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Abstract

This article studies the performance of Quantized State System (QSS)
algorithms in the simulation of Switched Mode Power Supplies (SMPS).
Under realistic modeling assumptions, these models result stiff and ex-
hibit frequent discontinuities making them difficult to simulate by classic
solvers. However, there are Linearly Implicit QSS (LIQSS) methods that
can efficiently handle these types of systems providing faster and more
accurate results. In order to corroborate these features, we first built the
models corresponding to the different topologies of SMPS, and we ana-
lyzed the resulting equation structures in order to establish if they can
be efficiently simulated by LIQSS algorithms. Then, we compared the
simulation performance of LIQSS and the classic solver DASSL, showing
that LIQSS results are from 3 to 200 times faster and noticeably more
accurate than DASSL.

Keywords: Hybrid Systems Simulation, Quantized State Systems, Switched
Mode Power Supplies.

1 Introduction

Switching mode power supplies (SMPS) are electronic devices that incorporate
switching regulators to convert electrical power efficiently. The output voltage of
these sources is regulated by the electronic switches duty cycle and the switching
components should work at high frequency to minimize the output ripple.

SMPSs are used in a wide area of applications where a regulated voltage
is required. They can be found inside personal computers, battery chargers,
vehicles, etc.

Simulation of SMPS is known to be a tough issue. On the one hand, due
to the high switching frequency, classic numerical integration methods become
inefficient. To simulate discontinuous models using methods based on time
discretization, the solver spends several computations at each simulation step
to determine if there are any changes in the model and, each time the model
changes, the simulation must be reinitialized. On the other hand, the usage
of realistic models of the discontinuous elements usually leads to stiff models.
Thus, implicit methods must be used with their additional computational cost.

In recent years, a new family of Ordinary Differential Equation (ODE)
solvers called Quantized State System (QSS) methods was developed [14, 11,
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13, 16, 15]. These algorithms, that replace the classic time discretization by the
quantization of the state variables, have shown some advantages:

• They have strong stability and error bound theoretical properties [14, 11,
6].

• They are very efficient to simulate ODE models with frequent disconti-
nuities [12]. Due to their dense output feature, their built-in root-solving
method is explicit and does not require any iteration to detect disconti-
nuities. Moreover, the simulation does not need to be reinitialized after
their occurrence. Consequently, detecting and handling a discontinuity
does not add more computational cost than that of a regular step.

• They are very efficient in the simulation of large scale sparse discontinuous
models [10, 15]. This is due to the fact that QSS methods intrinsically
track the system activity [17], performing calculations only where and
when changes occur.

• There are Linearly Implicit QSS methods (LIQSS) that can integrate stiff
systems with certain structure in a very efficient way, without performing
iterations or matrix inversions [15].

For these reasons, the QSS methods (and particularly LIQSS algorithms)
seem to be a good option to efficiently simulate SMPSs. Moreover, LIQSS
methods have shown important advantages over classic solvers on the simulation
of buck converters [15] and interleaved buck converters [8].

In this paper we analyze the performance and features of LIQSS methods in
the simulation of SMPS. Specifically,

• An exhaustive analysis of the different SMPS topologies is performed to
check if their structure is appropriate to be efficiently integrated with
LIQSS algorithms.

• It is shown that in most cases the topologies are adequate and, when
they are not, a simple change of variables can be applied to obtain an
appropriate structure.

• A comparative analysis of computational costs and simulation errors us-
ing LIQSS and the classic solver DASSL is performed for the different
SMPS topologies. We used DASSL because SMPS models are stiff and
discontinuous, conditions under which this solver offers the best perfor-
mance among other classic algorithms usually implemented in simulation
software tools.

• A study about the growth of the computational cost with the circuit size
is also performed on an interleaved buck topology.

The article is organized as follows: Section 2 provides the background con-
cepts that are used in the rest of the article. Then, Section 3 introduces the
topologies and models of SMPSs, analyzing also if they are appropriate for
LIQSS simulation. Then, Section 4 presents the simulation results for the dif-
ferent topologies. Finally, Section 5 concludes the article analyzing also future
lines of research.
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2 Background

This section provides the background required by the rest of the article. It gives
a brief description of the problems suffered by classic numerical integration
algorithms when dealing with discontinuous systems. Then, it presents the
family of QSS methods and the software tools that implement them, and finally
it provides a brief introduction to SMPS principles.

2.1 Hybrid System Simulation

Hybrid systems exhibit both continuous and discrete dynamic behavior. The in-
teraction between the continuous and discrete sub-models may produce sudden
changes (discontinuities) in the continuous parts that must be handled by the
numerical integration algorithms. These discontinuities are called events, and
two different cases can be distinguished according to the nature of their occur-
rence. The events that occur at a given time, independently of what happens
in the continuous part, are called time events. On the other hand, the events
triggered when some condition is reached by the continuous states are called
state events.

It is well known that integration along discontinuities may lead to disastrous
results on the global simulation solution because the theoretical assumptions
on which solvers are founded are not met. To avoid this, the events must
be detected and handled. When a discontinuity is detected, the simulation
time must be advanced until the exact time of its occurrence and then, after
processing the event, the simulation should be restarted in new situation [6].

Event detection is straightforward for time events, as it is known in advance
when they occur. However, state events require the usage of iterative routines
in order to find the time at which the event condition is met.

The whole process of event detection and handling obviously adds extra com-
putational cost to the simulation. In systems with frequent discontinuities, i.e.,
when events occur as fast as the system dynamics, the problem becomes criti-
cal, as the algorithms spend more time with the event detection and handling
routines than with the numerical integration itself.

2.2 Quantized State System Methods

Consider a time invariant ODE in its State Equation System (SES) representa-
tion:

ẋ = f(x(t),u(t)) (1)

where x(t) ∈ R
n is the state vector and u(t) ∈ R

m is an input vector, which is
a known piecewise constant function.

The first order Quantized State System (QSS1) method [14] analytically
solves an approximate ODE called Quantized State System that results from
replacing the state vector x(t) by its quantized version q(t).

ẋ(t) = f(q(t),u(t)) (2)

Each component of q(t) is related with the corresponding component of x(t)
by the following hysteric quantization function:
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qj(t) =

{

xj(t) if |qj(t
−)− xj(t)| = ∆Qj

qj(t
−) otherwise

This is, qj(t) only changes when it differs from xj(t) by a magnitude ∆Qj

defined as the quantum. After each change in the quantized variable, it results
that qj(t) = xj(t).

Since the quantized state trajectories qj(t) are piecewise constant then, the
state derivatives ẋj(t) also follow piecewise constant trajectories and, conse-
quently, the states xj(t) follow piecewise linear trajectories. Fig.1 shows typical
QSS1 trajectories.

Figure 1: State and Quantized Trajectories in QSS1 Method

Due to the particular form of the trajectories, the numerical solution of
Eq.(2) is straightforward and can be easily translated into a simple simulation
algorithm.

For j = 1, · · · , n, let tj denote the next time at which |qj − xj | = ∆Qj .
Then, the QSS1 simulation algorithm works as follows:

1. Advance the simulation time t to the minimum tj .

2. Recompute xj(t) = xj(t
−

j )+ ẋj(t
−

j ) ·(t− t−j ), where t
−

j was the last update

time of xj and ẋj(t
−

j ) was computed at time t−j from Eq.(2).

3. Take qj = xj and recompute tj (the next time at which |qj − xj | = ∆Qj).

4. For all i such that ẋi explicitly depends on qj , update xi(t) = xi(t
−

i ) +
ẋi(t

−

i ) ·(t−t−i ), recompute ẋi(t) and recalculate ti (the next time at which
|qi − xi| = ∆Qi).

5. Go back to step 1.

Notice that the instant of time at which the piecewise linear state trajectory
xj(t) crosses a given threshold can be computed without iterations. Thus, state
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events can be straightforwardly detected. Moreover, when an event occurs, it
will eventually change some state derivatives in the same way a change in a
quantized variable does during a normal step. That way, the simulation does
not need to be restarted.

In conclusion, the detection and handling of a discontinuity does not take
more computational effort that that of a single step. Thus, QSS1 method is
very efficient to simulate discontinuous systems [12].

In spite of this advantage and the fact that it has some nice stability and
error bound properties [6, 18], QSS1 performs only a first order approximation
and it cannot obtain accurate result without significantly increasing the number
of steps.

This accuracy limitation was improved with the definition of the second and
third-order accurate QSS methods called QSS2 [11] and QSS3 [13], respectively.

QSS2 and QSS3 have the same definition of QSS1 (2) except that the com-
ponents of q(t) are calculated to follow piecewise linear and piecewise parabolic
trajectories, respectively. Fig.2 shows a typical evolutions of state and quantized
state in QSS2.

Figure 2: State and Quantized State Trajectories in QSS2

As before, the analytical solution of Eq.(2) for QSS2 and QSS3 can be easily
computed and the simulation algorithm is almost identical to that of QSS1. In
consequence, QSS2 and QSS3 also share the advantages to simulate discontin-
uous systems.

In spite of these advantages, QSS1, QSS2 and QSS3 methods are very ineffi-
cient to simulate stiff systems. In presence of simultaneous slow and fast dynam-
ics these methods introduce spurious high frequency oscillations that provoke a
large number of steps with its consequent computational cost.

To overcome this problem, the family of QSS methods was completed with
a set of algorithms called Linearly Implicit QSS (LIQSS) which are appropriate
to simulate some stiff systems [15].

LIQSS methods combine the principles of QSS methods with those of linearly
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implicit algorithms [6]. There are LIQSS algorithms that perform first, second
and third-order accurate approximations named LIQSS1, LIQSS2, and LIQSS3,
respectively.

The main idea behind LIQSS methods is inspired in classic implicit methods
that evaluate the state derivatives at future instants of time. In classic meth-
ods, these evaluations require iterations and/or matrix inversions to solve the
resulting implicit equations. However, taking into account that QSS methods
know the future value of the quantized state (it is qj(t)±∆Qj)), the implemen-
tation of LIQSS algorithms is explicit and does not require iterations or matrix
inversions.

LIQSS methods share with QSS methods the definition of Eq.(2), but the
quantization functions that relate qj with xj are more involved. The resulting
simulation algorithm is also similar to that of QSS methods and they share the
advantages in the simulation of discontinuous systems.

In spite of being explicit algorithms, LIQSS methods are able to integrate
many stiff systems. Anyway, in order to work efficiently, they require the stiff-
ness to be caused by large entries in the main diagonal of the Jacobian matrix.

2.3 Implementation of QSS Methods

The easiest way of implementing QSS methods is by building an equivalent
DEVS model, where the events represent changes in the quantized variables.
Based on this idea, the whole family of QSS methods were implemented in
PowerDEVS [5], a DEVS–based simulation platform specially designed for and
adapted to simulating hybrid systems based on QSS methods. In addition, the
explicit QSS methods of orders 1 to 3 were also implemented in a DEVS library
of Modelica [4] and implementations of the first–order QSS1 method can also
be found in CD++ [7] and VLE [19].

DEVS–based implementations of QSS methods are simple but they are not
efficient.

Recently, the complete family of QSS methods was implemented in a stand–

alone QSS solver [8] that improves DEVS–based simulation times in more than
one order the magnitude.

The stand–alone QSS solver requires that the models are described in a
subset of the Modelica modeling language [20], called µ-Modelica [8].

2.4 Switched Mode Power Supplies

Switched Mode Power Supplies [3] are electronic devices that convert the avail-
able DC input voltage to a different DC or AC output voltage by switching com-
mutation components at high frequency. These components are implemented in
circuits by transistors or thyristors operating in cutoff and saturation states.

Due to their high efficiency, SMPSs are widely employed in a variety of
applications, including power supplies for personal computers, battery chargers,
telecommunications equipment, DC motor drives, etc.

The majority of the SMPS topologies used in today’s power converters are
all derived from the following three non-isolated circuits:

• Buck converter: which reduces the input voltage (Vout < Vin).

• Boost converter: which increases the input voltage (Vout > Vin).
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• Buck–Boost converter: which can increase or decrease the input voltage.
The Ćuk circuit is a variant of this converter.

The output voltage in these topologies is regulated by controlling the rela-
tionship between the ammount of time the switches are in ON state and OFF

state, i.e., by controlling the duty cycle.
A simplified circuit scheme for the buck converter is illustrated in Fig.3.

1

2

Figure 3: Ideal schematic of a Buck Converter

The input voltage source Vs can be found on the left of the circuit. The
input source is connected to the switching stage, which generates a high fre-
quency square signal Vsw with a mean value proportional to the duty cycle.
This frequency and duty cycle are determined by the commutation times of the
switch.

The next stage is an LC low pass filter that produces an output voltage Vo

that preserves the mean value of Vsw but reduces the high frequency compo-
nents. That way, the voltage at the load has a continuous value with small
undesired high frequency components called ripple.

In order to reduce the ripple, the switching frequency should be very large
in comparison to the dynamics of the low pass filter.

In real applications, the ideal switch depicted in Fig.3 is implemented by real
components like transistors and diodes. Thus, some limitations appear and, for
instance, the current on the inductance L cannot become negative since it is
blocked by a diode. In such case, the circuit is said to operate in discontinuous

mode.
The remaining topologies (Boost, Buck–Boost, etc) work under similar prin-

ciples.
A drawback of these topologies is that they require working at very high

frequencies in order to obtain a low ripple. To overcome this problem, there are
interleaved versions of the SMPS.

Interleaved converters are the result of a parallel connection of switching
converters [2]. They offer several advantages over single power stage converters:
a lower current ripple, faster transient response to load changes and improved
power handling capabilities. Thus, they are widely used in several applications
requiring a high quality input voltage, including power sources of personal com-
puters, switching audio amplifiers, etc.
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3 Models for Switched Mode Power Supplies

In this section, we develop simulation models for different topologies of SMPSs.
We first introduce mathematical models for the commutation components
(switches and diodes) and then we derive the circuit equations and translate
them into µ–Modelica descriptions. Finally, we analyze the structure of the
models in order to verify that the resulting stiff systems are suitable to be sim-
ulated by LIQSS methods.

3.1 Modeling Switching Components of SMPS

SMPSs commutation components can be represented following two basic ap-
proaches:

• They can be represented by commuting from ideal short–circuits to ideal
open–circuits according to their ON or OFF state. This approach leads to
variable structure models and different sets of state equations are obtained
for the different situations. If a circuit has N commutation components,
it can be configured in 2N combinations according to the switches states
and the model must be described by 2N sets of equations.

In order to simulate these type of models, the simulation tools must be
able to handle variable structure systems.

Besides these disadvantages, the ideal models of switching components
lack of realism and may hide some features of the circuit behavior.

Anyway, this approach is used by some circuit simulation software tools
like PLECS [1], and it has the advantage of avoiding stiffness which allow
the usage of fast explicit numerical algorithms.

• The second approach represents switching components as resistors with
low or high value according to their ON or OFF state. In this way, the
system equations are always the same and the only thing that changes
after commutations are the values of certain parameters.

Due to its simplicity and realism, this is the approach followed by most
simulation tools like PSPICE [21] and its variants and those based on
Modelica [9].

However, this approach usually leads to stiff systems and it requires the
usage of implicit stiff–stable numerical solvers.

In this article we focus on the second approach, as it is more realistic, it is
used by most simulation tools and it offers more difficulties from the numerical
integration point of view.

SMPS circuits have two basic switching components: controlled switches
(usually implemented by transistors or thyristors) and diodes. Their simplified
models are developed below.

3.1.1 Controlled switch model

A controlled key is an element that acts like an open circuit or short circuit
according to the state of a control signal. As it was discussed above, this element
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can be modeled as a resistor Rs with a high or low value according to this control
signal. This behavior is represented by the following equation.

Rs =

{

ROn if control = 1

ROff if control = 0
(3)

where ROn and ROff are very low and very large resistance values, respectively.
This behavior can be easily represented in terms of the µ–Modelica language.

It corresponds to two event handlers that are triggered when the control signal
changes.

when control > 0.5 then

Rs := ROn;

end when;

when control < 0.5 then

Rs := ROff;

end when;

3.1.2 Diode model

Figure 4 shows the current–voltage characteristic of a real diode on the left side
and a piecewise linear approximation on the right side. The latter is the result
of representing the OFF state by a large resistance and the ON state by a small
resistance.

Figure 4: Real and approximate diode characteristics

According to this figure, the value of the diode resistance RD obeys the
following law

Rs =

{

ROn if uD > 0

ROff if uD ≤ 0

which leads to the following µ–Modelica representation

when uD > 0 then

RD := ROn;

end when;

when uD < 0 then

RD := ROff;

end when;

However, the detection of the crossing condition uD = 0 when the diode is
in ON state is very difficult due to numerical issues. The reason is that the
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voltage uD is very small when RD is very small which leads to large errors in
the detection of the condition uD = 0. Thus, when the diode is in ON state the
event detection is performed using the current iD, which leads to the following
model:

when uD > 0 then

RD := ROn;

end when;

when iD < 0 then

RD := ROff;

end when;

3.2 Models for the Different Topologies

As we mentioned above, there are three basic topologies of SMPS. We shall
obtain below their equations and µ–Modelica representations using the switching
models obtained before.

3.2.1 Buck Converter

As it was described before, the Buck circuit is a switched converter that gener-
ates an output voltage lower than the input voltage.

The basic scheme of this converter was shown in Figure 3. The two point
switch is implemented in real application by a transistor (controlled switch) and
a diode as shown in Figure 5.

Figure 5: Buck converter circuit

Representing the switch and diode by resistors Rs and RD as discussed
above, the following space state representation of the circuit can be obtained:

diL
dt

=
−iDRD − uC

L
duC

dt
=

iL − uC/R

C

(4)

where

iD =
iLRs − U

Rs +RD

(5)

Joining Eqs.(4)–(5), the following µ–Modelica code represents the continuous
equations of the model:
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equation

der(iL) = (-iD*RD-uC)/L; //ODE Equations

der(uC) = (iL-uC/Rl)/C;

iD=(iL*Rs-U)/(Rs+RD); //Diode equations

uD=iD*RD;

The µ–Modelica representation of the switch and diode commutation laws
completes the model as follows

algorithm

when time > nextT then //Switch ON time event

lastT:=nextT;

nextT:=nextT+T;

Rs := ROn; //control=1

end when;

when time - lastT-DC*T>0 then //Switch OFF time event

Rs := ROff; //control=0

end when;

when iD < 0 then //Diode OFF state event

RD := ROff;

end when;

when uD>0 then //Diode ON state event

RD := ROn;

end when;

In this last model, we included the generation of the control signal for the
controlled switch. This control signal takes the value 1 (ON state) every T
units of time and switches to 0 after DCT units of time, where DC is the duty
cycle mentioned before.

The usage of this control signal corresponds to an open loop output voltage
regulation. In many applications, a closed loop strategy is preferred, where the
control signal is computed by comparing a reference with the output voltage in
order to automatically adjust the duty cycle.

The usage of open or closed loop strategies does not introduce any significant
difference from a numerical point of view, so we work here with the simpler open
loop scheme.

3.2.2 Boost Converter

The Boost circuit, shown in Figure 6, is a switched converter that generates an
output voltage higher than the input voltage.

Proceeding in the same way than with the Buck converter, the following
state equations can be obtained:

diL
dt

=
−RsiL +RsiD + U

L
duC

dt
=

iD
C

−
uC

RLC

(6)
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Figure 6: Boost converter circuit

where

iD =
RsiL − uC

RD +Rs

(7)

These equations can be translated into the following µ–Modelica code

equation

der(iL) = (U-Rs*(iL-iD))/L; //ODE Equations

der(uC) = (iD - uC/Rl)/C;

iD=(Rs*iL-uC)/(RD+Rs); //Diode equation

uD=iD*RD;

The µ–Modelica representation of the switch and diode commutation laws is
identical to that of the Buck converter.

3.2.3 Buck-Boost Converter

Figure 7 shows the Buck-Boost circuit. In this converter, the output voltage
magnitude can be higher or lower than the input voltage according to the duty
cycle. The output voltage polarity is always opposite to that of the input.

Figure 7: Buck-Boost converter circuit.

Proceedings as before, the following state equations can be derived:

diL
dt

=
−uC −RDiD

L
duC

dt
=

iD
C

−
uC

RLC

(8)

where

iD =
RsiL − uC − U

RD +Rs

(9)

Then, the continuous equations of the model can be written in µ–Modelica
as follows:
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equation

der(iL) = (-uC-iD*RD)/L; //ODE Equations

der(uC) = (iD - uC/Rl)/C;

iD=(Rs*iL-uC-U)/(RD+Rs); //Diode equation

uD=iD*RD;

The µ–Modelica representation of the switch and diode commutation laws is
identical to those of the Buck and Boost converters.

3.2.4 Ćuk Converter

The Ćuk circuit is a variant of the Buck–Boost converter that also generates
an output voltage magnitude that can be greater than or less than the input
voltage magnitude but with opposed polarity. The basic Ćuk converter circuit
is shown in Figure 8.

Figure 8: Ćuk converter circuit.

The state equations for this converter are:

diL1

dt
=

U − uC1
− RDiD

L1

duC1

dt
=

iD − iL2

C1

diL2

dt
=

−uC2
−RDiD
L2

duC2

dt
=

RLiL2
− uC2

RLC2

(10)

where

iD =
Rs(iL2

+ iL1
)− uC1

RD +Rs

(11)

The corresponding µ–Modelica code for these equations is:

equation

der(iL1) = (U-uC1-iD*RD)/L1; //ODE Equations

der(uC1) = (iD - iL2)/C1;

der(iL2) = (-uC2-iD*RD)/L2;

der(uC2) = (iL2 - uC2/Rl)/C2;

iD=(Rs*(iL2+iL1)-uC1)/(RD+Rs); //Diode Equations

uD=iD*RD;

The µ–Modelica representation of the switching laws is identical to that of the
previous converters.
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3.3 Interleaved Converters

Figure 9 shows the circuit corresponding to a four–stage Buck interleaved con-
verter. In this circuit, each period is divided by four. During each sub-period
only one stage is in charge of switching ON and OFF in order to feed the load
while the other stages remain in OFF state. That way, the switching frequency
off the whole circuit is four times faster than that of the individual stages.

Figure 9: Four–stage Buck interleaved converters

The state equations for a N–stage Buck circuit can be written as follows

diLj

dt
=

−iDj
RDj

− uC

L
for j = 1 · · · , N

duC

dt
=

∑N

j=1 iLj

C
−

uC

RLC

(12)

with

iDj
=

iLj
Rsj − U

Rsj +RDj

(13)

which can be written in µ–Modelica as

equation

for i in 1:N loop

der(iL[i]) = (-iD[i]*RD[i]-uC)/L;

iD[i]=(iL[i]*Rs[i]-U)/(Rs[i]+RD[i]);

uD[i]=iD[i]*RD[i];

end

der(uC) = (sum(iL)-uC/Rl)/C;

The µ–Modelica representation of the switches and diodes commutation laws
completes the model as follows
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algorithm

when time > nextT then //Start of a new period

lastT:=nextT;

nextT:=nextT+T;

end when;

for i in 1:N loop

when time-lastT-T*(i-1)/N-T/100>0 then

Rs[i] := ROn; //Switch ON time event

end when;

end for;

for i in 1:N loop

when time - lastT-T*(i-1)/N-DC*T/N-T/100>0 then

Rs[i] := ROff; //Switch OFF time event

end when;

end for;

for i in 1:N loop

when iD[i]<0 then

RD[i] := ROff; //Diode OFF state event

end when;

end for;

for i in 1:N loop

when uD[i]>0 then

RD[i] := ROn; //Diode ON state event

end when;

end for;

3.4 Stiffness analysis

Stiffness is related to the simultaneous presence of fast and slow dynamics in a
system. In linear systems, this feature can be analyzed by observing the real
part of the eigenvalues λi of the Jacobian matrix J , ∂f/∂x.

Although the converters analyzed here are nonlinear systems, their models
between switching times are lineal. Moreover, taking into account that the
switches and diodes are modeled as resistors with changing parameters, the
Jacobian matrix of each converter has the same expression independently on
the condition on the switches.

The fact that switching components are modeled as very large or small re-
sistors introduces large terms in the system Jacobian matrices, which in turn
result in the presence of some very large eigenvalues.

When these large terms are only located in the main diagonal of the Ja-
cobian matrix, the LIQSS methods can efficiently integrate the resulting stiff
model. Otherwise, they can introduce spurious oscillations which add a signifi-
cant computational load.

Based on these observations, we analyze now the Jacobian matrices resulting
from the different topologies in order to determine which models are suitable
for the integration with LIQSS algorithms.
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3.4.1 Buck Converter

Replacing iD in Eq.(4) by the expression of Eq.(5), the following Jacobian matrix
is obtained.

JBuck =

[

−RsRD

L(Rs+RD)
−1
L

1
C

−1
RLC

]

(14)

In this case, the switch and diode resistances Rs and RD only appear on the
main diagonal. Thus, when they take a large value (ROFF) they can only cause
the appearance of a large value on the main diagonal.

Hence, if stiffness appears as a cause of the switching components, it will
be due to a large term in the main diagonal and it will be properly handled by
LIQSS methods.

3.4.2 Boost Converter

Proceeding as before, from Eqs.(6)–(7), the Jacobian matrix results

JBoost =

[

−RsRD

(RD+Rs)L
−Rs

(RD+Rs)L
Rs

C(RD+Rs)
− RL+RD+Rs

C(RD+Rs)RL

]

(15)

Here, Rs and RD appear also outside the main diagonal. However, in these
matrix entries, the switch resistances only appear in the expression

Rs

Rs + RD

(16)

which is always less than 1. Thus, terms of the order of magnitude of ROFF or
1/RON cannot appear outside the main diagonal.

Consequently, the switch resistances cannot introduce stiffness that is not
well handled by LIQSS methods.

3.4.3 Buck–Boost Converter

Using Eqs.(8)–(9) we arrive to the same Jacobian matrix than that of the Boost
converter given by Eq.(15). Thus, the Buck–Boost converter can also be effi-
ciently integrated using LIQSS algorithms.

3.4.4 Ćuk Converter

Proceedings as before, from Eqs.(10)–(11) the following Jacobian matrix is ob-
tained:

JĆuk =











−RsRD

(RD+Rs)L1
−Rs

(RD+Rs)L1
−RsRD

(RD+Rs)L1 0
Rs

(RD+Rs)C1

−1
(RD+Rs)C1

−RD

(RD+Rs)C1

0
−RsRD

L2(Rs+RD)
RD

L2(Rs+RD)
−RsRD

L2(Rs+RD)
−1
L2

0 0 1
C2

−1
RLC2











(17)

Here, we have several terms outside the main diagonal that depends on the
switch resistances. In some of them, these resistance appear within the expres-
sion of Eq.(16). In others we have

RD

Rs + RD
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which can be analyzed in a similar way.
However, there are two entries outside the main diagonal that have the

expression
RsRD

Rs + RD

which, when Rs = RD = ROFF results in a very large value (ROFF/2).
Unfortunately, LIQSS methods do not ensure that they work efficiently in

presence of stiffness with large terms outside the main diagonal. Thus, the
algorithms may introduce spurious oscillations when simulating this circuit.

Anyway, a simple change of variables can be introduced to overcome this
problem. By defining

i12 ,
L1 · iL1

− L2 · iL2

L2

and removing iL1
from Eq.(10)–(11), these equations become

di12
dt

=
U + uC2

− uC1

L2

duC1

dt
=

iD − iL2

C1

diL2

dt
=

−uC2
− iDRD

L2

duC2

dt
=

iL2
− uC2

/RL

L2

(18)

where

iL1
=

L2i12 + L2iL2

L1

iD =
Rs(iL2

+ iL1
)− uC1

RD +Rs

(19)

Then, the new Jacobian matrix is

JĆuk2
=











0 −1
L2

0 1
L2

L2Rs

L1C1(RD+Rs)
−1

C1(RD+Rs)
RsL2−RDL1

L1C1(RD+Rs)
0

−RDRs

L1(RD+Rs)
RD

L2(RD+Rs)
−RDRs(L1+L2)
L1L2(RD+Rs)

−1
L2

0 0 1
C2

−1
C2RL











(20)

which still has one term that can take values of the order of ROFF outside the
main diagonal. However, in presence large terms restricted to the lower or upper
triangular sub–matrix, LIQSS methods can still integrate efficiently.

This fact will be corroborated later with the simulation results.
The µ–Modelica code for the new set of equations is the following:

equation

iL1=(L2*i12+L2*iL2)/L1;

iD=(Rs*(iL2+iL1)-uC1)/(Rd+Rs);

der(uC1) = (iD - iL2)/C1;

der(i12) = ( U+uC2-uC1)/L2;

der(uC2) = (iL2 - uC2/Rl)/C2;

der(iL2) = (-uC2-iD*Rd)/L2;

17



3.4.5 Interleaved Buck Converter

From Eqs.(12)–(13), the following Jacobian matrix is obtained for a N–stage
Interleaved Buck:

JInt =

























−RD1
Rs1

L(RD1
+Rs1

) 0 0 · · · 0 −1
L

0
−RD2

Rs2

L(RD2
+Rs2

) 0 · · · 0 −1
L

0 0
−RD3

Rs3

L(RD3
+Rs3

) · · · 0 −1
L

...
...

...
. . .

...
...

0 0 0 · · ·
−RDN

RsN

L(RDN
+RsN

)
−1
L

1
C

1
C

1
C

· · · 1
C

−1
RLC

























(21)
It can be seen that the switch and diode resistances Rs and RD only appear

on the main diagonal, and we arrive to the same conclusions than in the Buck
converter.

Notice also that the Jacobian is a sparse matrix.

4 Simulation Results

This section shows the simulation results, comparing the performance of the
LIQSS methods with the classic solver DASSL in the simulation of the five
SMPS models presented before.

In order to perform this comparison, we run a set of experiments according
to the conditions described below:

• We simulated all sources under two different error tolerance settings:
rel.tol. = abs.tol = 10−3 and rel.tol. = abs.tol = 10−5.

• All the simulations were performed until a final time tf = 0.01sec..

• The simulations were performed on an Intel i7-3770@3.40GHz PC under
Ubuntu OS.

• LIQSS results were obtained with the QSS stand alone solver described
above.

• DASSL results were obtained with DASSRT code, using an interface pro-
vided by the QSS stand alone solver, so the models simulated by DASSL
and LIQSS were exactly the same.

• The systems were also simulated with OpenModelica and Dymola imple-
mentations of DASSL. However, the direct use of DASSRT reported faster
results than those of the mentioned simulation tools. Thus, only DASSRT
results are reported.

• In all cases, we measured the CPU time, the number of scalar function
evaluations, the number of Jacobian computations and the relative error,
computed as:

err =

√

∑

(uC [k]− uCREF
[k])2

∑

uCREF
[k]2

(22)
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where the reference solution uCREF
[k] was obtained using DASSL with a

very small error tolerance (10−9).

• The CPU time was measured as the mean value of 10 simulation runs.

4.1 Buck Converter

This SMPS, whose model is described in Section 3.2.1 was simulated with the
following set of parameters:

• Input source voltage: Vs = 24V ,

• Output capacity: C = 10−4F ,

• Inductance: L = 10−4H ,

• Load Resistance: RL = 10Ω,

• Switch and diode On–state resistance: ROn = 10−5Ω,

• Switch and diode Off–state resistance: ROff = 105Ω,

• Switch control signal period: T = 10−4sec.,

• Switch control signal duty–cycle: DC = 0.5.

The transient part of the results is shown in Figure 10. As it is expected
for this topology, the output voltage uC(t) has a mean value lower than the
input voltage Vs and it exhibits a small ripple at the switching frequency. The
discontinuous behavior of this SMPS can be clearly observed in the current
trajectory iL(t).
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Figure 10: Transient Trajectories for the Buck converter

Table 1 compares the CPU time, the number of evaluations and the errors
obtained with the different solvers.
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Integration Relative Jacobian Function fi CPU
Method Error Eval. Evaluations [mseg]

D
A
S
S
L err.tol=1 · 10−3 2.28 · 10−3 3079 26670 6.58589

err.tol.=1 · 10−5 9.63 · 10−6 4474 44772 11.6278

L
IQ

S
S
2 ∆Qi = 1 · 10−3 1.31 · 10−3 − 13286 2.26316

∆Qi = 1 · 10−5 1.06 · 10−5 − 117198 11.3644

L
IQ

S
S
3 ∆Qi = 1 · 10−3 1.09 · 10−3 − 11355 3.43807

∆Qi = 1 · 10−5 1.04 · 10−5 − 35283 11.2723

Table 1: Buck converter results comparison.

It can be seen that all the solvers meet the error tolerance requirements.
Regarding simulation time, setting a small relative error tolerance (10−5), the
three algorithms require similar CPU times even when the number of function
evaluations performed by LIQSS2 was approximately 3 times the corresponding
to LIQSS3 and DASSL. This fact can be understood taking into account that
discontinuity detection in LIQSS2 is cheaper than in LIQSS3 and DASSL (to
detect a discontinuity LIQSS2 only solves a scalar linear equation) and that
LIQSS2 does not require Jacobian computations. Also, LIQSS2 continuous
steps are internally cheaper than LIQSS3 and DASSL steps.

For a larger tolerance (10−3), which is the usual choice for these types of
circuits, the simulation using LIQSS2 was 3 times faster than using DASSL and
1.5 times faster than using LIQSS3.

This fact is not surprising since lower order methods are usually more effi-
cient for simulating systems under low accuracy requirements.

4.2 Boost Converter

For this circuit, whose model was presented in Section 3.2.2, we used the same set
of parameters than for the Buck converter. Table 2 compares the performance
exhibited by the different solvers.

The results are very similar to those of the Buck converter and the same
explanations can be applied. However, for a tolerance of 10−5 DASSL exhibits
a sensibly larger error than the tolerance and than LIQSS methods.

In LIQSS methods discontinuities are exactly detected, while in DASSL they
can have certain error due to the iteration process which increases the global
simulation error.

4.3 Buck-Boost Converter

For this circuit, described in Section 3.2.3, we used the same set of parameters
than for the Buck converter except for the duty cycle, which is now DC = 0.25.
The performance comparison for the different solvers is reported in Table 3.

Regarding CPU times and function evaluations, the results are similar to
those of the Buck and the Boost converters. However, when it comes to errors,
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Integration Relative Jacobian Function fi CPU
Method Error Eval. Evaluations [mseg]

D
A
S
S
L err.tol=1 · 10−3 1.30 · 10−3 2215 18778 4.94262

err.tol.=1 · 10−5 5.34 · 10−5 3192 28834 7.2436

L
IQ

S
S
2 ∆Qi = 1 · 10−3 1.52 · 10−3 − 10476 1.54468

∆Qi = 1 · 10−5 1.96 · 10−5 − 70628 8.25393

L
IQ

S
S
3 ∆Qi = 1 · 10−3 1.11 · 10−3 − 9648 4.36562

∆Qi = 1 · 10−5 1.26 · 10−5 − 21420 8.18659

Table 2: Boost converter results comparison.

Integration Relative Jacobian Function fi CPU
Method Error Eval. Evaluations [mseg]

D
A
S
S
L err.tol=1 · 10−3 5.12 · 10−3 3689 29240 6.88186

err.tol.=1 · 10−5 3.04 · 10−4 5138 46532 11.8803

L
IQ

S
S
2 ∆Qi = 1 · 10−3 1.39 · 10−3 − 14632 2.74414

∆Qi = 1 · 10−5 1.47 · 10−5 − 84476 10.1215

L
IQ

S
S
3 ∆Qi = 1 · 10−3 5.23 · 10−4 − 12618 5.28576

∆Qi = 1 · 10−5 1.34 · 10−5 − 27912 8.23346

Table 3: Buck-Boost converter results comparison.

now DASSL is even worse than in the Boost case. The relative error is between
5 and 30 times larger than the tolerance while LIQSS methods meet the error
requirements as expected.

4.4 Ćuk Converter

For the Ćuk converter, using the model described in Section 3.2.4 with the
change of variables described in Section 3.4.4, we repeated the set of parameters
of the Buck–Boost converter, taking also C1 = C2 = 10−4F and L1 = L2 =
10−4H .

Table 4 shows the performance comparison for the different algorithms.
Regarding simulation times, for a small error tolerance (10−5) DASSL is

now faster than both LIQSS methods while for the larger tolerance (10−3) the
CPU times are similar for the three solvers. However, DASSL errors are almost
20 times larger than the error tolerance while LIQSS methods are clearly more
accurate.
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Integration Relative Jacobian Function fi CPU
Method Error Eval. Evaluations [mseg]

D
A
S
S
L err.tol=1 · 10−3 1.75 · 10−2 2858 77016 10.7689

err.tol.=1 · 10−5 1.97 · 10−4 4270 123200 17.3262

L
IQ

S
S
2 ∆Qi = 1 · 10−3 7.40 · 10−3 − 73082 9.6474

∆Qi = 1 · 10−5 8.71 · 10−5 − 448310 30.3638

L
IQ

S
S
3 ∆Qi = 1 · 10−3 6.07 · 10−3 − 53547 14.0629

∆Qi = 1 · 10−5 5.02 · 10−5 − 97509 23.9215

Table 4: Cuk converter simulation results comparison.

4.5 Interleaved Buck Converter

For this circuit, described in Section 3.3, we used the same set of parameters
than for the Buck converter taking also L1 = L2 = · · · = LN = 10−4H .

Figure 11 shows the output voltage uC(t) and the inductance currents iLk
(t)

(k = 1 · · · 4) for a 4-stage Interleaved Buck model. Comparing these trajectories
to those of the Buck converter in Fig.10, it can be seen that, even when the
control signal of both models was the same, the ripple amplitude at the output
voltage is sensibly smaller in the interleaved model. The current trajectories
show the interleaved behavior of this circuit.
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Figure 11: 4–Stage Interleaved Buck Converter Results

The performance comparison for the different solvers is reported in Table 5.
Now, LIQSS methods were faster than DASSL in all cases, showing even

more advantages than those observed in the Buck, Boost and Buck–Boost con-
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Integration Relative Jacobian Function fi CPU
Method Error Eval. Evaluations [mseg]

D
A
S
S
L err.tol=1 · 10−3 2.50 · 10−2 12538 435224 29.7604

err.tol.=1 · 10−5 1.40 · 10−2 16433 620754 42.1447

L
IQ

S
S
2 ∆Qi = 1 · 10−3 1.26 · 10−3 − 61870 8.82444

∆Qi = 1 · 10−5 1.62 · 10−5 − 463170 35.0696

L
IQ

S
S
3 ∆Qi = 1 · 10−3 8.04 · 10−4 − 67425 17.0736

∆Qi = 1 · 10−5 9.89 · 10−6 − 122958 25.9182

Table 5: 4–Stage Interleaved Buck converter results comparison.

verters.
As always, LIQSS methods meet the error tolerance requirement in all cases.

However, now DASSL exhibits unacceptable errors. They are 25 times larger
than the tolerance of 10−3 and 14, 000 times larger than the tolerance of 10−5.
Thus, the last results are in fact invalid for comparison purposes.

The reason for these large errors is that each switch is in On state for a very
short time. Thus, a small error in the discontinuity detection may result in a
large error on the output voltage.

This model is also sparse as it can be observed in its Jacobian matrix of
Eq.(21). Thus, LIQSS methods have the additional advantage of its efficient
sparsity exploitation which is reflected in a sensibly smaller number of function
evaluations with respect to DASSL.

In order to verify this fact, we also simulated the model varying the size from
4 to 32 stages. In each of these experiments, we set the tolerance of each solver
so that the measured error results the same. That way, we compare the CPU
time required by each solver to simulate the system obtaining identical errors.

The CPU time taken by each solver to simulate a N–stage interleaved Buck
Converter is depicted in Figure 12 (for an error of 10−3) and Figure 13 (for an
error of 10−5).

Figure 12 shows that, for simulating the system with a relative error of 10−3,
LIQSS2 shows the best performance, followed by LIQSS3 and then DASSL.
LIQSS2 is 3 times faster than DASSL for 4 stages and almost 200 times faster
than DASSL for 32 stages.

The rapid growth of the CPU time in DASSL can be easily explained. Firstly,
the rate of occurrence of discontinuities grows linearly with the number of stages
and thus, the maximum step size is reduced accordingly. Secondly, the dimen-
sion of the ODE growth linearly with the number of stages and thus each full
function evaluation performed by DASSL requires more calculations. Conse-
quently, with smaller steps and a larger number of computations per step, the
computational cost grows about quadratically with the number of stages.

However, in LIQSS methods, each step or discontinuity only provokes local
calculations resulting in an almost linear growth of the computational cost with
respect to the number of stages.
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Figure 12: Simulation Time comparison (err=1 · 10−3)

For the error of 10−5 the results are similar, except that now LIQSS3 is faster
than LIQSS2 when there are few stages. For this accuracy settings, LIQSS3
can perform larger steps than LIQSS2 and it sensibly reduces the number of
function evaluations. However, when the number of stages grows, discontinuities
are so frequent that those larger steps are no longer possible and thus LIQSS2
outperforms LIQSS3.

Anyway, both LIQSS methods are significantly faster than DASSL for a large
number of stages.
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5 Conclusions

In this article we analyzed the performance of the LIQSS algorithms in the
simulation of SMPS comparing results with those obtained by the classic solver
DASSL.

From the analysis performed we conclude that the second order accurate
LIQSS2 method results about 3 times faster than DASSL for a standard relative
error tolerance of 10−3 in single stage circuits. For obtaining more accurate
results (relative error tolerance of 10−5), LIQSS2, LIQSS3 and DASSL show
similar CPU times. However, in all cases LIQSS methods meet the tolerance
settings while DASSL errors may result up to 20 times larger. Thus LIQSS
results are not only faster but also more robust.

The efficient and exact discontinuity detection and handling and the fact
that LIQSS methods do not need to compute and invert Jacobian matrices to
integrate stiff systems explain these advantages.

The analysis of the interleaved buck converter allows us to conclude that
both advantages (speed and error) become even more noticeable as the size of
the circuit grows. On a 32–stage interleaved converter, LIQSS2 is about 200
times faster than DASSL for obtaining results with similar accuracy.

Here, the intrinsic efficient sparsity exploitation of QSS methods provides
an additional advantage to those mentioned for the single stage circuits.

In spite of these advantages, we also observed some drawbacks in LIQSS
methods. The most important limitation is that LIQSS require that stiffness is
due to the presence of large entries on the main diagonal (without large entries
at both sides of the main diagonal). This problem appeared in the Ćuk circuit
but it was solved by introducing a simple change of variables.

Another limitation is related to the accuracy order. So far, LIQSS methods
were implemented up to order 3. Thus, when the error tolerance is too small, the
methods require too many steps. However, in the simulation of circuits where
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the parameter uncertainties are usually large, asking for a relative tolerance
lower than 10−3 does not make much sense.

Regarding future lines of research, we are currently working on the following
issues:

• Analyze the performance under different modeling hypothesis (ideal diodes
and switches or even more realistic models with presence of parasitic in-
ductances and capacitances).

• Analyze the behavior of the SMPS in closed loop and with realistic loads.

• Automatize the variable change procedure to obtain a system structure
adequate for LIQSS.

• Create tools to automatically translate circuit topologies into the set of
equations in µ–Modelica required by the QSS Stand–Alone Solver so that
the LIQSS algorithms can be easily available for end–users of circuit sim-
ulation tools.
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