
Capítulo 5: Modelo de electrones libres para metales

3.75 6.12		see \		ott, V	ol. I,	Cha	ар. 2	2. Stru	ctur	es lade.	iea co	mpie	x are	e des	cribed	_	va	_			dW	5.83
Li 78K bec 3.491	Be hcp 2.27 3.59	unión metálica												B rhomb.		diamond 3.567	N 20K cubic 5.66 (N ₂)	Comple (O ₂)	F	Ne fcc 4.46		
Na 5к bcc 4.225	Mg hcp 3.21 5.21	a la						Crystal structure. tice parameter, in A tice parameter, in A						Al fcc 4.05	W-44	Si diamond 5.430	P	S	Cl compl (Cl ₂)			
K 5K bcc 5.225	Ca fcc 5.58	Sc hcp 3.31 5.27	TI ber 2.99 4.68	5 3	ecc .03	Cr bcc 2.8		Mn cubic complex	Fe bcc 2.8	ho	p 51	Ni fec 3.52	Cu foc 3.0	C	Zn hcp 2.66 4.95	Ga	_	Ge diamond 5.658	As rhomb.	Se hex. chains	Br compl (Br ₂)	
Rb 5K occ 5.585	Sr fcc 6.08	Y hcp 3.65 5.73	Zr hcp 3.23 5.15	b 3 3	lb cc	Mo bcc 3.1	×40. 3	Tc hcp 2.74 4.40	Ru hcr 2.7 4.2	fcc 1 3.8	1	Pd fcc 3.89	Ag fcc 4.0	i i i	Cd hcp 2.98 5.62	In tetr 3.25 4.95		Sn (α) diamond 6.49	Sb rhomb.	Te hex. 3 chains	comple (l ₂)	Xe fcc 6.13
Cs 5K bcc 6.045	Ba bcc 5.02	La hex. 3.77 ABAC	Hf hcp 3.19 5.05	b 3	a cc .30	bcc 3.10		Re hcp 2.76 4.46	Os hcp 2.7 4.3	fcc 4 3.8	797	Pt fcc 3.92	Au fcc 4.0	6.6	Hg rhomb.	TI hcp 3.46 5.52	5	Pb fcc 4.95	Bi rhomb.	Po sc 3.34	65 1990 	Rn —
Fr -	Ra —	Ac fcc 5.31		Ce fcc 5.16	Pr he: 3.6	ζ.	Nd hex 3.66		n	Sm complex	Eu bcc 4.58	3.	d cp 63 78	Tb hep 3.6 5.7	hc 0 3.5	p 59	Ho hcp 3.58 5.62	3 3.5	6 3	cp f	cc 1	Lu hep 3.50 5.55
				Th fcc 5.08	Pa tet 3.9	** †	U	Np lex com	plex	Pu complex	Am hex. 3.64	C	m	Bk			Es	5.5 Fm				Lr

Metales

electrones que se mueven libremente a través del material ==> electrones de conducción

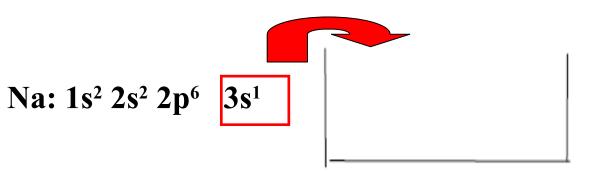
Modelo: Gas de electrones libres

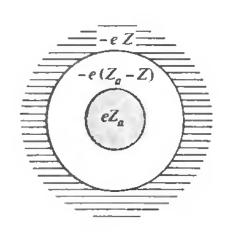
Drude (1900)

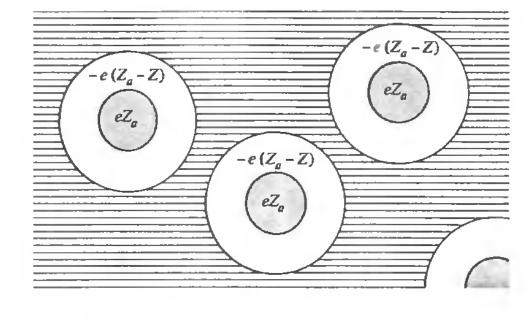
Considero un gas clásico para estudiar conductividad

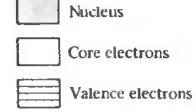
Sommerfeld (1927)

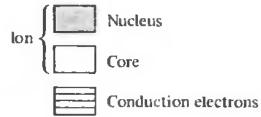
Aplicó la estadística de Fermi-Dirac


Potencial cristalino

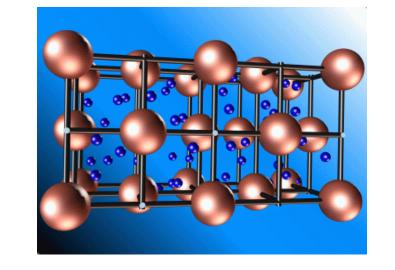

Potencial del modelo




Sodio metálico



Model potential



Densidad electrónica (electrones/cm³)?

$$n = 0.6022 \times 10^{24} \frac{Z \rho_m}{A}.$$

Z: valencia

A: masa atómica (g/mol)

 $\rho_{\rm m}$ = densidad (g/cm³)

Otra forma de expresar la densidad:

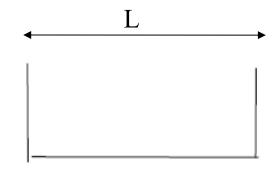
$$\frac{V}{N} = \frac{1}{n} = \frac{4\pi r_s^3}{3}; \quad r_s = \left(\frac{3}{4\pi n}\right)^{1/3}.$$

ELEMENT	Z	$n (10^{22} / \text{cm}^3)$	$r_s(\text{Å})$	$-r_s/a_0$
Li (78 K)	1	4.70	1.72	3.25
Na (5 K)	1	2.65	2.08	3.93
K (5 K)	1	1.40	2.57	4.86
Rb (5 K)	1	1.15	2.75	5.20
Cs (5 K)	1	0.91	2.98	5.62
Cu	1	8.47	1.41	2.67
Ag	1	5.86	1.60	3.02
Au	1	5.90	1.59	3.01
Be	2	24.7	0.99	1.87
Mg	2•	8.61	1.41	2.66
Ca	2	4.61	1.73	3.27
Sr	2	3.55	1.89	3.57
Ba	2	3.15	1.96	3.71
Nb	1	5.56	1.63	3.07
Fe	2	17.0	1.12	2.12
Mn (α)	2	16.5	1.13	2.14
Zn	2	13.2	1.22	2.30
Cd	2	9.27	1.37	2.59
Hg (78 K)	2	8.65	1.40	2.65
Al	3	18.1	1.10	2.07
Ga	3	15.4	1.16	2.19
In	3	11.5	1.27	2.41
Tl	3	10.5	1.31	2.48
Sn	4	14.8	1.17	2.22
Pb	4	13.2	1.22	2.30
Bi	5	14.1	1.19	2.25
Sb	5	16.5	1.13	214

Modelo de Sommerfeld

Para un gas de N_e electrones :

$$\left(-\frac{\hbar^2}{2m_e}\sum_{i=1}^{N_e} \boldsymbol{\nabla}_i^2\right) \Psi(\boldsymbol{r}_1, \boldsymbol{r}_2, \dots, \boldsymbol{r}_{N_e}) = E\Psi(\boldsymbol{r}_1, \boldsymbol{r}_2, \dots, \boldsymbol{r}_{N_e})$$


Si despreciamos la interacción e-e, resolvemos el problema de 1 e-

$$-\frac{\hbar^2}{2m_{\rm e}}\boldsymbol{\nabla}_i^2\psi(\boldsymbol{r}_i) \equiv -\frac{\hbar^2}{2m_{\rm e}}\left(\frac{\partial^2}{\partial x_i^2} + \frac{\partial^2}{\partial y_i^2} + \frac{\partial^2}{\partial z_i^2}\right)\psi(\boldsymbol{r}_i) = \varepsilon\psi(\boldsymbol{r}_i)$$

y llenamos los niveles de energía con los N_e electrones

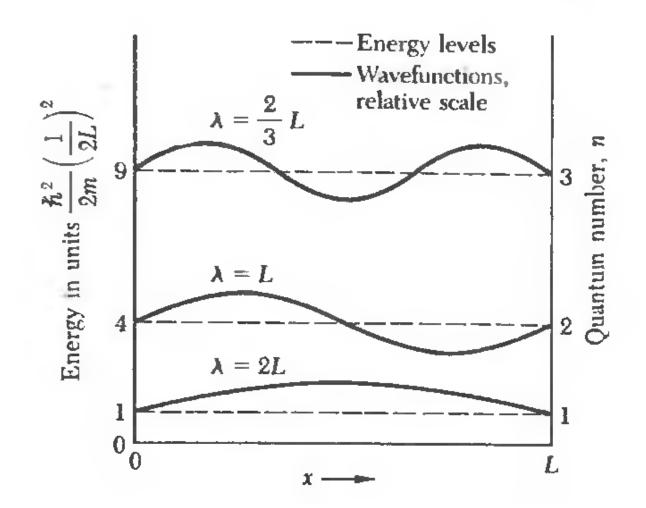
Ej.: 1D

$$\mathcal{H}\psi_n = -\frac{\hbar^2}{2m} \frac{d^2\psi_n}{dx^2} = \epsilon_n \psi_n$$

Model potential

Condiciones de contorno

$$\psi_n(0) = 0; \ \psi_n(L) = 0$$


$$\psi_n = A \sin\left(\frac{2\pi}{\lambda_n}x\right)$$

$$\frac{2\pi}{\lambda_n} = k = n \pi / L \qquad n=1,2,...$$

$$\frac{d\psi_n}{dx} = A\left(\frac{n\pi}{L}\right)\cos\left(\frac{n\pi}{L}x\right)$$

$$\frac{d^2\psi_n}{dx^2} = -A\left(\frac{n\pi}{L}\right)^2 \sin\left(\frac{n\pi}{L}x\right) \qquad \Box \Box \Box$$

$$oldsymbol{\epsilon_n} = rac{\hbar^2}{2m} igg(rac{n\pi}{L}igg)^2$$

Números cuánticos:
$$n = 1, 2, 3, 4,...$$

 $s = +\frac{1}{2}, -\frac{1}{2}$ (\uparrow, \downarrow)

Lleno los niveles con los Ne electrones

Ej.:
$$N_e = 6$$

n	***	Electron			Electron
er.	$m_{ m s}$	occupancy	n	m_s	occupanc
1	^	and the state of t	0(30)	A3	
1	!	1	3	Î	1
1	1	1	3	1	1
2	1	1	4	1	0
2	\downarrow	1	4	į	0
Q.20	74/7/4000000000000000000000000000000000	. I. IX IXIXXII - 4. EV SOV IXIIXANNAAN AANAA A	Mr. d activ. 1999 - 3 to 200	•	
	1.5. OstoColl. stole		JEDHARY ATTOL TENNES, E		
			_		
ncor	racnan	diente al últim	a nival a	ounada	` n_ =

En general, si N es par se tiene:
$$n_F = N/2$$

en un cristal N ≈10²³

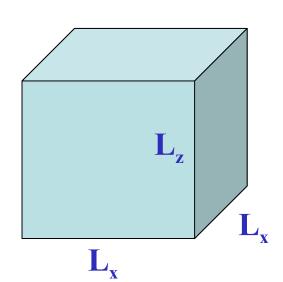
Definimos la Energía de Fermi como la energía del último nivel ocupado

$$\epsilon_F = \frac{\hbar^2}{2m} \left(\frac{n_F \pi}{L}\right)^2 = \frac{\hbar^2}{2m} \left(\frac{N\pi}{2L}\right)^2$$

La energía de Fermi es función de N/L (densidad electrónica)

Para el gas en 3D

$$\psi(x, y, z) = \sin \frac{\pi n_x x}{L_x} \sin \frac{\pi n_y y}{L_y} \sin \frac{\pi n_z z}{L_z}$$


$$\varepsilon = \frac{\hbar^2 \pi^2}{2m_e} \left[\left(\frac{n_x}{L_x} \right)^2 + \left(\frac{n_y}{L_y} \right)^2 + \left(\frac{n_z}{L_z} \right)^2 \right] \qquad \text{n_i=1,2,3,...}$$

$$\varepsilon_{\rm F} = \frac{\hbar^2}{2m_{\rm e}} (3\pi^2 n_{\rm e})^{2/3}$$

Estas condiciones de contorno no son adecuadas para estudiar las propiedades de bulk de un material

Condiciones periódicas de contorno (Born-von Karman)

$$-\frac{\hbar^2}{2m_{\rm e}} \nabla_i^2 \psi(\mathbf{r}_i) \equiv -\frac{\hbar^2}{2m_{\rm e}} \left(\frac{\partial^2}{\partial x_i^2} + \frac{\partial^2}{\partial y_i^2} + \frac{\partial^2}{\partial z_i^2} \right) \psi(\mathbf{r}_i) = \varepsilon \psi(\mathbf{r}_i)$$

$$\psi(x, y, z + L) = \psi(x, y, z), \psi(x, y + L, z) = \psi(x, y, z), \psi(x + L, y, z) = \psi(x, y, z).$$

Las soluciones son:

$$\psi_{\mathbf{k}}(\mathbf{r}) = \frac{1}{\sqrt{V}} e^{i\mathbf{k}\cdot\mathbf{r}}$$

$$\varepsilon_{\mathbf{k}} = \frac{\hbar^2 k^2}{2m_{\mathbf{e}}} = \frac{\hbar^2}{2m_{\mathbf{e}}} (k_x^2 + k_y^2 + k_z^2)$$

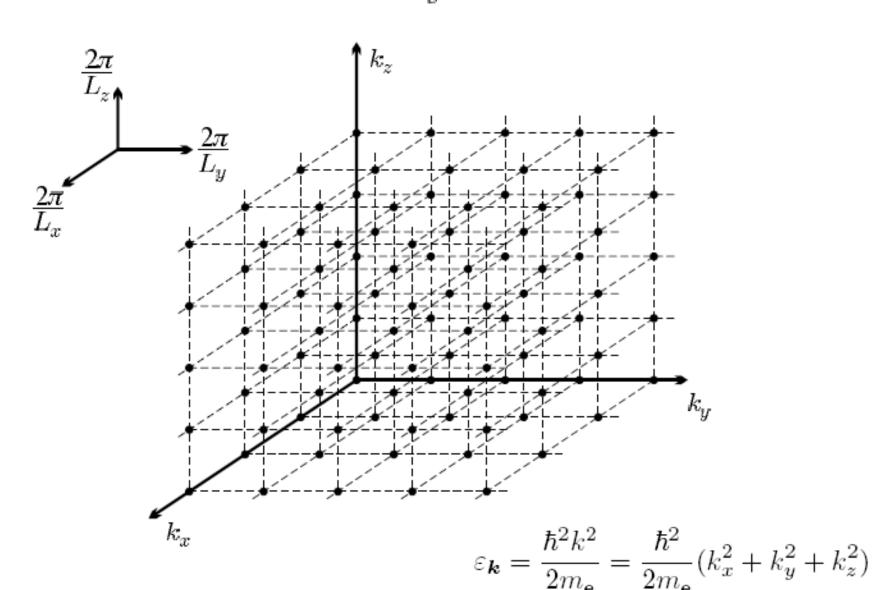
$$\bigstar$$
 Las funciones de onda $\psi_{m k}(r)=rac{1}{\sqrt{V}}{
m e}^{{
m i}{m k}\cdot{m r}}$ son autofunciones

del operador momento

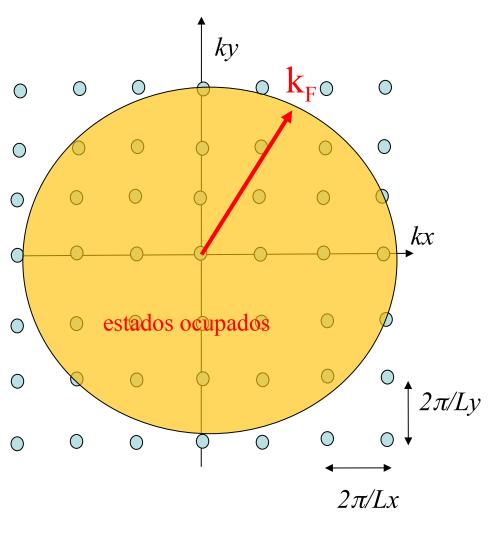
$$p = \frac{\hbar}{\mathrm{i}} \frac{\partial}{\partial r} = \frac{\hbar}{\mathrm{i}} \nabla$$

Poseen momento lineal definido

$$p=\hbar k$$
.


Valores posibles de k?

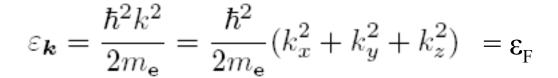
$$\psi(x + L, y, z) = \psi(x, y, z)$$


$$e^{ik_x L_x} = e^{ik_y L_y} = e^{ik_z L_z} = 1$$

$$k_x = \frac{2\pi}{L_x} n_x$$
, $k_y = \frac{2\pi}{L_y} n_y$, $k_z = \frac{2\pi}{L_z} n_z$ $\mathbf{n_i}$ entero

$$\boldsymbol{k} = \frac{2\pi n_x}{L_x} \hat{\boldsymbol{x}} + \frac{2\pi n_y}{L_y} \hat{\boldsymbol{y}} + \frac{2\pi n_z}{L_z} \hat{\boldsymbol{z}}$$

Para N_e electrones:


$$arepsilon_{
m F} = rac{\hbar^2 k_{
m F}^2}{2m_{
m c}}$$
 Energía de Fermi

$$v_{
m F} = rac{\hbar k_{
m F}}{m_{
m e}}$$
 Velocidad de
Fermi

$$n_{\mathbf{e}} = \frac{N_{\mathbf{e}}}{V} = \frac{k_{\mathbf{F}}^3}{3\pi^2}$$

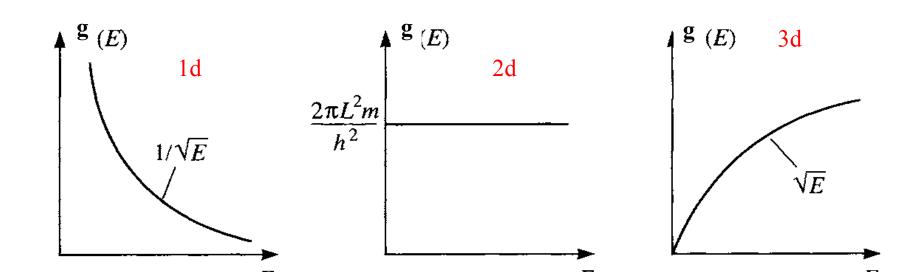
$$\varepsilon_{\mathbf{F}} = \frac{\hbar^2}{2m_{\mathbf{e}}} (3\pi^2 n_{\mathbf{e}})^{2/3}$$

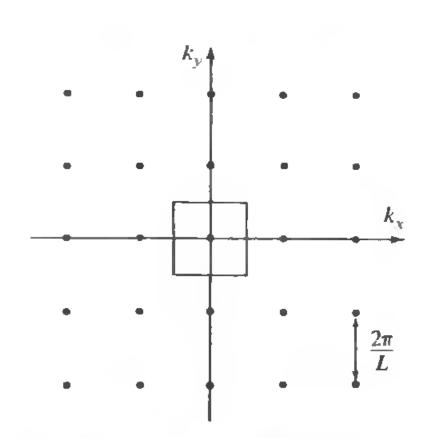
Superficie de Fermi

superficie en el espacio k (esfera)

Fermi surface, at energy ϵ_F k_y

Separa los estados ocupados de los vacíos


Metal	Electron concentration, in cm ⁻³	Radius a parameter r_{s}	Fermi wavevector, in cm ⁻¹	Fermi velocity, in cm s ⁻¹	Fermi energy, in eV	Fermi temperature $T_F \equiv \epsilon_F/k_B$, in deg K
Li	$4.70 imes 10^{22}$	3.25	1.11×10^{8}	1.29×10^{8}	4.72	5.48×10^{4}
Na	2.65	3.93	0.92	1.07	3.23	3.75
K	1.40	4.86	0.75	0.86	2.12	2.46
Rb	1.15	5.20	0.70	0.81	1.85	2.15
Cs	0.91	5.63	0.64	0.75	1.58	1.83
Cu	8.45	2.67	1.36	1.57	7.00	8.12
Ag	5.85	3.02	1.20	1.39	5.48	6.36
Au	5.90	3.01	1.20	1.39	5.51	6.39
Ве	24.2	1.88	1.93	2.23	14.14	16.41
Mg	8.60	2.65	1.37	1.58	7.13	8.27
Ca	4.60	3.27	1.11	1.28	4.68	5.43
Sr	3.56	3.56	1.02	1.18	3.95	4.58
Ba	3.20	3.69	0.98	1.13	3.65	4.24
Zn	13.10	2.31	1.57	1.82	9.39	10.90
Cd	9.28	2.59	1.40	1.62	7.46	8.66
Al	18.06	2.07	1.75	2.02	11.63	13.49
Ga	15.30	2.19	1.65	1.91	10.35	12.01
In	11.49	2.41	1.50	1.74	8.60	9.98
Pb	13.20	2.30	1.57	1.82	9.37	10.87
$\operatorname{Sn}(\boldsymbol{w})$	14.48	2.23	1.62	1.88	10.03	11.64


La energía total del estado fundamental del gas es:

$$E_0 = \sum_{|\mathbf{k}| \le k_F} \sum_{\sigma} \frac{\hbar^2 k^2}{2m_e} = 2 \sum_{|\mathbf{k}| \le k_F} \frac{\hbar^2 k^2}{2m_e}$$

Para una muestra macroscópica, los valores permitidos de k llenan densamente el espacio

$$2\sum_{k} \to \int d^3k \to \int d\varepsilon \Longrightarrow \frac{\text{densidad de estados}}{g(k) g(E)}$$

$(2\pi/L)^3$

Volumen del espacio k asociado a cada estado

El número de estados que contiene una región de volumen Ω es:

$$\frac{\Omega}{(2\pi/L)^3} = \frac{\Omega V}{8\pi^3}$$

$$\frac{V}{8\pi^3}$$

Densidad de estados en el espacio k

$$E_0 = \sum_{|\mathbf{k}| \le k_F} \sum_{\sigma} \frac{\hbar^2 k^2}{2m_e} = 2 \sum_{|\mathbf{k}| \le k_F} \frac{\hbar^2 k^2}{2m_e}.$$

$$E_0 = 2 \frac{V}{(2\pi)^3} \int_{|\mathbf{k}| \le k_B} \frac{\hbar^2 k^2}{2m_e} d\mathbf{k} \longrightarrow g(\mathbf{k}) = \frac{2}{(2\pi)^3}$$

$$V \int g(\varepsilon) \varepsilon d\varepsilon \longrightarrow g(\varepsilon)$$
?

Para el gas de electrones en 3D:

$$g(\varepsilon) d\varepsilon = \frac{2}{(2\pi)^3} 4\pi k^2 dk$$
 $\varepsilon = \frac{\hbar^2 k^2}{2m_e}$

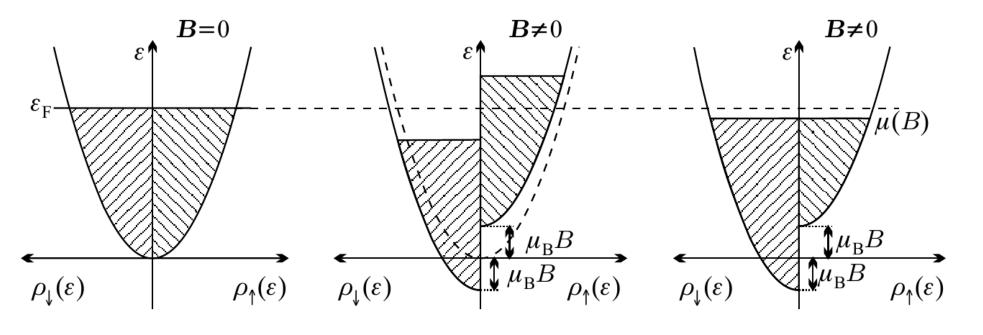
Se obtiene: $g(\varepsilon) = \frac{1}{2\pi^2} \left(\frac{2m_{\rm e}}{\hbar^2}\right)^{3/2} \sqrt{\varepsilon}$

$$E_0 = \sum_{|\mathbf{k}| \le k_{\rm F}} \sum_{\sigma} \frac{\hbar^2 k^2}{2m_{\rm e}} = 2 \sum_{|\mathbf{k}| \le k_{\rm F}} \frac{\hbar^2 k^2}{2m_{\rm e}}.$$

$$E_0 = V \int_0^{E_F} g(arepsilon) arepsilon \, \mathrm{d}arepsilon$$

$$E_0 = 2\frac{V}{(2\pi)^3} \int \frac{\hbar^2 k^2}{2m_e} d\mathbf{k} = 2\frac{V}{(2\pi)^3} \int_{0}^{k_F} \frac{\hbar^2 k^2}{2m_e} 4\pi k^2 dk = \frac{V}{5\pi^2} k_F^3 \frac{\hbar^2 k_F^2}{2m_e}$$

$$\frac{N_{\rm e}}{2} = \frac{4\pi k_{\rm F}^3}{3} \frac{V}{(2\pi)^3} = \frac{k_{\rm F}^3}{6\pi^2} V \implies n_{\rm e} = \frac{N_{\rm e}}{V} = \frac{k_{\rm F}^3}{3\pi^2}$$


$$\varepsilon_{\rm F} = \frac{\hbar^2 k_{\rm F}^2}{2m_{\rm e}} = \frac{\hbar^2}{2m_{\rm e}} (3\pi^2 n_{\rm e})^{2/3}$$

$$E_0 = \frac{3}{5} \frac{\hbar^2 k_{\rm F}^2}{2m_{\rm e}} N_{\rm e} = \frac{3}{5} \varepsilon_{\rm F} N_{\rm e}$$

Susceptibilidad de Pauli

Al aplicar un campo magnético al gas, los niveles de energía que estaban degenerados en spin se splitean

$$\varepsilon_{\mathbf{k}\sigma} = \varepsilon_{\mathbf{k}} - \frac{1}{2}g_{\mathrm{e}}\mu_{\mathrm{B}}B\sigma$$
 $\sigma = \pm 1$

$$\uparrow \quad \varepsilon_{\mathbf{k}\sigma} = \varepsilon_{\mathbf{k}} - \frac{1}{2}g_{\mathbf{e}}\mu_{\mathbf{B}}B \qquad \qquad \downarrow \quad \varepsilon_{\mathbf{k}\sigma} = \varepsilon_{\mathbf{k}} + \frac{1}{2}g_{\mathbf{e}}\mu_{\mathbf{B}}B$$

$$M = \frac{1}{2} g_{\rm e} \mu_{\rm B} \left(n_{\uparrow} - n_{\downarrow} \right)$$

$$n_{\uparrow} + n_{\downarrow} = n_{\rm e}$$

$$n_{\uparrow\downarrow} = \int \rho_{\uparrow\downarrow}(\varepsilon) \ \mathrm{d}\varepsilon$$
 Extremos de integración

$$\begin{array}{c|c} \varepsilon \\ \hline \\ \rho_{\downarrow}(\varepsilon) \end{array} \begin{array}{c} \varepsilon \\ \mu_{\rm B}B \\ \hline \\ \rho_{\uparrow}(\varepsilon) \end{array} \begin{array}{c} \mu_{\rm B}B \\ \hline \\ \rho_{\uparrow}(\varepsilon) \end{array}$$

Recordando que $\ B=\mu_0 H$

 $M = \frac{1}{4}g_{\rm e}^2\mu_{\rm B}^2B\rho(\varepsilon_{\rm F})$

$$\chi_{\rm P} = \frac{1}{4}\mu_0 (g_{\rm e}\mu_{\rm B})^2 \rho(\varepsilon_{\rm F})$$

 $Pauli\ susceptibility$

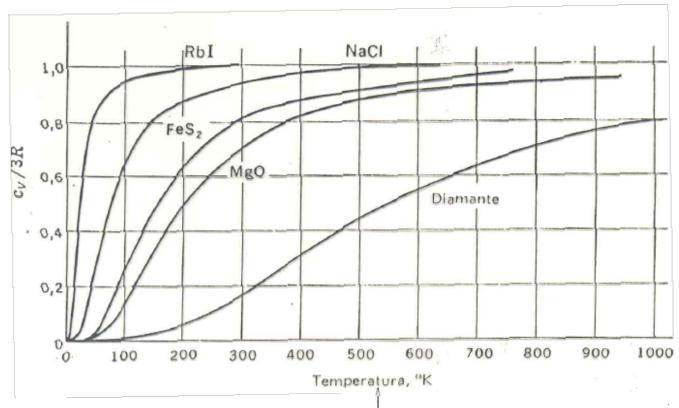
$$\chi_{\rm P} = \frac{3}{8} n_{\rm e} \frac{\mu_0 (g_{\rm e} \mu_{\rm B})^2}{\varepsilon_{\rm F}} = \frac{3}{2} n_{\rm e} \frac{\mu_0 (g_{\rm e} \mu_{\rm B})^2}{4k_{\rm B} T_{\rm F}}$$

Calor específico de metales

La energía interna de un gas clásico de N electrones es:

$$U(T) = 3/2 N K T$$
 (1/2 K T por grado de libertad)

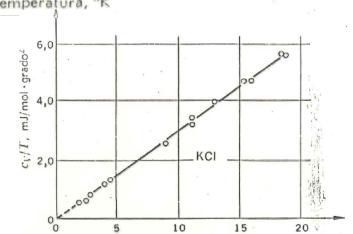
$$C_v$$
 (clas) = $\partial E/\partial T = 3/2 N K$

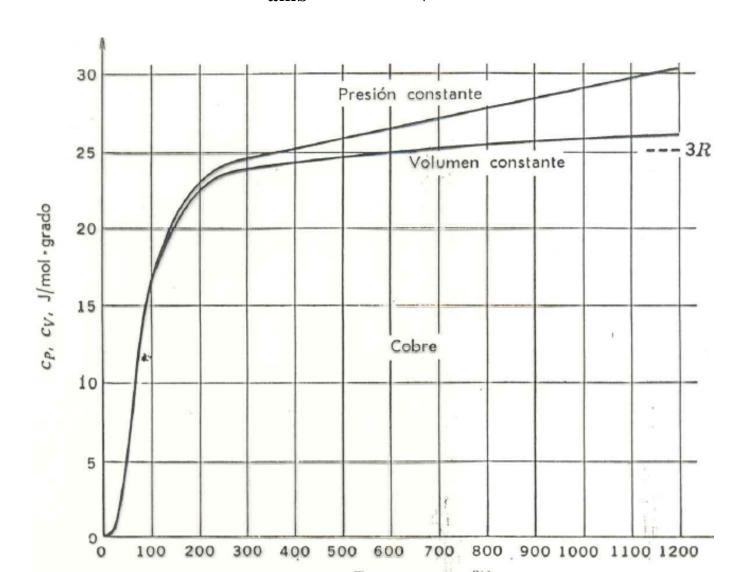

Si $N = N_A$ (6.023 10²³), el calor específico molar es:

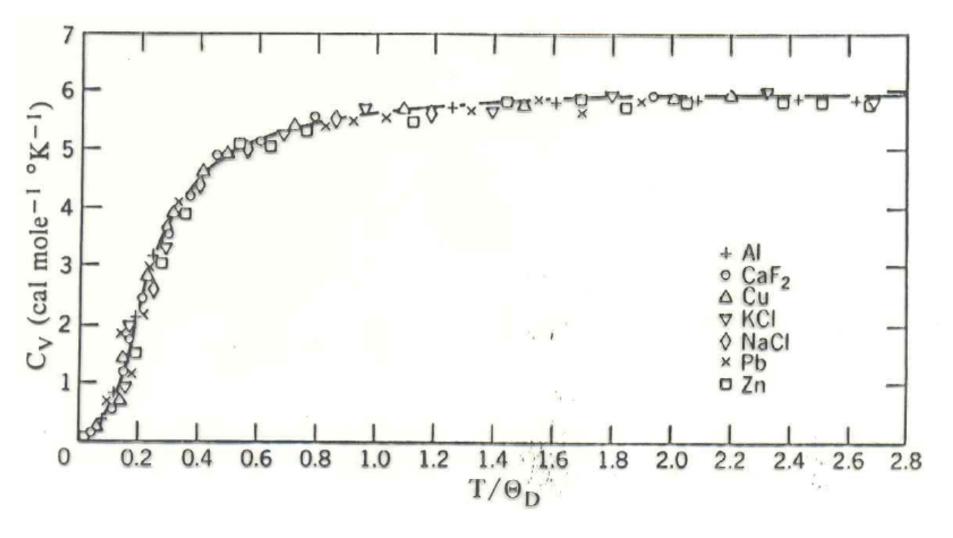
$$C_v$$
 (clas) = 3/2 N_A $K = 3/2$ R

Este término debería sumarse a la contribución proveniente de las vibraciones de la red. El $\mathbf{C}_{\mathbf{v}}$ de un metal monoatómico a temperatura ambiente sería

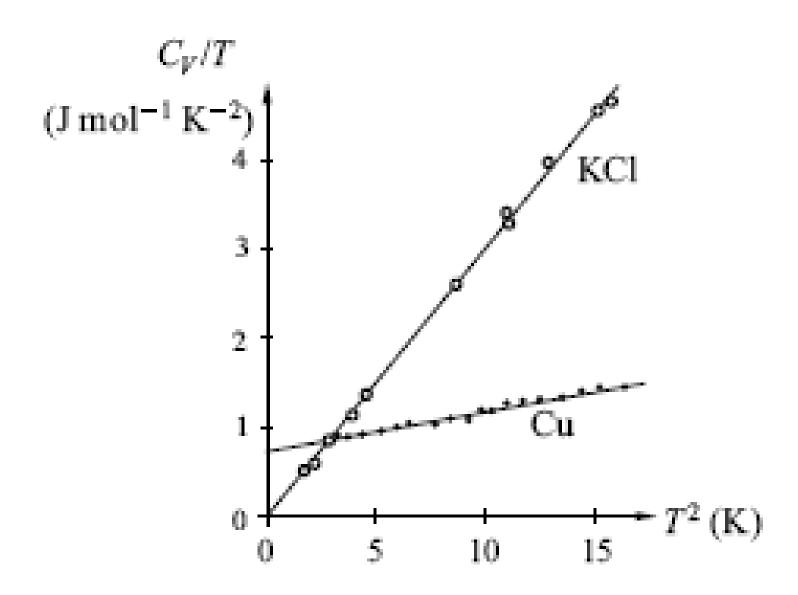
$$C_v = 3/2 R + 3 R = 9/2 R$$


Contribución de los fonones (aisladores)


A bajas temperaturas


$$C_v = \alpha T^3$$

$$C_v / T = \alpha T^2$$

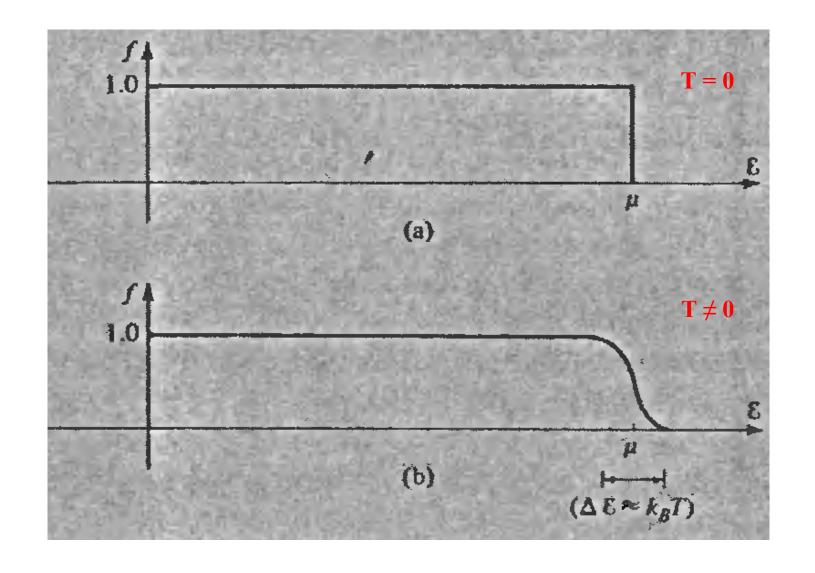

En un metal? $C_v = C_v$ (fonones) + 3/2 R ? $T=T_{amb} \longrightarrow C_v = 3 R + 3/2 R = 9/2 R ?$

La contribución de los electrones de conducción al calor especifico de un metal es pequeña a temperatura ambiente, comparada con la contribución proveniente de las vibraciones de la red (fonones)

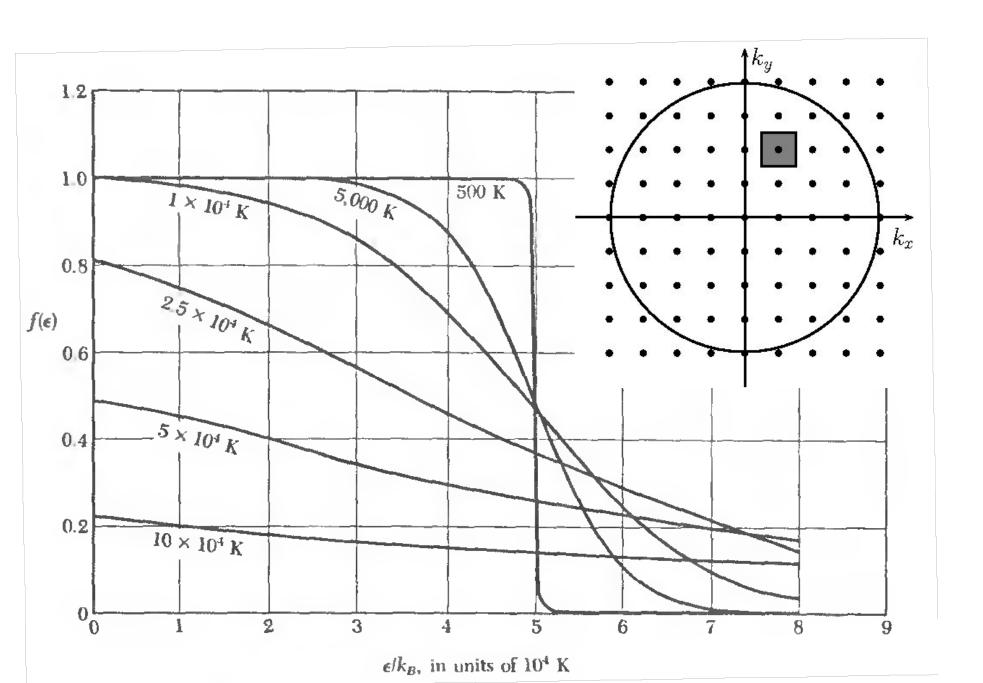
A muy bajas temperaturas:

Tratamiento cuántico - Gas de Sommerfeld

La energía total del estado fundamental del gas es :

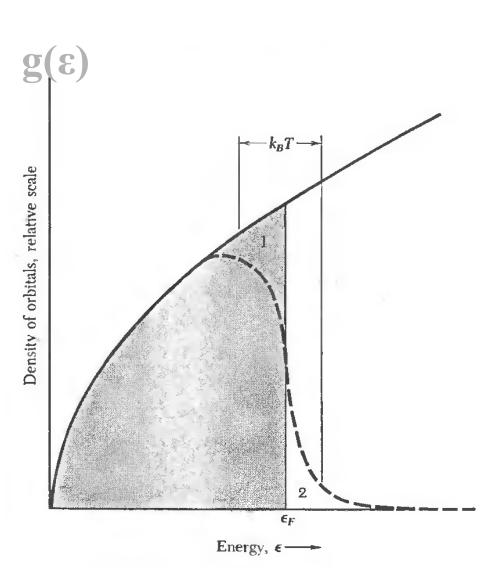

$$E_0 = \sum_{|\mathbf{k}| \le k_F} \sum_{\sigma} \frac{\hbar^2 k^2}{2m_e} = 2 \sum_{|\mathbf{k}| \le k_F} \frac{\hbar^2 k^2}{2m_e}$$

$$\mathbf{E}(\mathbf{T}) \qquad \qquad \mathbf{C}_{\mathbf{v}} = \partial \mathbf{E}/\partial \mathbf{T}$$


Cómo calculamos la energía interna E(T)?

$$E = 2\sum_{\mathbf{k}} \varepsilon_{\mathbf{k}} f_0(\varepsilon_{\mathbf{k}}) = 2\frac{V}{(2\pi)^3} \int \varepsilon_{\mathbf{k}} f_0(\varepsilon_{\mathbf{k}}) d\mathbf{k} = V \int \varepsilon f_0(\varepsilon) \rho(\varepsilon) d\varepsilon$$

donde
$$f_0(\varepsilon) = \frac{1}{\exp[(\varepsilon - \mu)/k_{\rm B}T] + 1}$$
 Distribución de Fermi-Dirac



$$E_F = \lim_{T \to 0} \mu$$

Estimación de la contribución electrónica al C_v

$$\frac{N^{o} e^{-} excitados}{V} \approx g(E_{F}) K T$$

Energía de excitación ≈ K T

$$\frac{E}{V} \approx g(E_F) (K T)^2$$

$$C_v \approx g(E_F) K^2 T$$

$$c_{\rm el} = \frac{1}{V} \frac{\partial E}{\partial T} = \frac{\pi^2}{3} \rho(\varepsilon_{\rm F}) k_{\rm B}^2 T$$

Se muestra que para un gas de electrones en 3D :

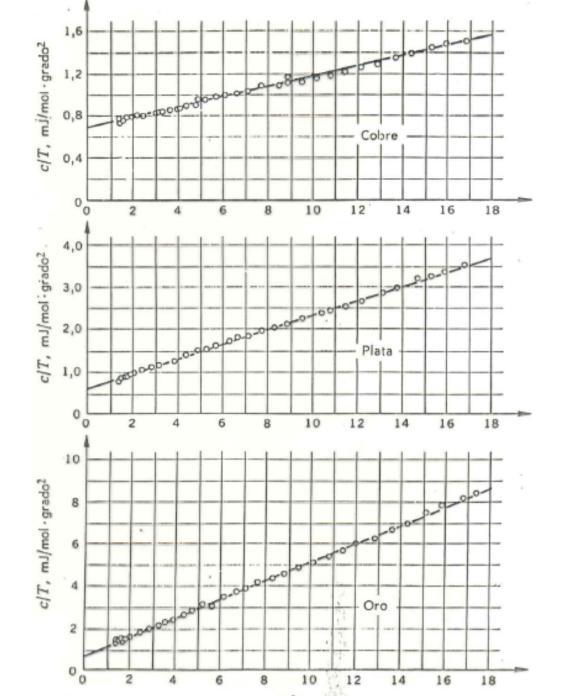
$$g(E_F) = \frac{3 \text{ n}}{2 E_F} = \frac{3 \text{ n}}{2 \text{ K } T_F}$$

$$C_v \approx g(E_F) K^2 T = 3/2 n K T/T_F$$

$$C_{v}(clas) = 3/2 \text{ n K}$$

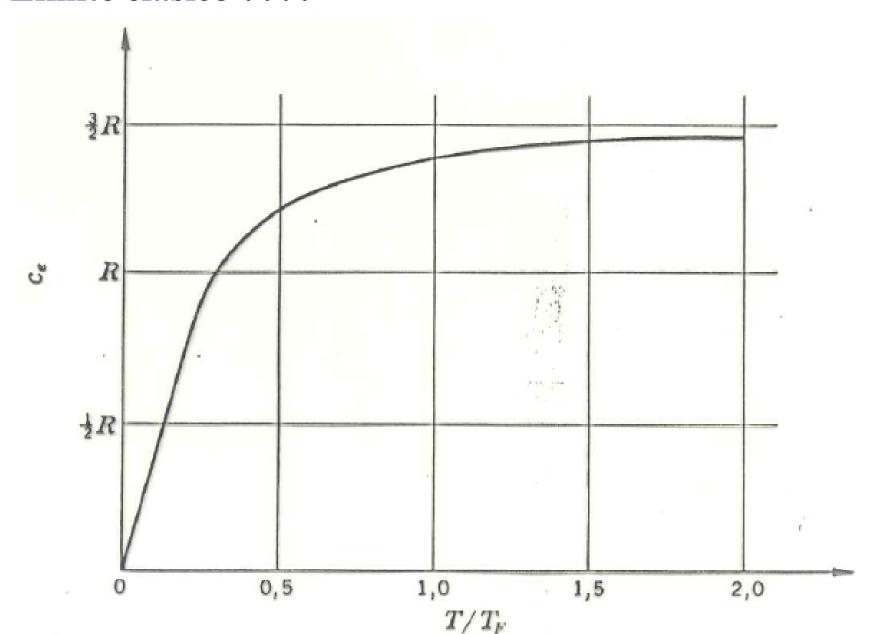
$$T=Tamb$$

$$\frac{C_{v}}{C_{v}(clas)} \approx T/T_{F} \approx 10^{-2}$$


La contribución de los electrones de conducción al calor especifico de un metal a T_{amb} es $\sim 1\%$ del valor clásico

Para un metal a bajas temperaturas

$$C_v = C_v(e) + C_v(ph)$$
$$= \gamma T + \alpha T^3$$


$$C_v / T = \gamma + \alpha T^2$$

 γ es proporcional a $g(E_F)$

Li 1.63 0,749 2.18	Be 0.17 0.500 0.34	Table 2 Experimental and free electron values of electronic heat capacity constant γ of metals (From compilations kindly furnished by N. Phillips and N. Pearlman. The thermal effective mass is defined by Eq. (38).											С	N
Na 1.38 1.094 1.26	Mg 1.3 0.992 1.3	Observed γ in mJ mol ⁻¹ K ⁻² . Calculated free electron γ in mJ mol ⁻¹ K ⁻¹ $m_{\rm th}/m=({\rm observed}\;\gamma)/({\rm free}\;{\rm electron}\;\gamma).$											Si	P
K 2.08 1.668 1.25	Ca 2.9 1.511 1.9	Sc 10.7	Ti 3.35	V 9.26	Cr 1.40	Mn (γ) 9.20	Fe 4.98	Co 4.73	Ni 7.02	Cu 0.695 0.505 1.38	Zn 0.64 0.753 0.85	Ga 0.596 1.025 0.58	Ge	As 0.19
Rb 2.41 1.911 1.26	Sr 3.6 1.790 2.0	Y 10.2	Zr 2.80	Nb 7.79	Mo 2.0	Tc —	Ru 3.3	Rh 4.9	Pd 9.42	Ag 0.646 0.645 1.00	Cd 0.688 0.948 0.73	In 1.69 1.233 1.37	Sn (w) 1.78 1.410 1.26	Sb 0.11
Cs 3.20 2.238 1.43	Ba 2.7 1.937 1.4	La 10.	Hf 2.16	Ta 5.9	W 1.3	Re 2.3	0s 2.4	lr 3.1	Pt 6.8	Au 0.729 0.642 1.14	Hg(α) 1.79 0.952 1.88	TI 1.47 1.29 1.14	Pb 2.98 1.509 1.97	Bi 0.008

Limite clásico ????

