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Abstract

A closed formula for ultimate bound estimation in LTI systems with non–vanishing perturbations is presented. The formula,
based on geometrical properties of the system, provides an alternative to Lyapunov’s second method based study. Although it
is not proven that the bound obtained is always less conservative than the Lyapunov’s bound, some examples are introduced
where the estimations are significantly improved. An extension of the idea for nonlinear systems is also sketched.
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1 Introduction

Several problems of dynamical system analysis include
the effects of perturbations. These perturbations can re-
sult from modeling errors, aging or uncertanties and dis-
turbances which exist in any realistic problem [4].

In some cases, the perturbations do not disappear when
the state approximates the origin. In presence of these
nonvanishing perturbations asymptotic stability is no
longer possible. However, under certain conditions, ulti-
mately boundedness of the trajectories can be ensured.

Nonvanishing perturbations can represent, for instance,
effects of quantization [6], unknown disturbance signals
[7], unmodeled dynamics [8], limitations in networked
control systems [11,2,1,3] and errors in numerical meth-
ods [5]. In all those problems, it is always important es-
timating the ultimate bound as a measure of the unde-
sirable effect of the perturbation.

This estimation is usually obtained analyzing a Lya-
punov function of the non perturbed system. However,
the results can be very conservative due to the loss of
the system and perturbation structure.

A different approach is used in [5] to study the effects
of state perturbations introduced by quantization–based
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numerical integration methods in LTI systems. There,
the Lyapunov approach is replaced by an analysis of the
diagonalized system.

This work generalizes the mentioned study for general
LTI systems with bounded input and state perturba-
tions. After deriving the closed formulae from the clas-
sic Lyapunov analysis (Sec.3), the new methodology is
introduced (Sec.4) and the basic ideas to extend it to
nonlinear system are presented. Finally, some examples
are discussed comparing both approaches.

2 Preliminaries

2.1 Problem statement

Consider a LTI perturbed system

ẋ(t) = A(x(t) + ∆x(t)) + B∆u(t) (1)

where the perturbation components satisfy

|∆xi(t)| ≤ ∆xmaxi ; |∆uj(t)| ≤ ∆umaxj (2)

with 1 ≤ i ≤ n, 1 ≤ j ≤ m, and where ∆xmaxi and
∆umaxj are non-negative constants.

The goal is to obtain closed expressions for the ultimate
bound of (1) subject to (2)
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2.2 Notation

The symbol | · | will indicate the componentwise module
of a matrix or vector. If T is a matrix with components
T1,1, . . . , Tn,m, then |T | will be a new matrix of the same
size than T with components |T1,1|, . . . , |Tn,m|.

For vectors of the same dimension, the inequality x ≤ y
implies that xi ≤ yi for every component of x and y.

With this notation, Ineqs.(2) become

|∆x(t)| ≤ ∆xmax; |∆u(t)| ≤ ∆umax (3)

3 Lyapunov-based Analysis

Let U(x) = xT Px where P = PT > 0 satisfies AT P +
PA = −Q with Q = QT > 0. Then

U̇(x) = −xT Qx + 2xT PA∆x + 2xT PB∆u (4)

The last two terms can be bounded by

2xT PA∆x ≤ 2‖x‖ · ‖PA‖ · ‖∆xmax‖ (5)
2xT PB∆u ≤ 2‖x‖ · ‖PB‖ · ‖∆umax‖ (6)

3.1 Analysis in Norm 2

If ‖x‖2 ≥ ρ where

ρ � 2
λmin(Q)

(‖PA‖2‖∆xmax‖2 + ‖PB‖2‖∆umax‖2)

it results from (5) and (6) that

xT Qx ≥ ‖x‖2
2λmin(Q) ≥ 2xT PA∆x + 2xT PB∆u

and from (4) we have that U̇(x) < 0. Let

c � max
‖x‖2=ρ

U(x) = ρ2λmax(P ) (7)

Then, it can be ensured that the trajectories will finish
inside the level surface given by U(x) = c = ρ2λmax(P )
and the ultimate bound will be µ2 so that

min
‖x‖2=µ2

U(x) = µ2
2λmin(P ) = c

Using (7) and the definition of ρ in the last equation, we
have

µ2 =

√
λmax(P )
λmin(P )

· 2
λmin(Q)

· (‖PA‖2 · ‖∆xmax‖2+

+ ‖PB‖2 · ‖∆umax‖2) (8)

3.2 Analysis in Norm ∞

Using the Constrained Quadratic Lemma [10], the min-
imum of the quadratic function when the component
xi = r is r2/eiQ

−1eT
i = r2/(Q−1)i,i. Thus, it results

that

xT Qx ≥ ‖x‖2∞
maxi(Q−1)i,i

(9)

Then, following a similar idea to the analysis in norm 2,
the bound obtained is

µ∞ = 2bq

√
bp‖P‖∞·(‖PA‖∞‖∆xmax‖∞+

+ ‖PB‖∞‖∆umax‖∞) (10)

with bq � max1≤i≤n(Q−1)i,i; bp � max1≤i≤n(P−1)i,i

4 Non Conservative Ultimate Bound

4.1 Trajectories Starting from the Origin

Lemma 1 Consider the first order equation with com-
plex coefficient

ẋ = a(x + ∆x) + B∆u (11)

where a, x, ∆x ∈ C, ∆u ∈ Ck and B ∈ C1×k. Assume
also that Re(a) < 0, |∆x| ≤ ∆xmax and |∆u| ≤ ∆umax.

Let x(t) be a solution of (11) from the initial condition
x(t0) = 0. Then, for all t ≥ t0 it results that

|x(t)| ≤
∣∣∣∣ a

Re(a)

∣∣∣∣∆xmax +
∣∣∣∣ B

Re(a)

∣∣∣∣ ∆umax

PROOF. Let x � ρ · ejθ with ρ, θ ∈ R. Replacing with
this definition and operating, equation (11) becomes

ρ̇ + jρ · θ̇ = a(ρ + ∆x · e−jθ) + B∆u · e−jθ

Taking the real part of the equation above it results that

ρ̇ = Re(a)ρ + Re(a∆x · e−jθ) + Re(B∆u · e−jθ)
≤ Re(a)ρ + |a|∆xmax + |B|∆umax

Thus, when

ρ = |x(t)| =
|a|∆xmax + |B|∆umax

|Re(a)|

it results that ρ̇ ≤ 0 and |x(t)| cannot become greater
than the given bound.

Applying Lemma 1 to each component of a decoupled
system, the following corollary is obtained
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Corollary 2 Consider system (1) where x, ∆x ∈ Cn,
A ∈ Cn×n, ∆u ∈ Ck and B ∈ Cn×k. Assume also that
A is a diagonal matrix with Re(Ai,i) < 0 and consider
the inequalities (3). Let x(t) be a solution of (1) from
x(t0) = 0. Then, for all t ≥ t0 we have

|x(t)| ≤ |Re(A)−1A|∆xmax + |Re(A)−1B|∆umax

With this corollary, the following theorem can be derived

Theorem 3 Consider system (1) where x, ∆x ∈ Rn,
A ∈ Rn×n, ∆u ∈ Rk and B ∈ Rn×k. Assume that A
is a diagonalizable Hurwitz matrix and suposse that the
perturbation terms satisfy (3). Let x(t) be a solution of
the system starting from x(t0) = 0. Then, for all t ≥ t0

|x(t)| ≤ εlin � |V | · (|Re(Λ)−1Λ||V −1|∆xmax+
|Re(Λ)−1V −1B|∆umax) (12)

where Λ is a diagonal eigenvalues matrix of A and V is
an associated matrix of eigenvectors, i.e., V −1AV = Λ

PROOF. Let x = V z. Replacing in (1) we obtain

ż = Λ(z + V −1∆x) + V −1B∆u (13)

where

|V −1∆x| ≤ |V −1|∆xmax; |V −1B∆u| ≤ |V −1B|∆umax

Since Λ is diagonal with Re(Λi,i) < 0 and considering
the last inequalities, system (13) satisfies the hypothesis
of Corollary 2. Then, for all t ≥ t0 we can ensure that

|z(t)| ≤ |Re(Λ)−1Λ||V −1|∆xmax+
+ |Re(Λ)−1V −1B|∆umax (14)

and finally, we have

|x(t)| = |V z(t)| ≤ |V ||z(t)|

and replacing |z(t)| with (14) we retrieve (12).

4.2 Ultimate Bound of a Perturbed LTI System

Theorem 4 System (1), under the hypothesis of Theo-
rem 3 is globally ultimately bounded with ultimate bound
µ = ‖εlin‖, with εlin defined in (12). Moreover, it exists
a finite time t1 = t1(c, x0) so that for each positive con-
stant c the solutions satisfy

|x(t)| ≤ (1 + c)εlin (15)

for all t ≥ t1 and for an arbitrary initial condition x0.

PROOF. Let x(t) be a solution of (1) starting from an
arbitrary initial condition x(0) = x0, and let x̃(t) be the
solution also starting from x0 of the nominal system

˙̃x = Ax̃ (16)

Let e(t) � x(t)− x̃(t). Then, it results that e(0) = 0 and
e(t) satisfies equation (1), which implies that it satisfies
the hypothesis of Theorem 3. Then,

|e(t)| ≤ εlin (17)

Since A is Hurwitz, the nominal system (16) is exponen-
tially stable. Then, for each positive constant c a finite
time t1 exists so that for all t > t1 we have

|x̃(t)| ≤ c · εlin (18)

Using the fact that x(t) = e(t)+ x̃(t) ⇒ |x(t)| ≤ |e(t)|+
|x̃(t)| and replacing with (17) and (18) we arrive to (15),
which completes the proof.

4.3 Application to Nonlinear Systems

Let us consider now the nonlinear version of (1)

ẋ(t) = f(x(t) + ∆x(t), ∆u(t)) (19)

with f being a continuously differentiable function.
Eq.(19) can be rewritten as

ẋ(t) = A · (x(t)+∆x(t)) + B · ∆u(t)+
+ g(x(t) + ∆x(t), ∆u(t)) (20)

where

A =
∂f(x, u)

∂x

∣∣∣∣
(0,0)

B =
∂f(x, u)

∂u

∣∣∣∣
(0,0)

(21)

Assuming that (19) is exponentially stable, it results
that A is Hurwitz. Moreover, if ∆xmax and ∆umax

are small enough we can ensure that the solutions x(t)
(starting inside the region of attraction) are ultimately
bounded. Thus, a vector of positive values xmax exists
so that if t > T then |x(t)| < xmax.

Boundedness of g ensures (for fixed ∆xmax and
∆umax) the existence of a function gmax so that
|g(x(t) + ∆x(t), ∆u(t))| < gmax(xmax), ∀t > T

Then, function g in (20) acts as a bounded perturbation.
Defining εlin as in (12) we can repeat the procedure of
Theorems 3 and 4 starting from t = T concluding that

|x(t)| < εlin + |V | · |Re(Λ)−1V −1| · gmax(xmax) (22)
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∀t > T + t1. When the right hand side of (22) is a
contraction map, its fixed point

xmax = εlin + |V | · |Re(Λ)−1V −1| · gmax(xmax) (23)

gives an upper bound of xmax.

This new bound is now imlicitely defined, but it could be
easily calculated by fixed point iterations starting from
xmax = εlin.

5 Numerical Examples

Consider the perturbed system

ẋ(t) = A[x(t)+∆x(t)] =

[
0 100

−100 −10001

]
[x(t)+∆x(t)]

where the perturbation components are bounded by
|∆x1(t)| ≤ 0.01 and |∆x2(t)| ≤ 0.0001. This example,
taken from [5], represents the dynamics of the error in
the simulation of a stiff system with the QSS method.

Lyapunov formulas (8) and (10) are minimized taking 1

Q2 =

[
1 −1.4631

−1.4631 197.568

]
Q∞ =

[
1 −1.448

−1.448 196.124

]

obtaining bounds µ2 = 20.1861 and µ∞ = 14.45.

For the same example, our approach –Theorem 4– gives
µ̃2 = 0.0100085 (bound in norm 2) and µ̃∞ = 0.01. The
estimation is about 2000 times less conservative in norm
2 and 1400 times in norm∞. The calculations were made
using the eigenvectors and eigenvalues matrices obtained
with function ‘eig’ of Matlab.

Moreover, Theorem 4 concludes after certain time t1 we
will have |x1(t)| < (1+c)0.01 and |x2(t)| < (1+c)0.0003
for any given positive constant c. Thus, the estimation
for the second component is even much better.

Lyapunov’s poor performance is due, in part, to the fact
that the eigenvalues of P are very different and then the
level surfaces of U(x) are very flat ellipses. Hence, the
radius ρ of the ball where the Lyapunov function deriva-
tive is negative differs significantly from the maximum
norm in that ellipse (µ2). Also, the problem structure is
lost and the way in which the perturbation terms act is
not exploited.

1 The minimum were obtained with Nelder–Mead simplex
method (function ‘fminsearch’ of Matlab).

Consider now the system resulting of adding a nonlinear
term to the previous system

ẋ(t) = f(x+∆x) = A[x(t)+∆x(t)]+

[
0

k(x2 + ∆x2)3

]

According to (12), for the same perturbation, we have
εlin = [0.01, 0.0003]T . The nonlinear term is bounded by

gmax(xmax) = [0 k(xmax2 + 0.0001)3]T

Then, taking k = 5 × 109, Eq.(23) has a fixed point
xmax = [0.01437 0.0003437]T . Then, when x(0) is in the
region of attraction, a constant T exists so that |x1(t)| <
0.01437 and |x2(t)| < 0.003437, ∀t > T .

As before, any Lyapunov analysis using quadratic func-
tions gives more conservative results.

6 Conclusions

A new approach for the estimation of the ultimate bound
in perturbed LTI systems, which can be extended to
nonlinear cases, was introduced. In the cases analyzed,
the estimation significantly improved Lyapunov based
results, even when the choice of Q was optimized. An-
other important benefit is the possibility of obtaining
separated bounds for each state variable.

There are many works in the recent literature that in-
troduce novel design techniques attempting to guaran-
tee ultimate bounds in hybrid and sampled data systems
(see for instance [2,9,3,1]). In all these examples, the es-
timation of the ultimate bound is derived from a Lya-
punov analysis and the resulting design conditions are
based on expressions like (8). Thus, the usage of these
new approach could lead to less conservative design con-
ditions.

Future work should generalize the results for the non-
diagonalizable case, and it should formalize the nonlin-
ear analysis. The ideas which conduced to (23) are a
starting point in this direction.

As suggested by a reviewer, the problem presented can
be also studied using the infinite induced norm of an
equivalent system arriving to an exact bound. However,
the obtention of that norm requires numerical calcula-
tions –the goal here was to obtain a closed formula– and
it cannot be extended to nonlinear systems. Anyway, the
idea might effectively improve the estimation given by
(15) if practical and non conservative estimations of the
infinite norm of the system are provided.
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