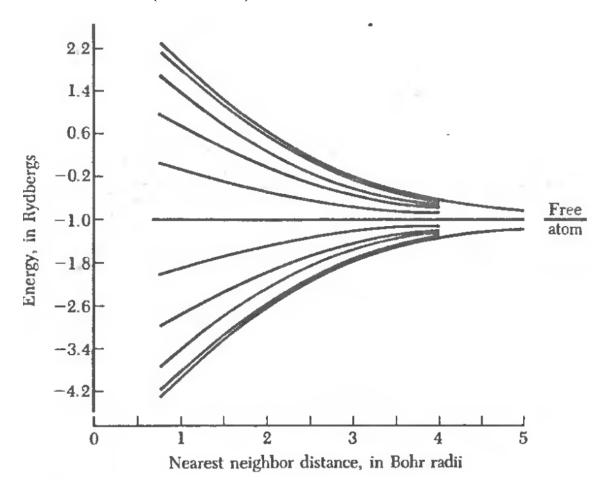


Figure 17 The 1s band of a ring of 20 hydrogen atoms; the one-electron energy calculated in the tight-hinding approximation with the nearest-neighbor overlap integral of Eq. (9)

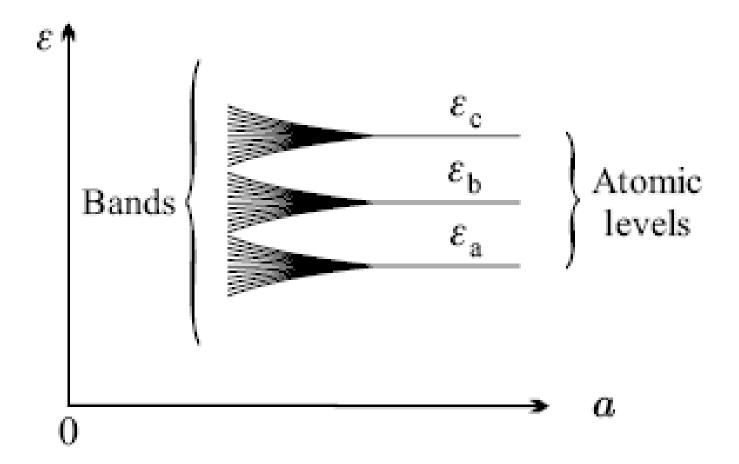
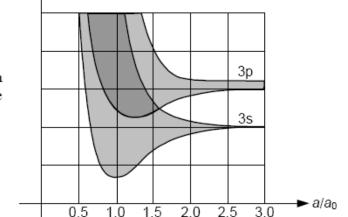


Fig. 3.7. Sketch of variation (with distance between atoms) of bandwidths of Na. Each energy unit represents 2 eV. The equilibrium lattice spacing is a_0 . Higher bands such as the 4s and 3d are left out



LCAO en cristales

$$\psi_k \approx \Phi_k = \sum_n a_n \varphi_i(\mathbf{r} - \mathbf{r}_n) = \sum_n e^{i \mathbf{k} \cdot \mathbf{r}_n} \varphi_i(\mathbf{r} - \mathbf{r}_n)$$

 $a_n = \exp(i \mathbf{k} \cdot \mathbf{r}_n)$ para que sea una función de onda de Bloch

$$\Phi_{k+G} = \sum_{n} e^{i k \cdot r_n} e^{i G \cdot r_n} \varphi_i(r - r_n) = \Phi_k$$

$$\langle \Phi_{k} | \Phi_{k} \rangle = \sum_{n,m} e^{i k \cdot (r_{n} - r_{m})} \int \varphi_{i}^{*} (r - r_{m}) \varphi_{i}(r - r_{n}) dr$$

$$\langle \Phi_{k} | \Phi_{k} \rangle \simeq \sum_{n} \int \varphi_{i}^{*}(\mathbf{r} - \mathbf{r}_{n}) \varphi_{i}(\mathbf{r} - \mathbf{r}_{n}) d\mathbf{r} = N$$

$$\psi_j(m{k},m{r}) = rac{1}{\sqrt{N}} \sum_j \mathrm{e}^{\mathrm{i} m{k} \cdot m{R}_j} arphi_i(m{r} - m{R}_j)$$

 $\varphi_i(r-R_i)$ orbital atómico i centrado en el sitio R_i

$$egin{aligned} oldsymbol{\psi}(k,r+R_n) &= rac{1}{\sqrt{N}} \sum_j \mathrm{e}^{\mathrm{i} oldsymbol{k} \cdot oldsymbol{R}_j} oldsymbol{arphi}_i(r+R_n-R_j) \\ &= \mathrm{e}^{\mathrm{i} oldsymbol{k} \cdot oldsymbol{R}_n} rac{1}{\sqrt{N}} \sum_j \mathrm{e}^{\mathrm{i} oldsymbol{k} \cdot (oldsymbol{R}_j-oldsymbol{R}_n)} oldsymbol{arphi}_i(r-(R_j-R_n)) \\ &= \mathrm{e}^{\mathrm{i} oldsymbol{k} \cdot oldsymbol{R}_n} oldsymbol{\psi}(k,r) \,. \quad \text{cumple teorema de Bloch} \end{aligned}$$

Trabajaremos en notación de brakets

$$\psi_i(k,r) \longrightarrow |\Psi_k>$$
 $\varphi_i(r-R_j) \longrightarrow |i,R_i>$

Para un cristal monoatómico con un orbital por sitio

$$|\Psi_{\mathbf{k}}\rangle = \frac{1}{\sqrt{N}} \sum_{\mathbf{R}_{i}} e^{i(\overline{\mathbf{k}}.\overline{\mathbf{R}}j)} |R_{j}\rangle$$

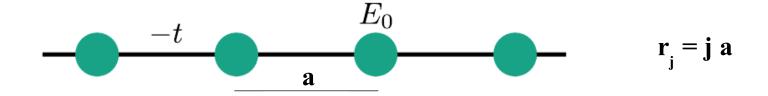
Quiero resolver: $H \mid \Psi_k > = E(k) \mid \Psi_k >$

Proyecto la ecuación de Schrödinger sobre
$$< R_0|$$

$$Tigh-Binding: \\ < R_0|R_j> = \delta_{0j}$$
 $< R_0|H|R_j> = -t$ j primer vecino de 0 los otros casos

$$E(k) = E_o + \sum_{j \text{ (pv)}} (-t) e^{ik.(Rj-Ro)}$$

Ej1. Cadena monoatómica con un orbital por sitio



$$\varphi_k(x) = \frac{1}{\sqrt{N}} \sum_{i} e^{ik\mathbf{r}_i} \varphi(x - x_j) \qquad \Longrightarrow \qquad |k\rangle = \frac{1}{\sqrt{N}} \sum_{i} e^{ik\mathbf{r}_i} |j\rangle$$

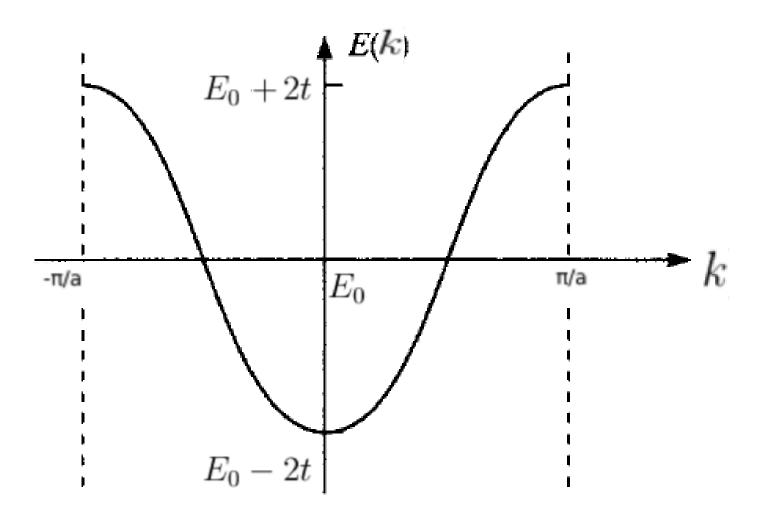
$$H|k\rangle = E|k\rangle$$
 Proyecto sobre un orbital arbitrario $|j=0\rangle = |0\rangle$

$$\langle 0|H|k\rangle = E\langle 0|k\rangle$$

$$\frac{1}{\sqrt{N}} \sum_{i} e^{ik\mathbf{r}_{i}} \langle 0|H|j\rangle = \frac{E}{\sqrt{N}} \sum_{i} e^{ik\mathbf{r}_{i}} \langle 0|j\rangle$$

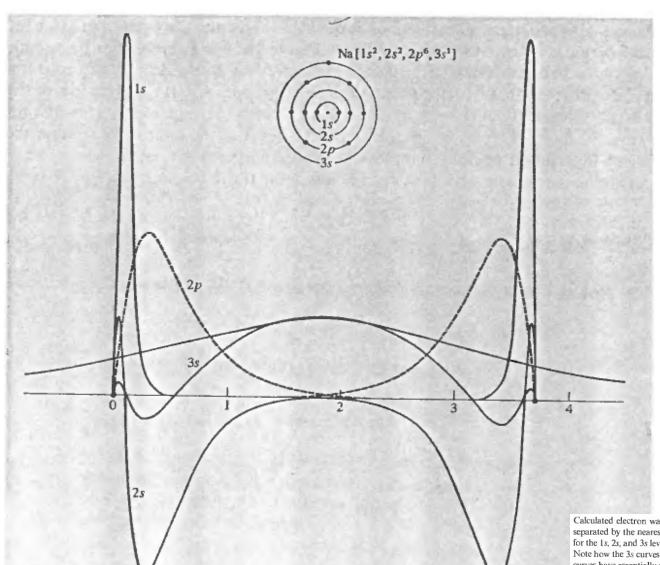
$$E = E_0 - t \left(e^{ika} + e^{ika} \right) = E_0 - 2t \cos(ka)$$

$$E = E_0 - 2t\cos(ka)$$



El parámetro de hopping determina el ancho de la banda (4t) !!

$$\mathbf{t}\left(\mathbf{R}_{l}\right) = \int \boldsymbol{\varphi}_{i}^{*}(\mathbf{r} - \mathbf{R}_{l})\mathcal{H}(\mathbf{r})\boldsymbol{\varphi}_{j}(\mathbf{r})\,\mathrm{d}\mathbf{r}$$



Calculated electron wave functions for the levels of atomic sodium, plotted about two nuclei separated by the nearest-neighbor distance in metallic sodium, 3.7 Å. The solid curves are $r\psi(r)$ for the 1s, 2s, and 3s levels. The dashed curve is r times the radial wave function for the 2p levels. Note how the 3s curves overlap extensively, the 2s and 2p curves overlap only a little, and the 1s curves have essentially no overlap. The curves are taken from calculations by D. R. Hartree and W. Hartree, *Proc. Roy. Soc.* A193, 299 (1948). The scale on the r-axis is in angstroms.

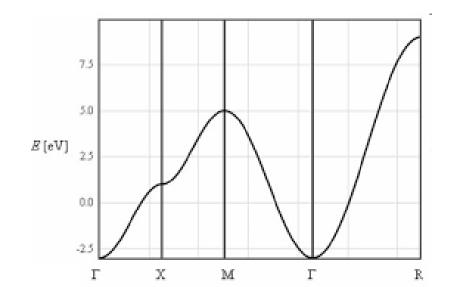
Ej2. Cúbica simple con un orbital por sitio

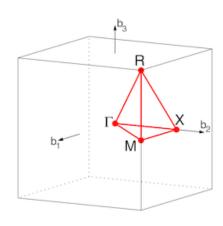
$$E(k) = \epsilon_0 - t \sum_{m} e^{i \mathbf{k} \cdot (\mathbf{r}_o - \mathbf{r}_m)} \frac{\mathbf{r}_o}{\mathbf{r}_m}$$
 sus primeros vecinos

Para la red cúbica simple:

$$\mathbf{r}_{o} - \mathbf{r}_{m} = (\pm a, 0, 0); (0, \pm a, 0); (0, 0, \pm a)$$

$$E(k) = \epsilon_0 - 2t(\cos k_x a + \cos k_y a + \cos k_z a)$$



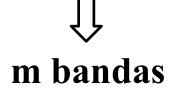


Para m orbitales por celda, la función de onda tight binding se escribe:

$$|\Psi_k\rangle = \sum_{R_j} e^{i(\bar{k}.\bar{R}j)} \left(\sum_{\alpha} c_{\alpha} |\alpha,R_j\rangle\right)$$
 indice de celda (vectores de la red Bravais)
$$\left(\sum_{\alpha} c_{\alpha} |\alpha,R_j\rangle\right)$$
 de los átomos del motivo

Proyecto la ecuación de Schrödinger sobre los m orbitales $\langle R_0, \alpha |$ de una celda de referencia R_0

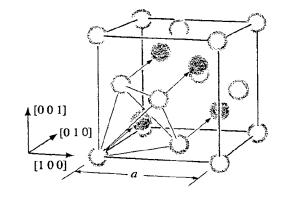
Sistema de $m_x m$ para los coeficientes c_α

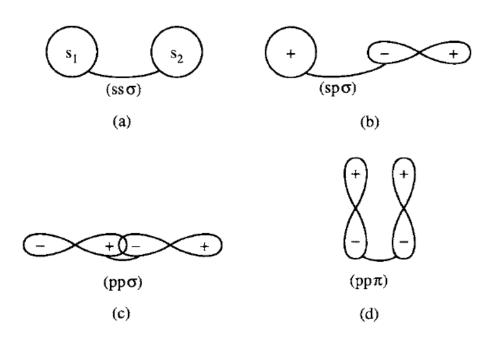


Ej3. Si (orbitales s y p) en estructura de diamante

- -fcc con 2 átomos por celda
- -Si: 3s, $3p_x$, $3p_y$, $3p_z$

Matriz 8x8





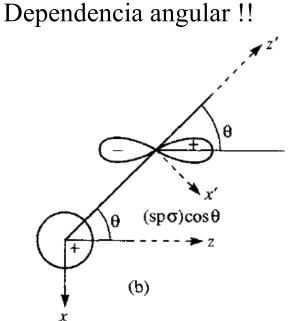
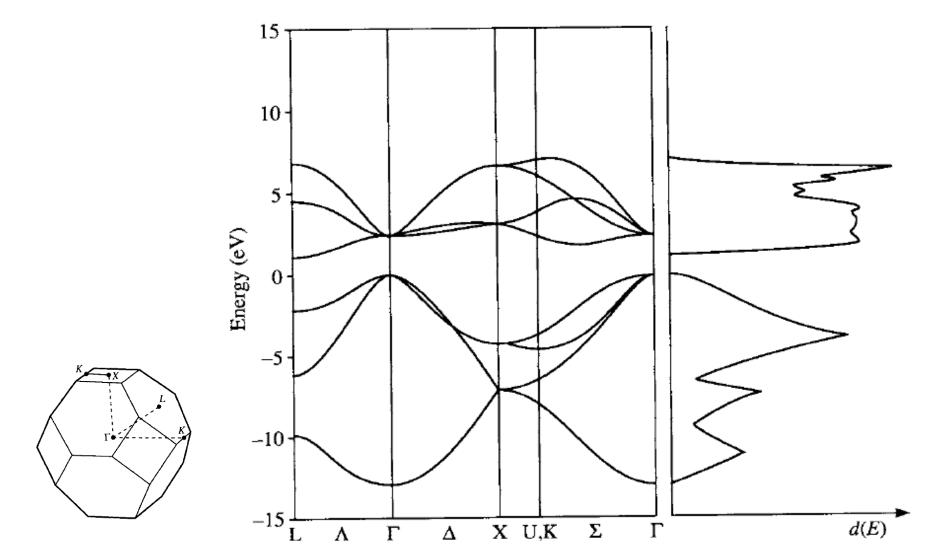


Fig. 6.2 The four fundamental hopping integrals between s and p orbitals: (a)

$$\varepsilon_{\rm s} = -5.25 \,{\rm eV}; \qquad ({\rm ss}\sigma) = -1.9375 \,{\rm eV}; \qquad ({\rm sp}\sigma) = 1.745 \,{\rm eV};$$

$$\varepsilon_{\rm p} = 1.20 \,{\rm eV}. \qquad ({\rm pp}\sigma) = 3.050 \,{\rm eV}; \qquad ({\rm pp}\pi) = -1.075 \,{\rm eV}.$$



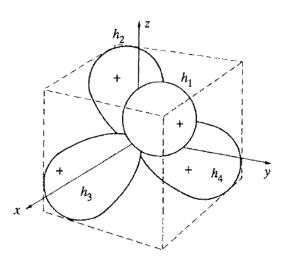
Usando orbitales híbridos sp.

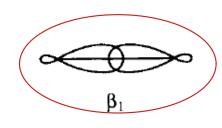
$$h_{1} = \frac{1}{2}(s + p_{x} + p_{y} + p_{z})$$

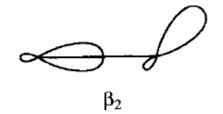
$$h_{2} = \frac{1}{2}(s + p_{x} - p_{y} - p_{z})$$

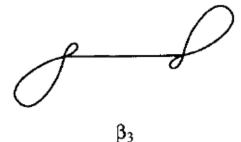
$$h_{3} = \frac{1}{2}(s - p_{x} + p_{y} - p_{z})$$

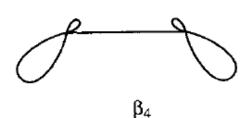
$$h_{4} = \frac{1}{2}(s - p_{x} - p_{y} + p_{z})$$











$$\varepsilon_{\rm h} = (\varepsilon_{\rm s} + 3\varepsilon_{\rm p})/4.$$

$$\Delta = (\varepsilon_{\rm s} - \varepsilon_{\rm p})/4.$$

$$\varepsilon_{h} = (\varepsilon_{s} + 3\varepsilon_{p})/4. \qquad \beta_{1} = \frac{(ss\sigma) - 2(3^{1/2})(sp\sigma) - 3(pp\sigma)}{4}.$$

$$\Delta = (\varepsilon_{s} - \varepsilon_{p})/4. \qquad \beta_{2}, \beta_{3}, \text{ and } \beta_{4} = 0 \qquad Weaire-The$$

$$\beta_2$$
, β_3 , and $\beta_4 = 0$

Weaire-Thorpe model.

Estructura de bandas y superficie de Fermi de metales simples

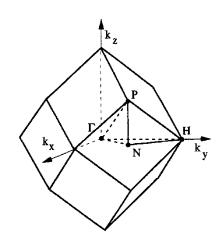
Monovalentes

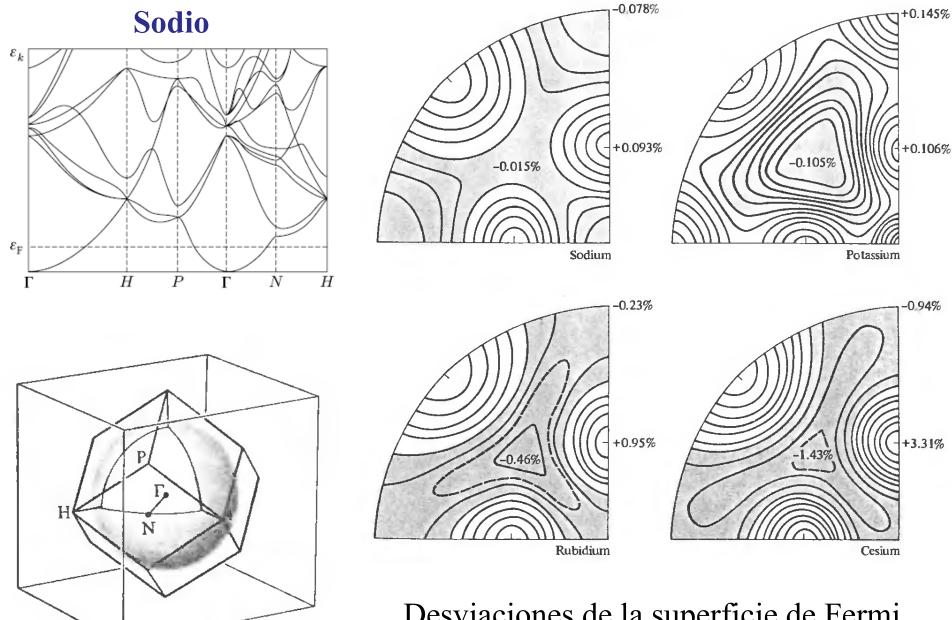
Element	Electronic structure	Crystalline structure	Element	Electronic structure	Crystalline structure
Li Na K	$1s^{2} 2s^{1}$ [Ne] $3s^{1}$ [Ar] $4s^{1}$	bee bee bee	Cu	$[{ m Ar}]~3{ m d}^{10}~4{ m s}^1$	fcc
Rb Cs	$[Kr] 5s^1$ $[Xe] 6s^1$	bec bec	$_{\rm Au}^{\rm Ag}$	$[Kr] 4d^{10} 5s^{1}$ $[Xe] 4f^{14} 5d^{10} 6s^{1}$	fcc fcc

Alcalinos:

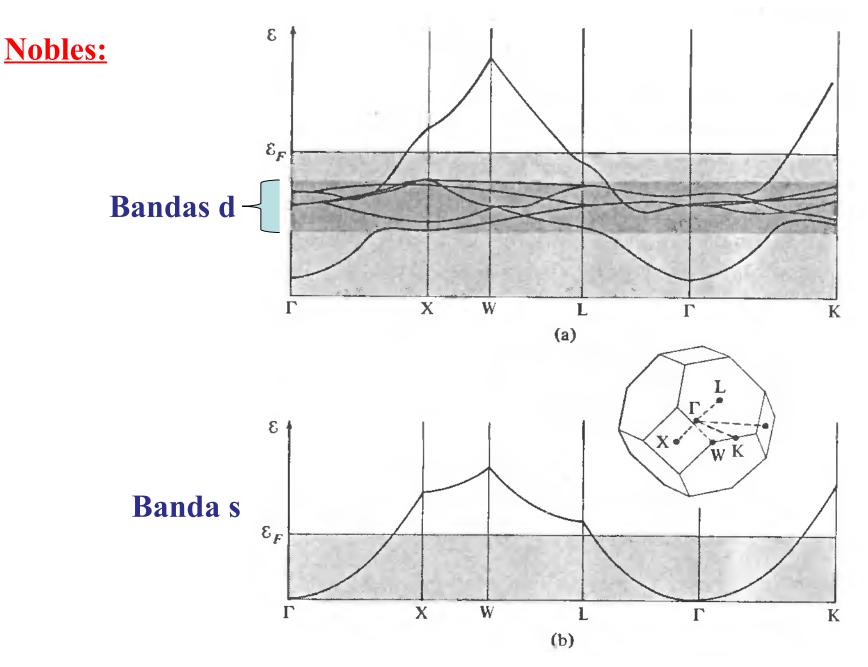
$$k_{\rm F} = 0.620(2\pi/a)$$

$$\overline{\Gamma N} = (2\pi/a)\sqrt{(\frac{1}{2})^2 + (\frac{1}{2})^2} = 0.707(2\pi/a)$$





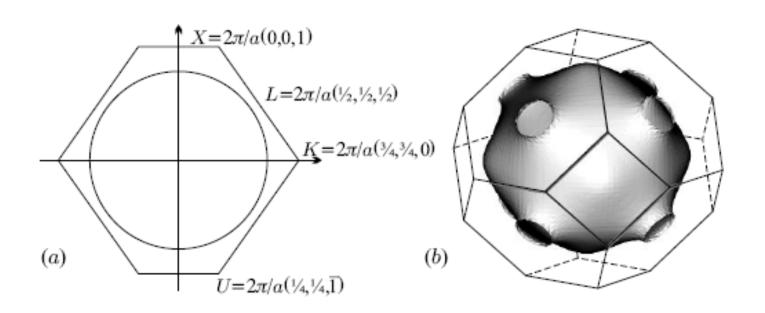
Desviaciones de la superficie de Fermi medida respecto a una esfera perfecta

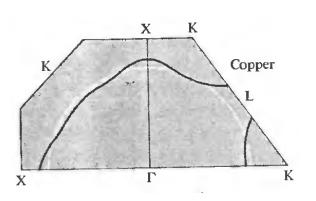


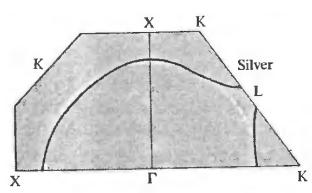
Estructura de bandas del Cu

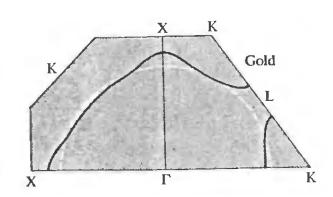
$$k_F = 0.782(2\pi/a)$$

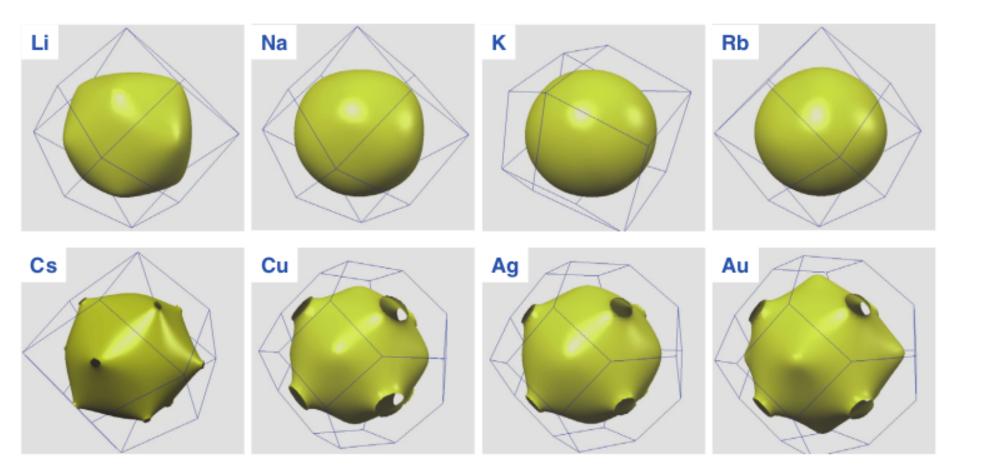
$$\Gamma$$
-L = $0.866(2\pi/a)$



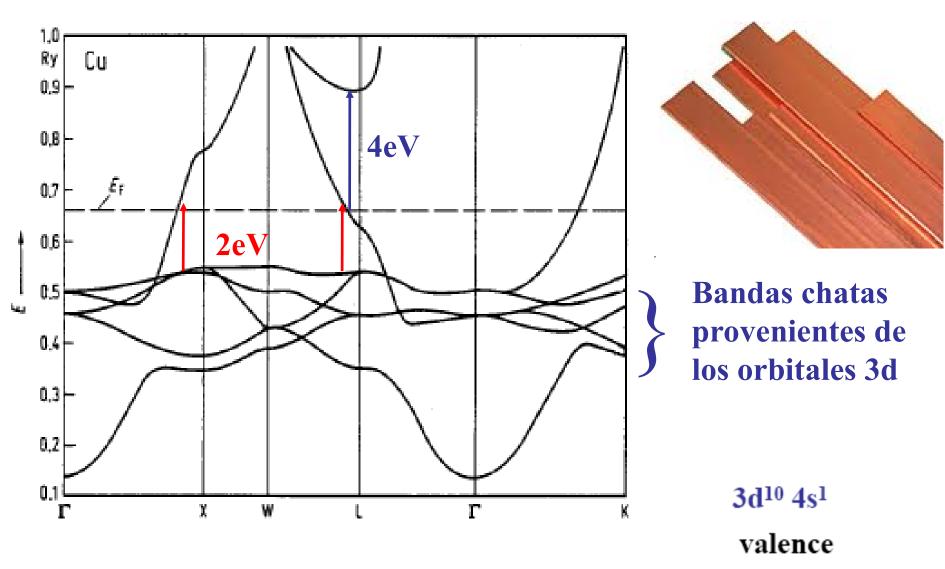






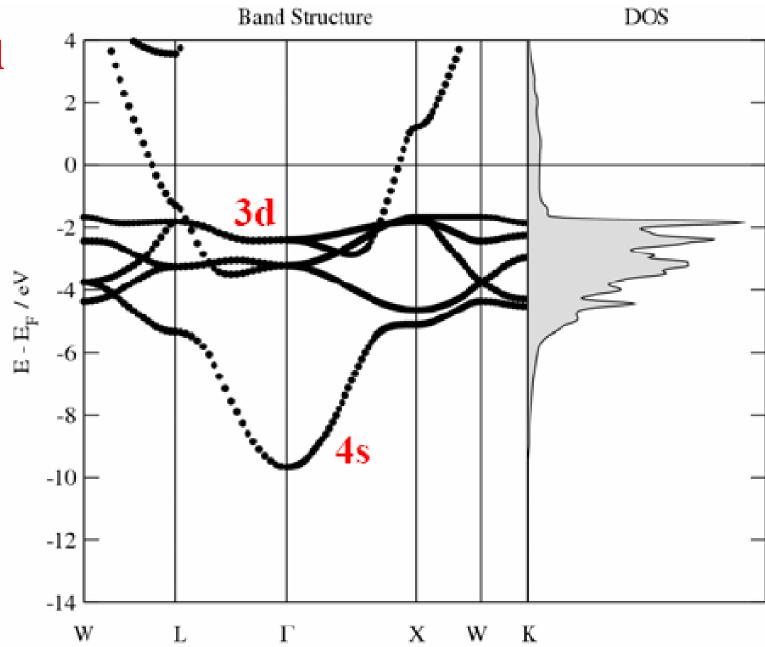


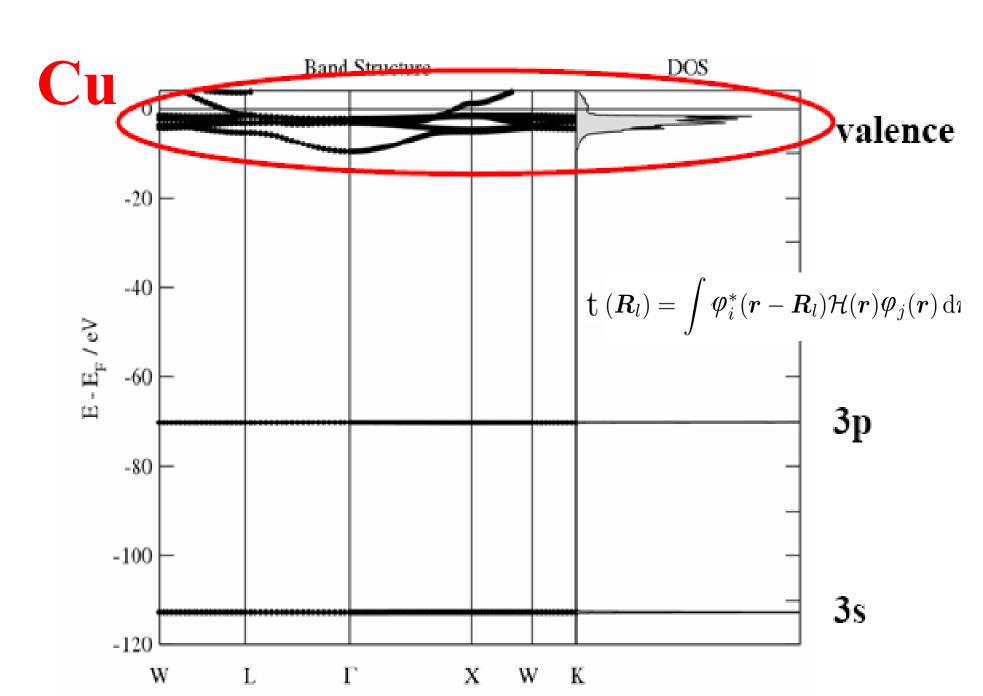
Estructura de bandas del Cobre



Transiciones verticales $K_{\perp \perp} \ll \pi/a$

Cu



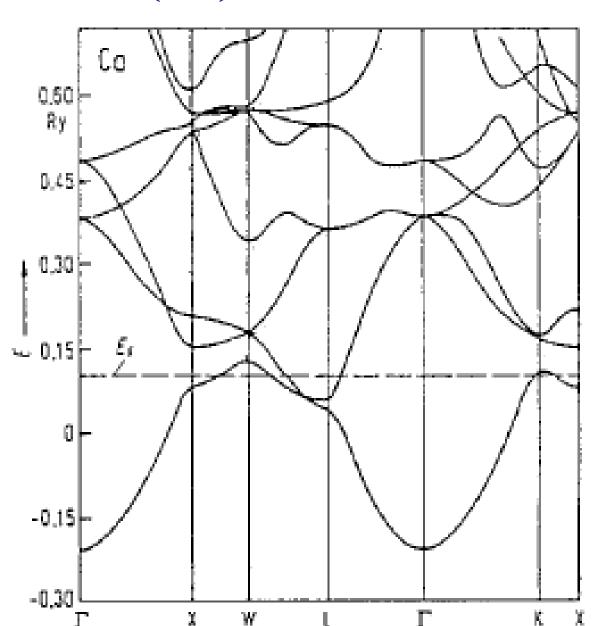


Divalentes

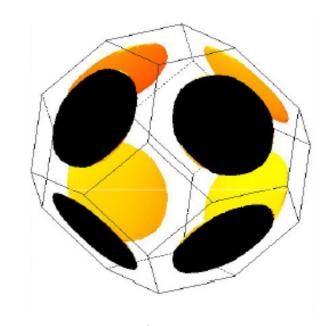
Element	${f Electronic} \ {f structure}$	$\operatorname{Crystalline}$ structure	Element	${f Electronic} \ {f structure}$	Crystalline structure
Be	$1s^2 2s^2$	hep			
$_{ m Mg}$	$[\mathrm{Ne}] \ 3\mathrm{s}^2$	hep			
Ca	$[{ m Ar}]~4{ m s}^2$	fcc	$_{ m Zn}$	$[{ m Ar}]~3{ m d}^{10}~4{ m s}^2$	$_{ m hcp}$
Sr	$[Kr] 5s^2$	fcc	Cd	$[{ m Kr}]~4{ m d}^{10}5{ m s}^2$	$_{ m hcp}$
Ва	$[Xe] 6s^2$	bcc	$_{ m Hg}$	[Xe] $4f^{14} 5d^{10} 6s^2$	rhombohedral

bcc
$$k_{\rm F}=0.782\,(2\pi/a)>\overline{\varGamma N}$$
 Las superficies de Fermi se extienden más allá de fcc $k_{\rm F}=0.985\,(2\pi/a)>\overline{\varGamma L}$ la 1ZB

Ca (fcc)

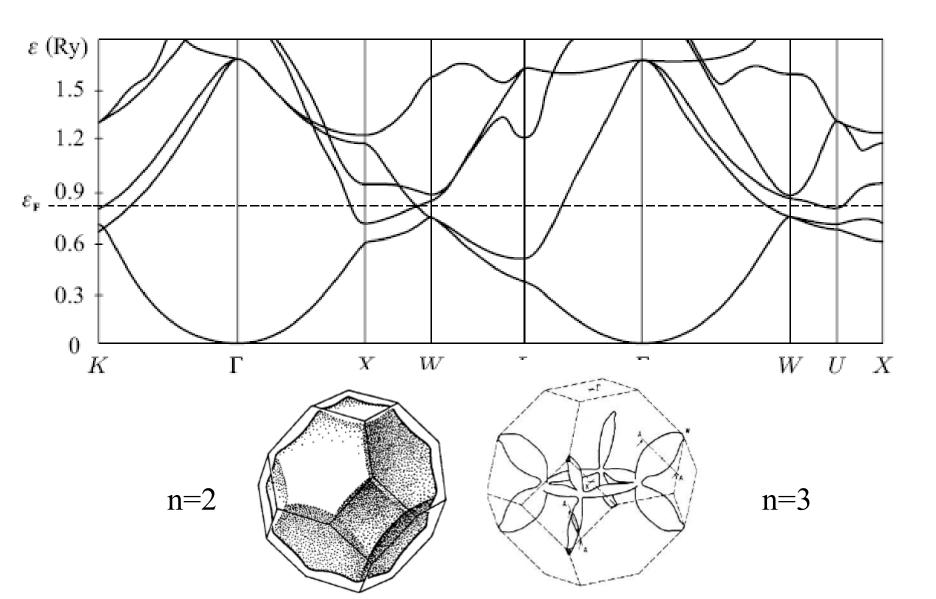


1st band



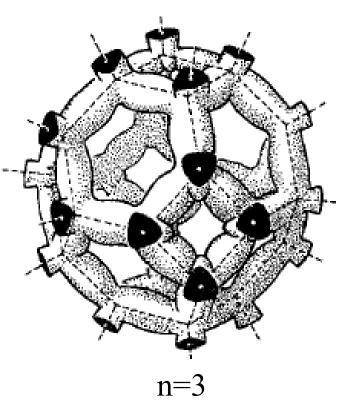
Trivalentes

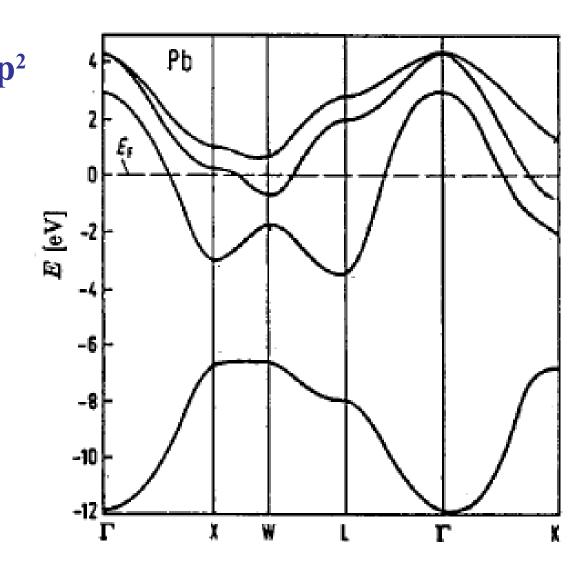
Aluminio



Tetravalentes

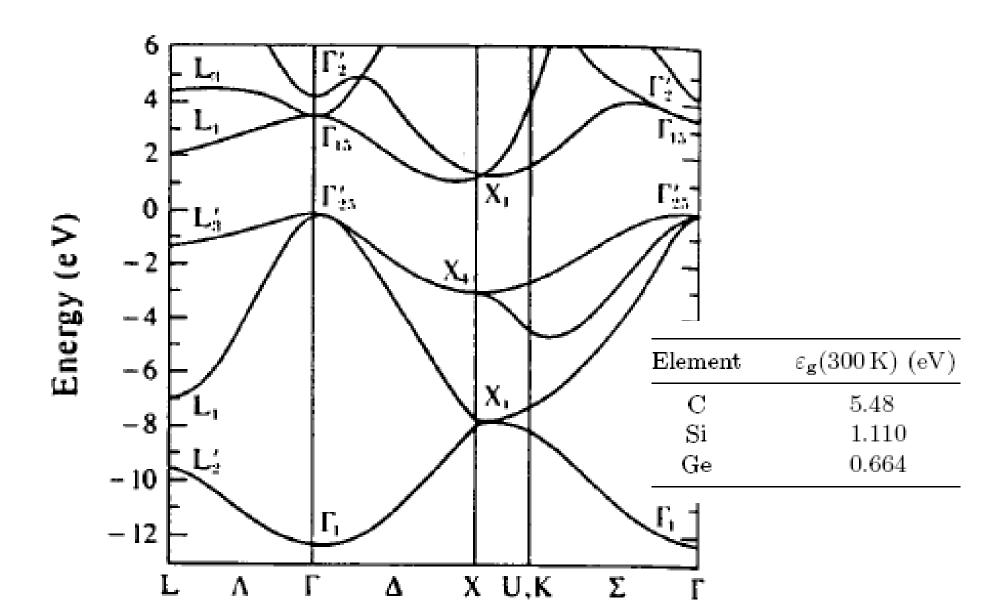
Pb: [Xe] 4f¹⁴ 5d¹⁰ 6s² 6p²





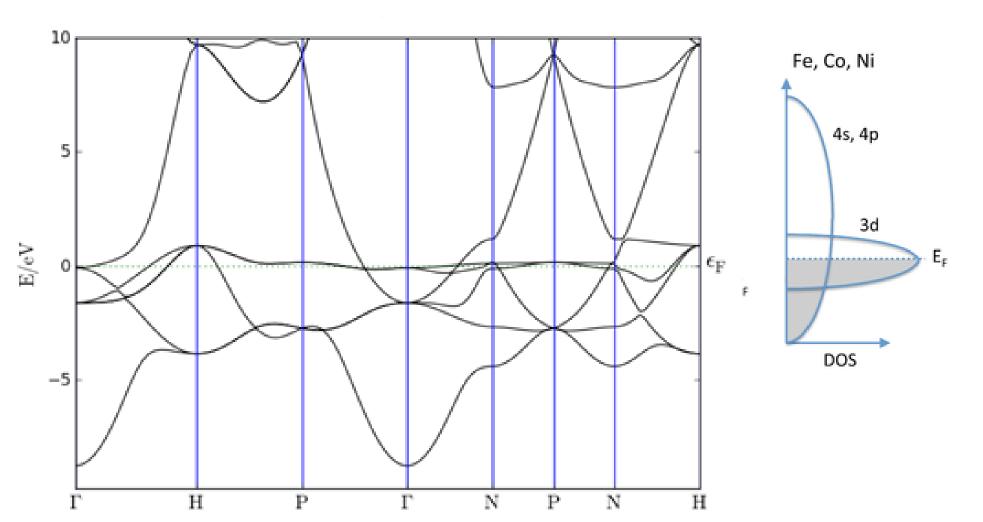
Si : [Ne] 3s² 3p²

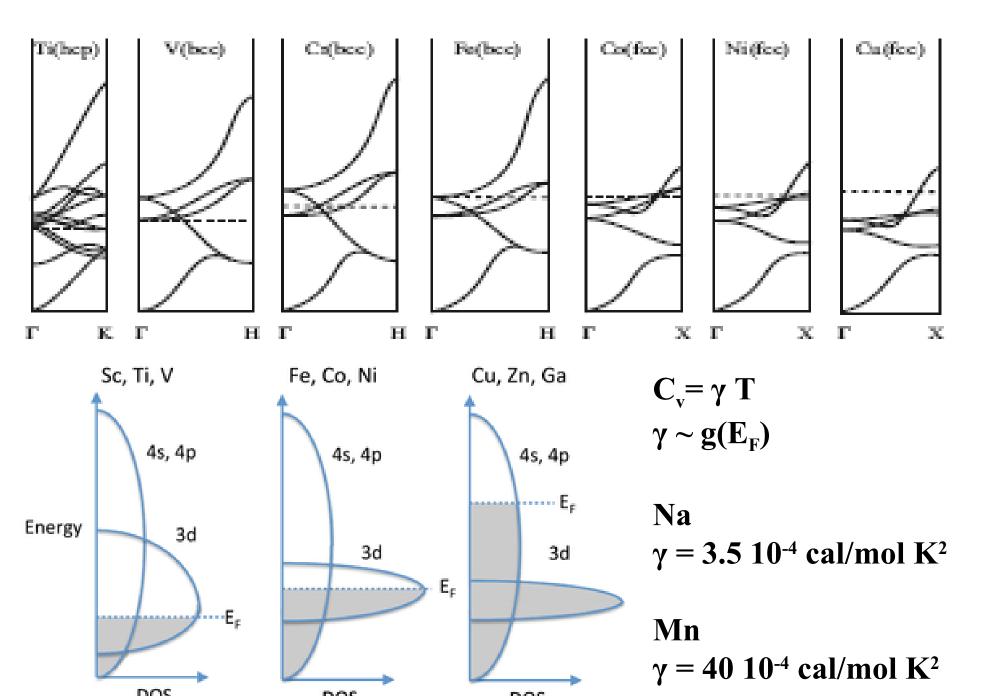
semiconductor

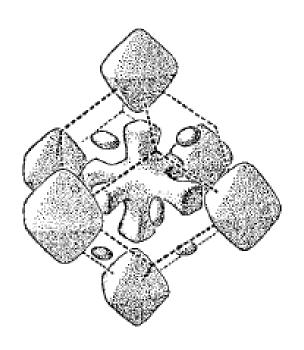


Metales de transición

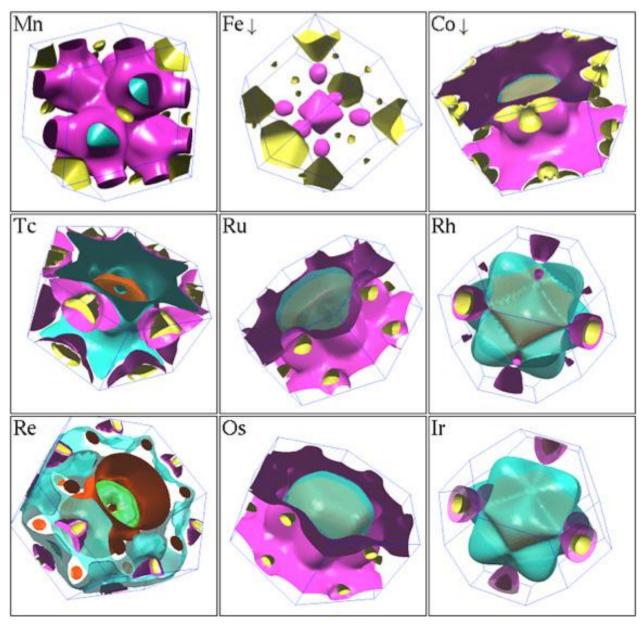
Fe: [Ar] 3d⁶4s²





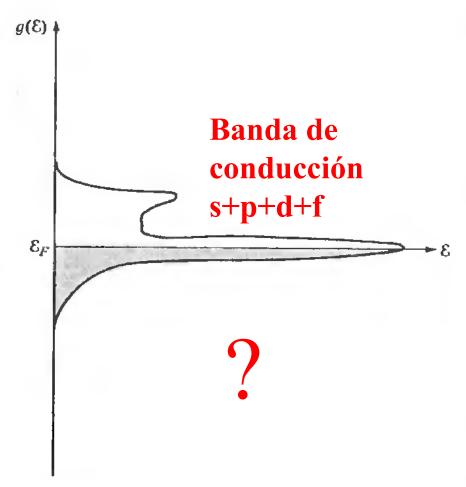


Superficie de Fermi del W



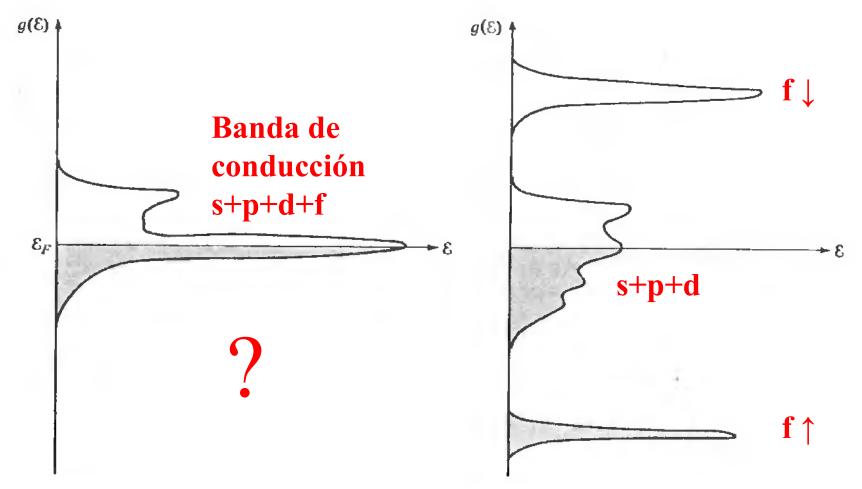
Tierras raras

Los electrones "d' de un metal de transición se hibridizan con los "s" y "p" formando la banda de conducción.

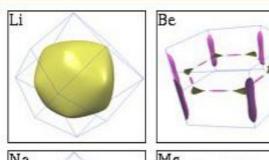


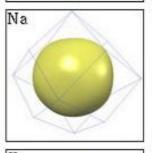
Tierras raras

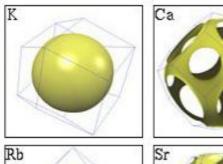
Los electrones "d' de un metal de transición se hibridizan con los "s" y "p" formando la banda de conducción.

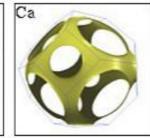


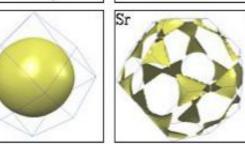
La aproximación de electrones independientes no es valida. Hay que considerar la repulsión coulombiana de los electrones f.

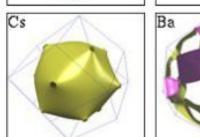


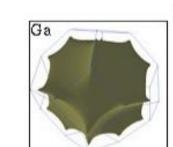


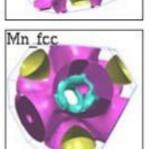


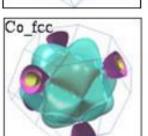


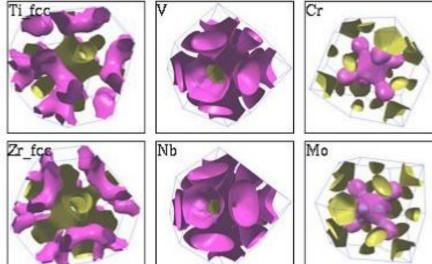




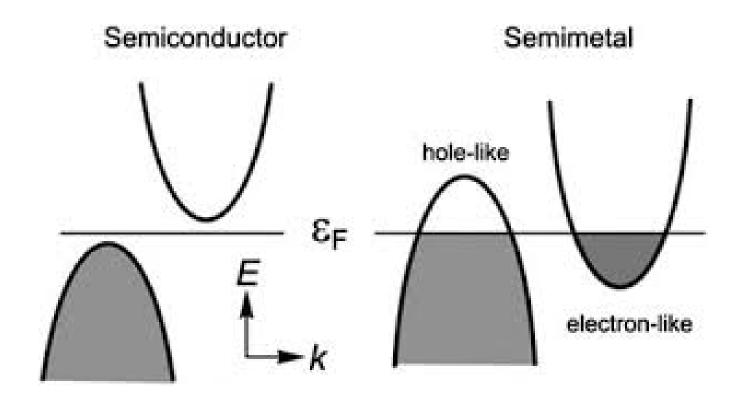






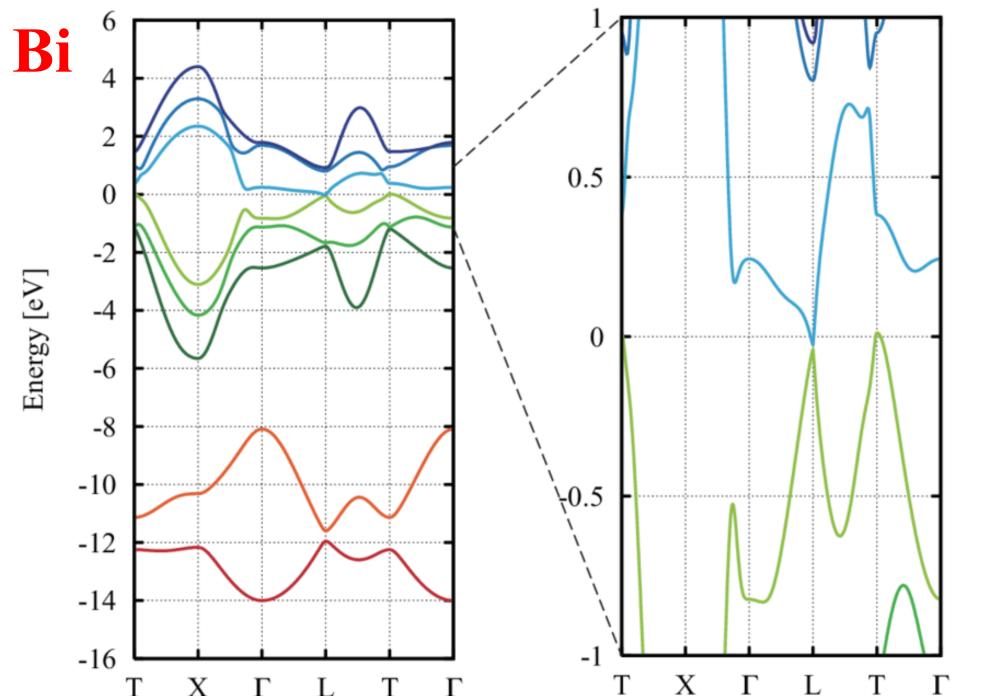


Semimetales



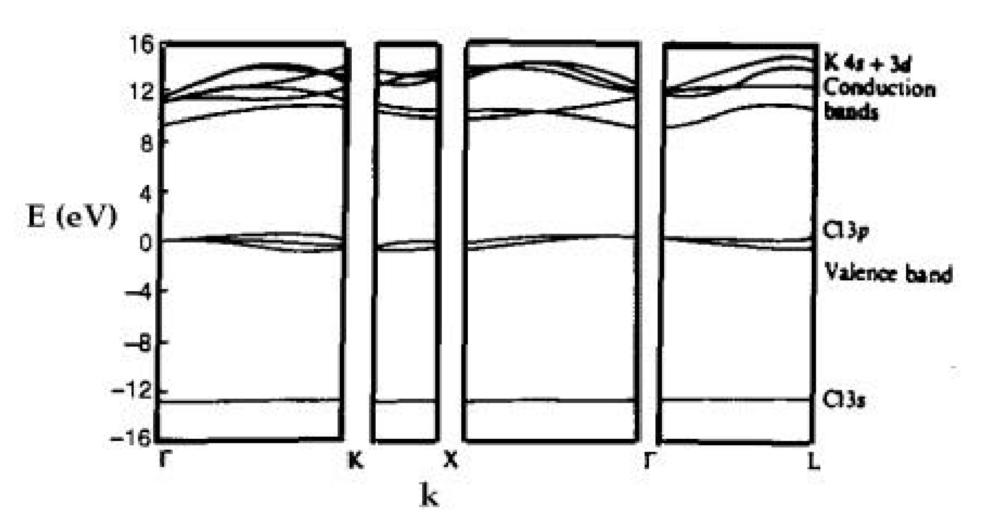
Ej.: Bi, Grafito

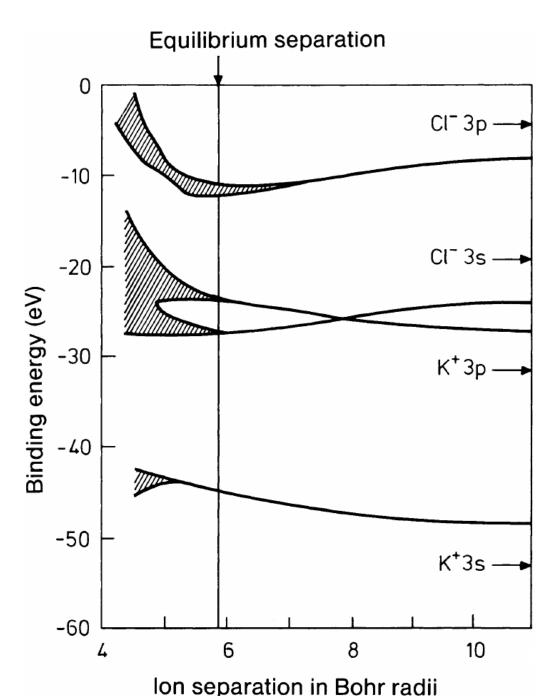
Number of carrier << 10²²/cm³



Algunos compuestos binarios

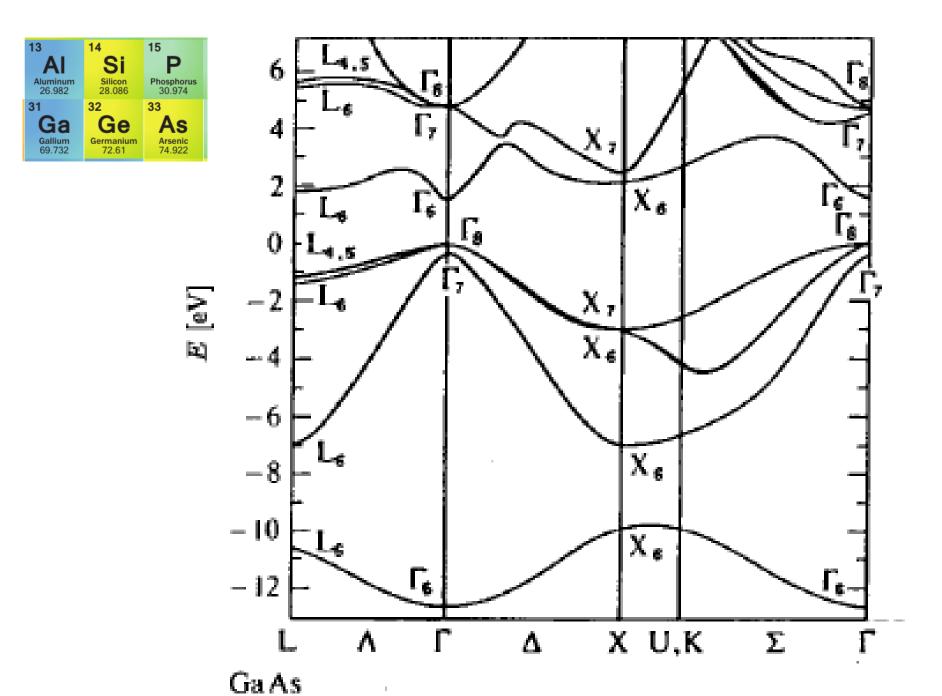
KCl



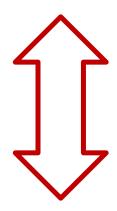


Compound $\varepsilon_{\mathbf{g}}$ (eV)		Compour	$\operatorname{ad} \varepsilon_{\mathbf{g}}(\mathrm{eV})$	Compound $\varepsilon_{\mathbf{g}}$ (eV)		
LiF	13.7	LiCl	9.4	LiBr	7.6	
NaF	11.5	NaCl	8.7	NaBr	7.5	
\mathbf{KF}	10.8	KCl	8.4	KBr	7.4	
RbF	10.3	RbCl	8.2	RbBr	7.4	
CsF	9.9	CsCl	8.3	CsBr	7.3	

III–V $\varepsilon_{\mathbf{g}}$ compound (eV)		II–VI compour	$\epsilon_{\mathbf{g}}$ nd (eV)	I–VII $\varepsilon_{\mathbf{g}}$ compound (eV)		
AlSb	1.63	ZnO	3.20	$_{ m AgF}$	2.8	
$_{\mathrm{GaP}}$	2.27	ZnS	3.56	$_{ m AgCl}$	3.25	
GaAs	1.43	$_{ m ZnSe}$	2.67	$_{ m AgBr}$	2.68	
GaSb	0.71	CdS	2.50	$_{ m AgI}$	3.02	
InP	1.26	CdSe	1.75	CuCl	3.39	
InAs	0.36	CdTe	1.43	CuBr	3.07	
$_{ m InSb}$	0.18	$_{ m HgS}$	2.27	CuI	3.11	



Métodos ab-initio de primeros principios



Métodos autoconsistentes

Teoría de la funcional densidad (DFT)

Hartree- Fock

Ya vimos la aproximación de Hatree

$$H\Psi = \sum_{i=1}^{N} \left(-\frac{\hbar^2}{2m} \nabla_i^2 \Psi - Ze^2 \sum_{\mathbf{R}} \frac{1}{|\mathbf{r}_i - \mathbf{R}|} \Psi \right) + \frac{1}{2} \sum_{i \neq j} \frac{e^2}{|\mathbf{r}_i - \mathbf{r}_j|} \Psi = E\Psi.$$

$$\mathbf{prox.}$$

$$V_{\mathbf{N}}(\mathbf{r}) = -Ze^2 \sum_{\mathbf{R}} \frac{1}{|\mathbf{r} - \mathbf{R}|}. \qquad V_{\mathbf{H}}(\mathbf{r}) = -e \int d\mathbf{r}' \, \rho(\mathbf{r}') \frac{1}{|\mathbf{r} - \mathbf{r}'|}.$$

llamando
$$V_{\text{eff}}(\mathbf{r}) = V_{\text{H}}(\mathbf{r}) + V_{\text{N}}(\mathbf{r})$$

$$-\frac{h^2}{8\pi^2 m} \nabla^2 \Psi_j(\mathbf{r}) + V_{\text{eff}}(\mathbf{r}) \Psi_j(\mathbf{r}) = \varepsilon_j \Psi_j(\mathbf{r})$$

donde
$$\rho(\mathbf{r}) = \sum_{i \text{ accurated}} \Psi_j(\mathbf{r}) \Psi_j^*(\mathbf{r})$$

Density Functional Theory (Kohn y Sham 1965)

$$\left\{-\frac{\hbar^2}{2m}\nabla^2 + V_{eff}(r)\right\}\Psi_i(r) = E_i\Psi_i(r)$$

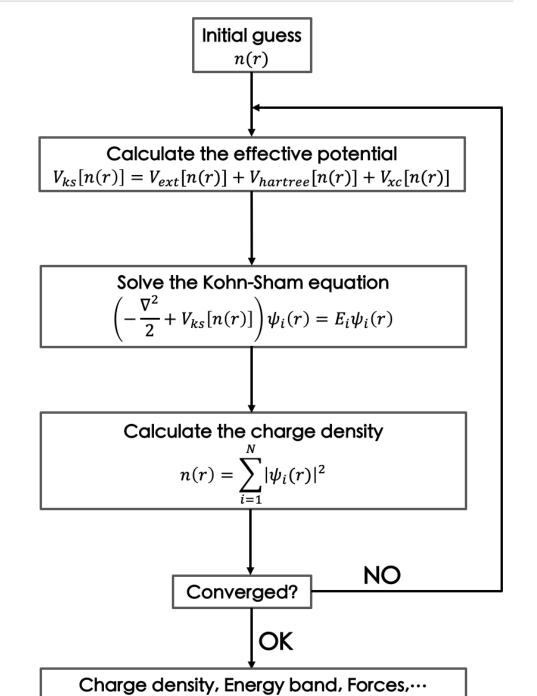
$$V_{eff}(r) = V_{ion}(r) + V_{H}(r) + V_{XC}(r)$$

Potencial de
$$V_{XC}(r)$$
 intercambio y correlación $C_{XC}^{LDA}[n] = \int \epsilon_{XC}(n)n(\vec{r})d^3r$.

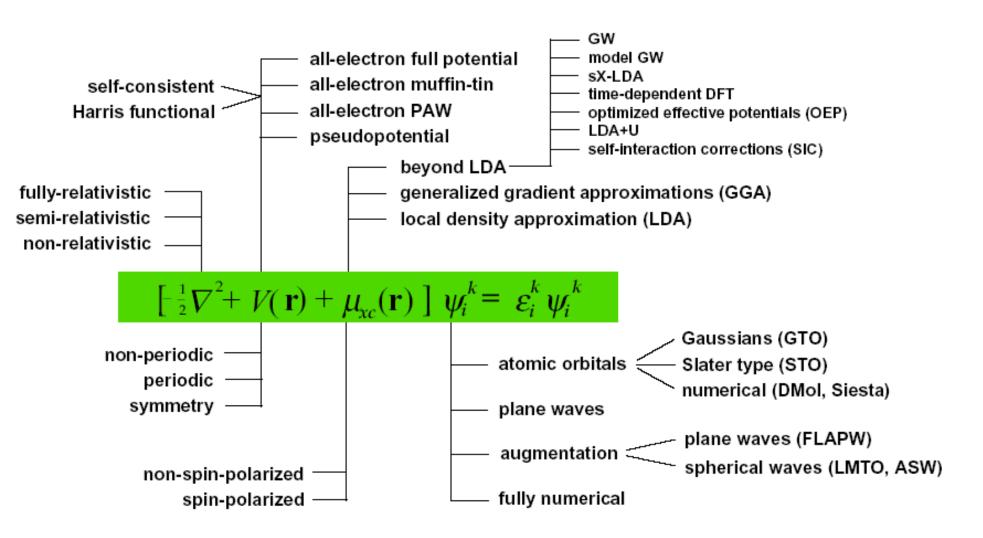
$$C_{XC}^{LDA}[n] = \int \epsilon_{XC}(n)n(\vec{r})d^3r$$
.
$$C_{XC}^{GGA}[n_{\uparrow}, n_{\downarrow}] = \int \epsilon_{XC}(n_{\uparrow}, n_{\downarrow}, \vec{\nabla}n_{\uparrow}, \vec{\nabla}n_{\downarrow})n(\vec{r})d^3r$$
.

Energía del estado fundamental:

$$E_{\mathbf{G}}[\rho(\mathbf{r})] = T[\rho(\mathbf{r})] + \int \rho(\mathbf{r})V_{\mathbf{N}}(\mathbf{r}) d\mathbf{r} + \frac{1}{2} \int \rho(\mathbf{r})V_{\mathbf{H}}(\mathbf{r}) d\mathbf{r} + E_{\mathbf{XC}}[\rho(\mathbf{r})]$$



DFT Implementations



Moléculas:

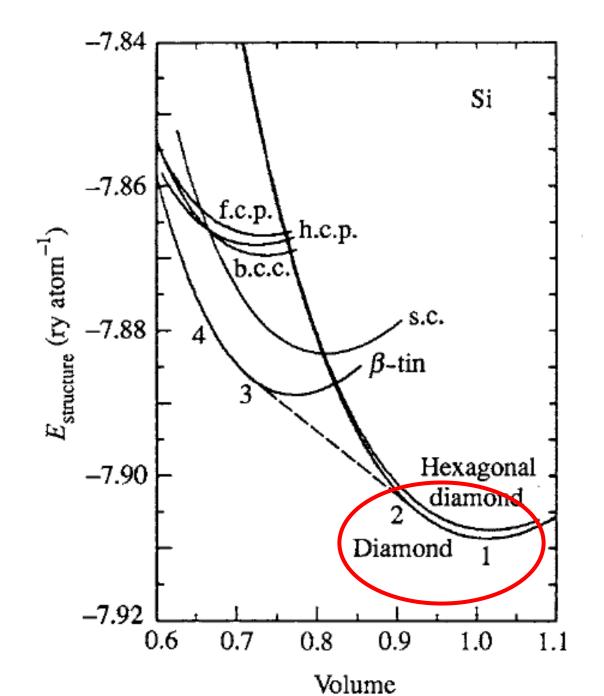
TABLE I. Equilibrium bond length R_0 (Å) and atomization energy ΔE (kcal/mol) of 19 covalen molecules.

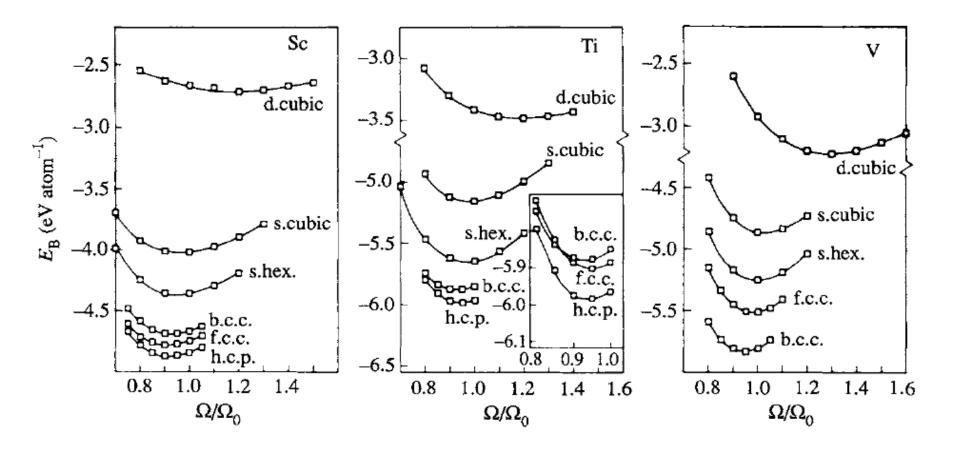
		R_0			ΔE			
Molecule	LDA	PBE	WC	Expt.	LDA	PBE	WC	Expt.
$\overline{\mathrm{H}_2}$	0.764	0.749	0.754	0.741	113.5	104.8	104.2	109.5
LiH	1.601	1.602	1.605	1.595	67.7	60.1	59.4	57.8
CH_4	1.096	1.095	1.094	1.087	462.7	420.3	426.3	419.3
NH_3	1.021	1.020	1.020	1.012	338.1	302.8	307.1	297.4
OH	0.984	0.981	0.981	0.970	124.5	110.4	112.5	106.4
H_2O	0.969	0.968	0.967	0.957	267.3	235.4	240.9	232.2
HF	0.931	0.930	0.929	0.917	162.5	142.6	146.6	140.8
Li_2	2.649	2.670	2.682	2.673	31.0	27.3	26.8	24.4
LiF	1.548	1.573	1.564	1.564	163.7	146.3	149.1	138.9
C_2H_2 (CC)	1.201	1.207	1.205	1.202	458.8	413.9	422.0	405.4
C_2H_2 (CH)	1.074	1.070	1.071	1.063				
C_2H_4 (CC)	1.323	1.333	1.329	1.339	632.6	571.7	582.1	562.6
C_2H_4 (CH)	1.093	1.090	1.090	1.087				
HCN (HC)	1.079	1.075	1.076	1.066	359.6	325.2	330.6	311.9
HCN (CN)	1.150	1.158	1.155	1.153				
CO	1.127	1.136	1.132	1.128	298.1	268.5	274.8	259.3
N_2	1.095	1.103	1.100	1.098	266.1	242.5	245.1	228.5
NO	1.146	1.157	1.153	1.151	197.8	171.6	176.4	152.9
O_2	1.204	1.219	1.213	1.208	174.1	143.5	150.9	120.5
F_2	1.388	1.417	1.405	1.412	77.4	52.7	59.0	38.5
P_2	1.894	1.908	1.902	1.893	141.9	120.3	125.6	117.3
Cl_2	1.994	2.018	2.005	1.988	82.5	66.0	71.4	58.0

Sólidos: Ej. Si

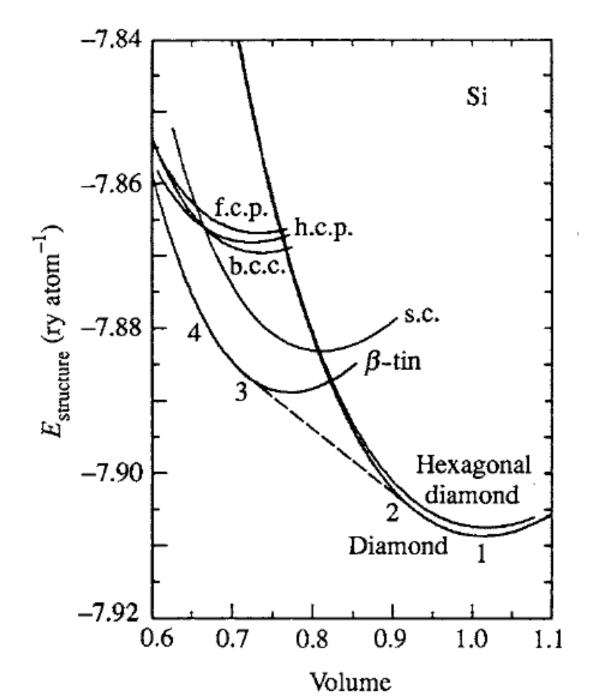
Estructura de menor energía:

Diamante





Solid		C	a_0		B_0			
	LDA	PBE	WC	Expt. ^a	LDA	PBE	WC	Expt.a
Li (A2)	3.363	3.435	3.449	3.477	15.2	14.0	13.4	13.0
C (A4)	3.536	3.575	3.558	3.567	469	434	451	443
C (A9)	2.447	2.471	2.460	2.464				
Na (A2)	4.047	4.196	4.199	4.225	9.41	7.85	7.32	7.5
Al (A1)	3.983	4.041	4.023	4.047	84.3	79.2	80.6	73
Si (A4)	5.407	5.475	5.437	5.430	96.4	88.7	94.0	99.2
K (A2)	5.045	5.282	5.256	5.225	4.50	3.61	3.49	3.7
Ca (A1)	5.333	5.530	5.458	5.58	18.7	17.3	17.4	15
V (A2)	2.932	3.001	2.965	3.03	213	183	198	162
Fe (A2)	2.753	2.830	2.791	2.868	256	194	227	167
Ni (A1)	3.423	3.518	3.468	3.524	259	200	231	184
Cu (A1)	3.522	3.632	3.573	3.615	191	141	168	133
Ge (A4)	5.632	5.769	5.686	5.652	72.7	59.5	67.8	75.8
Rb (A2)	5.374	5.670	5.609	5.59	3.59	2.77	2.71	3.06
Sr (A1)	5.786	6.027	5.914	6.08	14.4	11.4	12.2	12
Nb (A2)	3.250	3.312	3.280	3.30	193	171	183	170
Mo (A2)	3.116	3.164	3.139	3.15	294	260	279	272
Rh (A1)	3.759	3.834	3.795	3.798	320	259	292	269
Pd (A1)	3.848	3.948	3.892	3.881	231	170	207	195
Ag (A1)	4.007	4.152	4.065	4.069	140.4	91.0	118.9	109

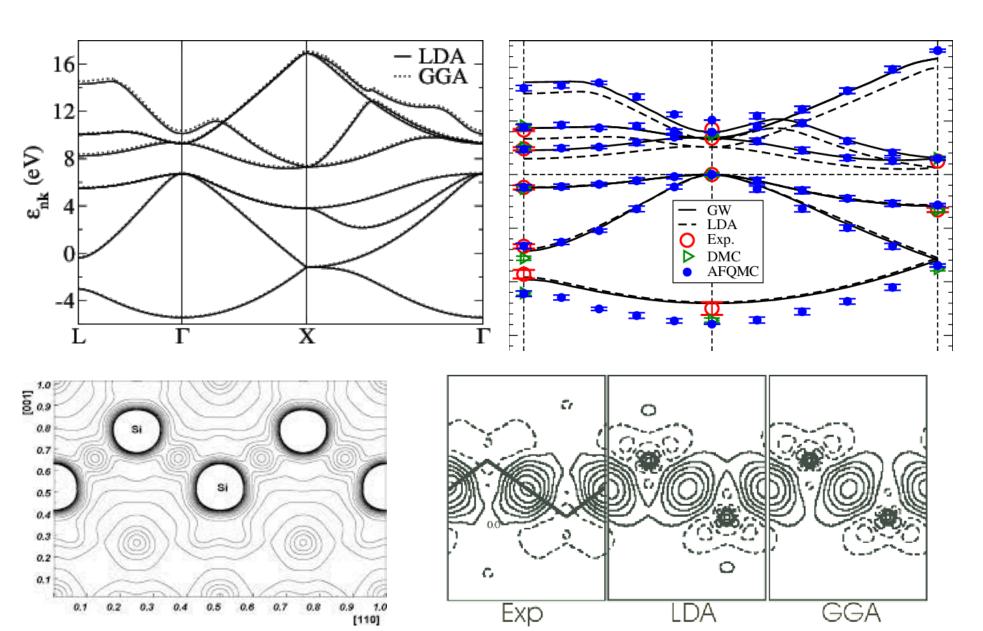


Al aplicar presión:

diamante → β-tin

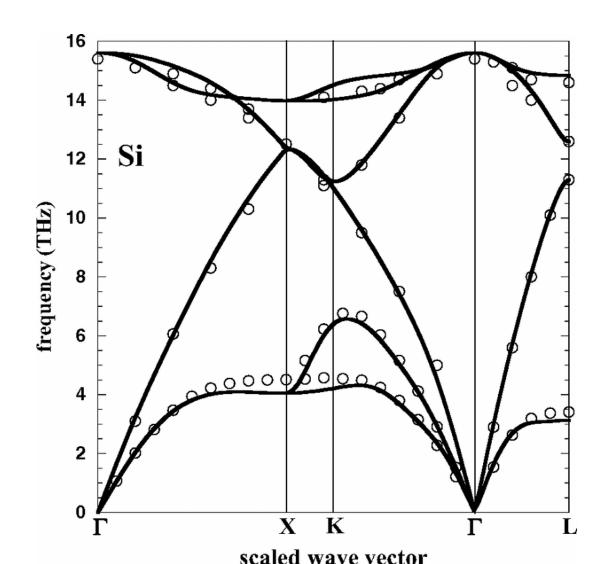
Comprobación experimental !!!

Propiedades electrónicas en la estructura de equilibrio

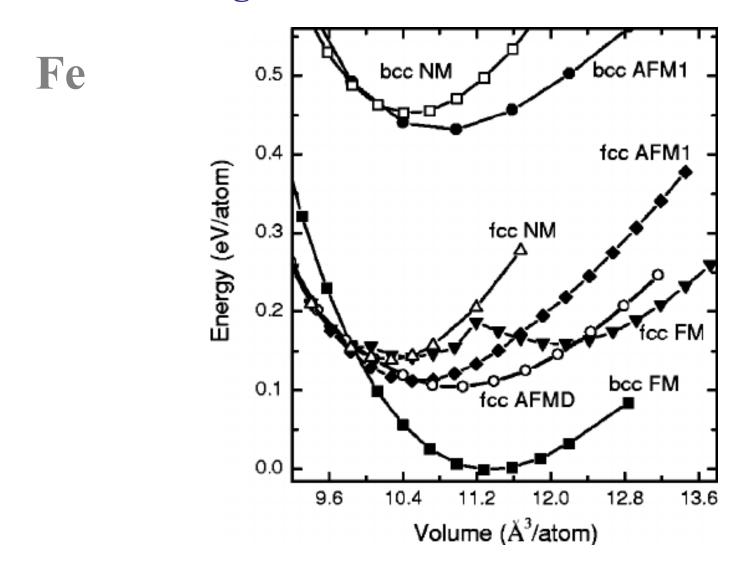


Actualmente es posible determinar muchas propiedades de materiales desde primeros principios. Por ejemplo:

- Fonones



- Sistemas magnéticos



Además: constantes elásticas, propiedades eléctricas, ópticas, superficiales, etc.