
List of changes

Replaced: statements . 4
Replaced: statement . 4
Added: Change k index for j in a so . 5
Deleted: as this . 7
Replaced: partial derivatives . 9
Replaced: vertex . 12
Replaced: by extending features of . 16

1

Compact Sparse Symbolic Jacobian Computation in Large Systems of
ODEs.

Ernesto Kofmana,b , Joaqúın Fernándezb∗, Denise Marzoratia∗

a FCEIA-UNR, Argentina
b CIFASIS-CONICET, Argentina

Abstract

This work introduces a novel algorithm that automatically produces computer code for the calculation of
sparse symbolical Jacobian matrices. More precisely, given the code for computing a function f depending
on a set of state (independent) variables x, where the code makes use of intermediate algebraic (auxiliary)
variables a(x), the algorithm automatically produces the code for the symbolic computation of the matrix
J = ∂f/∂x in sparse representation.

A remarkable feature of the algorithm developed is that it can deal with iterative definitions of
the functions preserving the iterative representation during the whole process up to the final Jacobian
computation code. That way, in presence of arrays of functions and variables, the computational cost of
the code generation and the length of the generated code does not depend on the size of those arrays.
This feature is achieved making use of Set–Based Graph representation.

The main application of the algorithm is the simulation of large scale dynamical systems with implicit
Ordinary Differential Equation (ODE) solvers like CVODE-BDF, whose performance are greatly improved
when they are invoked using a sparse Jacobian matrix. However, the algorithm can be used in a more
general context for solving large systems of nonlinear equations.

The paper, besides introducing the algorithm, discusses some aspects of its implementation in a
general purpose ODE solver front-end and analyzes some results obtained.

Keywords: Large Scale Models, Jacobian Computation, Set–Based Graphs

1. Introduction

Large scale systems of ODEs are usually stiff so they need implicit ODE solvers to be efficiently simu-
lated [1]. These numerical integration algorithms use the Jacobian matrix to solve the nonlinear implicit
equations involved and their performance is largely improved when the Jacobian matrix is externally
provided with a sparse form representation [2, 3].

In a simple PDE discretization, the code for the sparse Jacobian computation can be manually ob-
tained without much effort. However, in more complex models where there are several interacting subsys-
tems, the manual task becomes almost impossible. Motivated by this problem (and similar problems in

∗Corresponding author
Email address: kofman@cifasis-conicet.gov.ar (Denise Marzoratia)

Preprint submitted to Applied Mathematics and Computation October 24, 2020

a more general context) several algorithms in the field of algorithmic differentiation have been developed
[4, 5, 6].

A usual approach for computing the Jacobian (either in dense or sparse form) is to build a graph
representing the dependences between the function components fi and the state and auxiliary variables.
Then, the different paths from a function component fi to a given state xj represent different terms that
accumulate in the expression of ∂fi/∂xj . These terms can be computed using the chain rule as the path
traverses different algebraic variables.

To the best of our knowledge, all the existing algorithms assume that function f is composed by
individual scalar functions fi depending on individual states xj and algebraic variables ak. Thus, in
large scale systems the generation of the code for computing a Jacobian matrix becomes computationally
expensive as it depends at least linearly in the number of variables involved. In models containing thou-
sands or millions of states, the computational cost associated to the code generation and the subsequent
compilation of the resulting huge piece of code eventually make the problem unsolvable. So the use of a
symbolic Jacobian is only possible if it can be manually obtained.

However, large scale systems are (almost) always defined making use of repeating structures (typically
’for’ statements) and arrays of variables. That way, there are sets of functions with identical definitions
where the only thing that changes between components are the indexes of the arrays they involve. Ex-
ploiting this feature is the main purpose of the present work.

For that goal, we propose first to represent the dependence between functions and variables making
use of Set–Based Graphs (SBG) [7], where each vertex (called set–vertex) can represent an entire array
of variables or functions and each edge (called set–edge) represents all the connections between pairs
of set–edges. This allows a compact representation which results independent on the size of the arrays
involved. Then, based on this compact representation, we develop an algorithm that produces the code
to compute the sparse Jacobian matrix. A remarkable property is that the computational cost of this
algorithm and the length of the code it produces is independent on the size of the arrays.

The algorithm was implemented as part of a tool called Stand Alone QSS Solver [8] that has a
front end to different ODE solvers, including CVODE, DASSL, DOPRI, as well as the whole family of
Quantized State System (QSS) methods. This tool allows defining the models using a subset of the
Modelica language [9] and translates them into plain C code providing also the code for the symbolic
computation of the dense or sparse Jacobian (for algorithms like DASSL and CVODE) and structural
information (incidence matrices) for QSS algorithms. The tool performs all the transformations preserving
the for–loop statements so that the code produced does not depend on the size of the arrays involved in
the model.

The article is organized as follows. After the formal statement of the problem below, Section 2 intro-
duces some previous results and tools that are used in the remaining of the work. Then, Section 3 presents
the novel algorithm developed and Section 4 discusses its implementation. Finally, the performance of
this implementation is studied in Section 5 and some conclusions and future research ideas are proposed
in Section 6.

3

1.1. Problem Formulation

We consider a model written in the following explicit form:

a1 = g1(x1, . . . , xn, t)

a2 = g2(x1, . . . , xn, a1, t)

...
...

am = gm(x1, . . . , xn, a1, . . . , am−1, t)

ẋ1 = f1(x1, . . . , xn, a1, . . . , am, t)

...
...

ẋn = fn(xn, . . . , xn, a1, . . . , am, t)

(1)

which defines an ODE
ẋ = f(x, t) (2)

Our goal is to automatically produce the computer code that calculates the Jacobian matrix

J (x) =
∂f

∂x
(3)

expressed in sparse matrix representation.
When a system like that of Eq.(1) is large, it usually contains repeating structures making use of

arrays of unknowns and equations (defined using for loop statementscommands). In that case, the
algebraic and state variables are grouped in different arrays a1, . . .am, x1, xn. Similarly, the functions
defining the algebraic variables and state derivatives can be grouped in arrays such that all the individual
functions that share the same definition inside a for loop statementcommand belong to the same array.

4

In consequence, the model can be rewritten as

a1
i+s1,1g

= g1,1i (x1, . . . ,xn, t), i = 1, . . .

a1
i+s1,2g

= g1,2i (x1, . . . ,xn, a11, . . . , a
1
k, t), i = 1, . . . ; k < i+ s1,2g

...
...

am
i+sm,1

g
= gm,1

i (x1, . . . ,xn,a1, . . . ,am−1, t), i = 1, . . .

...
...

am
i+sm,j

g
= gm,j

i (x1, . . . ,xn,a1, . . . ,am−1, am1 , . . . , a
m
k , t), i = 1, . . . ; k < i+ sm,j

g

...
...

ẋ1
i+s1,1f

= f1,1i (x1, . . . ,xn,a1, . . . ,am, t), i = 1, . . .

ẋ1
i+s1,2f

= f1,2i (x1, . . . ,xn,a1, . . . ,am, t), i = 1, . . .

...
...

ẋn
i+sn,j

f

= fn,ji (x1, . . . ,xn,a1, . . . ,am, t), i = 1, . . .

...
...

(4)

Change k index for j in a so that the explanation and the x indexes are the same
Here sm,j

g is an index shift (with sm,1
g = 0)) so that the i + sm,j

g component of am is defined by the

i–th component of gm,j. An analogous role is played by sm,j
f for computing the state derivatives.

The purpose of this work is to design and to implement an algorithm that produces the code for
computing the Jacobian matrix of Eq.(4) such that

• The computational cost of producing the code does not depend on the size of the different arrays
involved.

• The length of the code produced does not depend on the size of those arrays.

• The code generated is efficient in the sense that it does not repeat unnecessary calculations, but it
is not necessary optimal in any other sense.

In addition, the code produced should be able to compute the Jacobian in sparse representation.

2. Background

In this section we present some previous results and tools that are used along the rest of the paper.

5

2.1. Automatic Jacobian Matrix Computation

The problem of producing the code for computing the Jacobian matrix of a function lies in the
discipline of automatic differentiation (AD), or, more precisely, in the field of algorithmic differentiation
[5].

The literature on AD mainly focus of producing efficient code for computing the derivatives of func-
tions, including here the problem of the sparse Jacobian computation [10, 4, 11]. The goal of the discipline
is to produce an efficient code to compute the Jacobian (and other higher derivatives), for which the com-
munity has developed several techniques and approaches. However, to the best of our knowledge, the
problem of producing a compact piece of code for very large systems has not been tackled so far.

In this work, we shall only make use of some existing AD techniques in order to obtain the code
for computing scalar partial derivatives which will be part of the final Jacobian computation. Yet, the
approach is independent on the way those derivatives are obtained.

2.2. Set–Based Graphs

The algorithms presented in this work are based on the use of Set-Based Graphs (SB-Graphs), first
defined in [7]. SB-Graphs are regular graphs in which the vertices and edges are grouped in sets allowing
sometimes a compact representation. We introduced next the main definitions.

Definition 1 (Set–Vertex). A Set–Vertex is a set of vertices V = {v1, v2, . . . , vn}.

Definition 2 (Set–Edge). Given two Set–Vertices, V a and V b, with V a∩V b = ∅, a Set–Edge connecting
V a and V b is a set of non repeated edges E[{V a, V b}] = {e1, e2, . . . , en} where each edge is a set of two
vertices ei = {vak ∈ V a, vbl ∈ V b}.

Definition 3 (Set–Based Graph). A Set–Based Graph is a pair G = (V, E) where

• V = {V 1, . . . , V n} is a set of disjoint set–vertices (i.e., i 6= j =⇒ V i ∩ V j = ∅).

• E = {E1, . . . , Em} is a set of set–edges connecting set–vertices of V, i.e., Ei = E[{V a, V b}] with
Va ∈ V and Vb ∈ V. In addition, given two set edges Ei, Ej ∈ E with i 6= j, such that Ei =
E[{V a, V b}] and Ej = E[{V c, V d}], then V a ∪ V b ∪ V c ∪ V d 6= V a ∪ V b. This is, two different
set–edges in E cannot connect the same set–vertices.

A particular case of Set–Based Graph is a bipartite Set–Based Graph defined as follows:

Definition 4 (Bipartite Set–Based Graph). A Bipartite Set–Based Graph is a Set–Based Graph G =
(V, E) where two disjoints sets of set–vertices V1, V2 can be found verifying V1 ∪ V2 = V, such that for
every edge Ei = E[{V a, V b}] ∈ E the condition V a ∈ Vi implies that V b /∈ Vi

As in regular graphs, Set–Based Graphs can be directed:

Definition 5 (Directed Set–Edge). Given two Set–Vertices, V a and V b, with V a ∩ V b = ∅ or V a = V b,
a directed Set–Edge from V a to V b is a set of non repeated edges E[(V a, V b)] = {e1, e2, . . . , en} where
each edge is an ordered pair of vertices ei = (vak ∈ V a, vbl ∈ V b).

Definition 6 (Directed Set–Based Graph). A Directed Set–Based Graph is a pair G = (V, E) where

• V = {V 1, . . . , V n} is a set of disjoint set–vertices (i.e., i 6= j =⇒ V i ∩ V j = ∅).

6

• E = {E1, . . . , Em} is a set of directed set–edges connecting set–vertices of V, i.e., Ei = E[(V a, V b)]
with Va ∈ V and Vb ∈ V. In addition, given two set edges Ei, Ej ∈ E with i 6= j, such that
Ei = E[(V a, V b)] and Ej = E[(V c, V d)], then either V a 6= V c or V b 6= V d. This is, two different
set–edges in E cannot connect the same set–vertices with the same direction.

An SB-Graph always defines an equivalent regular graph where the set of vertices and edges of the
latter is the union of the set–vertices and set–edges of the former. Thus, a SB–Graph contains the
same information than a regular graph. However, SB-Graphs can have a compact representation of that
information provided that every set–edge and every set-vertex is defined by intension.

2.3. Stand-Alone QSS Solver

The Stand-Alone QSS Solver [8] is a tool that was originally conceived to have an efficient imple-
mentation of Quantized State Systems (QSS) numerical integration algorithms [?]. As these algorithms
require the computation of incidence matrices, and the algorithms themselves are efficient in certain large
scale models, the solver includes implementations of efficient automatic structure analysis methods in
which this work is partially inspired.

The models in the Stand-Alone QSS Solver are written in a subset of the Modelica language [9] called
micro-Modelica (µ–Modelica). These models are parsed by the tool and translated into the C code that
computes the right hand side of the corresponding ODE (including zero crossing functions and event
handlers, since QSS algorithms are particularly efficient for discontinuous ODEs). The translation also
includes the aforementioned structural analysis and the code produced allows to compute individual
state derivatives and different incidence matrices. A remarkable feature of this translation is that it is
performed preserving the arrays of the model definition and without expanding for loop statements.

Besides implementing QSS methods, the tool offers a front-end to classic ODE and DAE solvers like
DASSL, CVODE, IDA, and DOPRI. For these methods, the model is also automatically translated into
C code with all the necessary structures used by these solvers. In addition, using the theory developed in
this work, the code for computing the symbolic Jacobian matrix is automatically generated by the tool
(for CVODE-BDF and IDA).

2.4. Related Work

While there is a large account of works dealing with automatic computation of sparse Jacobian
matrices, to the best of our knowledge the problem of looking for a compact piece of code has not been
considered so far. The literature on AD focus on having a code that minimizes the number of operations
when the Jacobian is evaluated, but it does not consider the cost of producing that piece of code (including
the time needed to compile it).

Among the different works on symbolic computation of Jacobian matrices, there are some that are
specifically related to Modelica simulation [12, 13, 14]. We mention this as this since one of the main
motivations of this work is related to expanding the abilities of Modelica tools to simulate large scale
systems, a key problem faced nowadays by the community [15, 16, 17]

The algorithm proposed here is inspired by the problem of causalization of large systems of equations
presented in [7] for which the concept of SB-Graphs was developed. There, algorithm of maximum
matching and strongly connected components (Tarjan’s) where developed in the context of SB-Graphs,
which were constructed out of sets of equations written in Modelica language. A remarkable property of
those algorithms was that, as in this work, their complexity was independent on the size of the arrays
involved.

7

3. Main Results

This section presents the main result of the work, namely, the novel algorithm for producing the
compact code for computing the sparse Jacobian. For simplicity, we introduce first in Section 3.1 a
simple scalar version of the algorithm that does not take into account the presence of arrays of equations
or variables. Then, in Section 3.2 we describe the SB-Graph representation of a large system like that of
Eq.(4), and then in Section 3.3 we finally introduce the novel algorithm.

3.1. A scalar algorithm

A preliminary algorithm for computing the sparse Jacobian matrix corresponding to the system of
Eq.(1) is proposed next. Although it is not optimal and it includes some unnecessary steps and the
graph representation of the model contains redundant vertices and edges, it can be easily extended for
Set–Based Graphs.

The algorithm requires that the model is represented by a directed bipartite graph that is built based
on the following rules:

• A vertex Xi is associated to each state variable xi.

• A vertex Ai is associated to each algebraic variable ai.

• A vertex Gi is associated to each function gi(·).

• A vertex Fi is associated to each function fi(·).

• An edge is directed from each vertex Ai to the vertex Gi (i.e., the function gi that computes ai).

• If the state xj appears in the expression of fi, then an edge is directed from Fi to Xj . Similarly, if
the algebraic variable aj appears in the expression of fi then an edge is directed from Fi to Aj .

• If the state xj appears in the expression of gi, then an edge is directed from Gi to Xj . Similarly, if
the algebraic variable aj appears in the expression of gi then an edge is directed from Gi to Aj .

Based on this representation, each path that starts in a function vertex F i and finishes in a state vertex
Xj implies that there is a term that must be added to compute ∂f i/∂xj . All the paths from each function
to all the states can be found using a Depth First Search (DFS) on the graph, which can be exploited to
compute also partial derivatives of the type ∂f i/∂aj , ∂gi/∂xj , and ∂gi/∂aj that are necessary to apply
the chain rule whenever it is necessary.

Based on these ideas, we propose the following algorithm that produces the code to compute first all
the partial derivatives and then, based on those partial derivatives, it produces the final code to compute
the sparse Jacobian. The algorithm that performs the DFS also computes the set of states that the
function depends on.

Algorithm 1 Sparse Jacobian Code

1: for i = 1 : n do
2: AddCode(Fi, ”f[i]”) . DFS for computing ∂fi/∂x and Fi.depStates
3: end for
4: for i = 1 : n do . Copy partial derivatives to sparse Jacobian Matrix
5: col ← 0

8

6: for all xj ∈ Fi.depStates do . Set of states that fi depends on
7: col ← col + 1 . col is the current column of the sparse Jacobian
8: printCode ”index([i], [col]) = [j]” . printCode writes into the final code
9: printCode ”J([i], [col]) = df[i]dx[j]”

10: end for
11: printCode ”size([i]) = [col]”
12: end for

Here, the notation [i] means that the expression is replaced in the string by the value of i.
The DFS that produces the code to compute the partial derivatives is performed by the following

recursive function. This function also computes the set of states that the function depends on:

Algorithm 2 Partial Derivative Computation

1: function AddCode(V ,v) . V is a function vertex, v is its name
2: V .depStates=∅
3: for all Ai ∈ Succ(V) do . Algebraic variables that v directly depends on
4: if Ai.visited==false then
5: AddCode(Gi, ”g[i]”) . Recursive call for computing ∂gi/∂x
6: Ai.visited ← true
7: end if
8: end for
9: for all Ai ∈ Succ(V) do . Algebraic variables that v depends on

10: printCode ”aux = ” + expr(∂v/∂ai) . Code of the symbolic derivative (obtained by AD)
11: for all xj ∈ Gi.depStates do . States that gi depends on
12: printCode ”d[v]dx[j] = d[v]dx[j] + aux · dg[i]dx[j]” . Chain Rule
13: end for
14: V .depStates ← V .depStates ∪ Gi.depStates . States that v indirectly depends on
15: end for
16: for all Xi ∈ Succ(V) do . State variables that v directly depends on
17: printCode ”d[v]dx[i] = d[v]dx[i]” + expr(∂v/∂xi) . Code of the symbolic derivative
18: V .depStates ← V .depStates ∪ {xi}
19: end for
20: end function

The code produced assumes that the algebraic variables ai are all computed before invoking the
function. It also assumes that all partial derivativesvariables are initialized at zero. Function expr(∂v/∂xi)
computes the symbolic partial derivative of function v using automatic differentiation.

In order to illustrate the way the algorithm works, we consider the following system

a1 = x31

a2 = a1 + x2

ẋ1 = −a1 + x1

ẋ2 = −a2 + a21

(5)

that can be represented by the graph of Figure 1

9

Figure 1: Bipartite directed graph corresponding to Eq. (5)

The piece of code produced by the algorithm and some of the intermediate steps it performs is listed
below:

// Call AddCode(F1, ”f1”) , Succ (F1) ={A1, X1}
// For s u c c e s s o r A1 , call AddCode(G1, ”g1”) , Succ (G1) ={X1}
dg1dx1 = dg1dx1 + 3 · x2

1 // ∂g1/∂x1

// G1 . d e p S t a t e s = {x1}, end AddCode
// A1 . v i s i t e d = true

aux = −1 // ∂f1/∂a1
df1dx1 = df1dx1 + aux · dg1dx1

// F1 . d e p S t a t e s = F1 . d e p S t a t e s ∪ G1 . d e p S t a t e s = {x1}
df1dx1 = df1dx1 + 1 // ∂f1/∂x1 = 1
// F1 . d e p S t a t e s = {x1}, end AddCode
// Call AddCode(F2, ”f2”) , Succ (F2) ={A1, A2}, A1 was v i s i t e d

// For s u c c e s s o r A2 , call AddCode(G2, ”g2”) , Succ (G2) ={A1, X2}
// For s u c c e s s o r A1

aux = 1 // ∂g2/∂a1
dg2dx1 = dg2dx1 + aux · dg1dx1

// G2 . d e p S t a t e s = G2 . d e p S t a t e s ∪ G1 . d e p S t a t e s = {x1}
// For s u c c e s s o r X2

dg2dx2 = dg2dx2 + 1 // ∂g2/∂x2

// G2 . d e p S t a t e s = G2 . d e p S t a t e s ∪ {x2} = {x1, x2}, end AddCode
// A_2 . v i s i t e d = true

aux = 2 · a1 // ∂f2/∂a1
df2dx1 = df2dx1 + aux · dg1dx1

// F2 . d e p S t a t e s = F2 . d e p S t a t e s ∪ G1 . d e p S t a t e s = {x1}
aux = −1 // ∂f2/∂a2
df2dx1 = df2dx1 + aux · dg2dx1

df2dx2 = df2dx2 + aux · dg2dx2

// F2 . d e p S t a t e s = F2 . d e p S t a t e s ∪ G2 . d e p S t a t e s = {x1, x2}
// End AddCode
index(1, 1) = 1 // i =1 , col =1 , j =1

J(1, 1) = df1dx1

size(1) = 1
index(2, 1) = 1 // i =2 , col =1 , j =1

10

J(2, 1) = df2dx1

index(2, 2) = 2 // i =2 , col =2 , j =2

J(2, 2) = df2dx2

size(2) = 2

The piece of code produced evaluates both the sparse Jacobian and its structure. Taking into account
that the structure usually does not change during simulations, it is preferable to split the code so that
the structure (i.e., size and index arrays) is computed in a separate piece of code. That could be easily
done with a straightforward modification of the algorithm proposed.

3.2. Set-Based Graph Representation

Given the ODE of Eq.(4), we could still apply the previous algorithm by rewriting the set of equations
in the form of Eq.(1). However, by doing so, the number of vertices and edges in the graph and the length
of the code produced will depend on the size of the arrays. If the size of the code is very large, then the
compiler will take hours to compile. Moreover, beyond certain size, it will not be able to handle the code
at all.

Thus, in order to overcome this problem, we propose first to represent the large system of equations
of Eq.(4) using a set-based graph built according to the following rules:

• A set-vertex Xk is associated to each state array xk.

• A set-vertex Ak is associated to each algebraic array ak.

• A set-vertex Gk,l is associated to each array of functions gk,l = [gk,l
1 ,gk,l

2 , . . .].

• A set-vertex F k,l is associated to each array of functions fk,l = [fk,l1 , fk,l2 , . . .].

• Directed set-edges Ek,l
G are directed from each set vertex Ak to the set-vertices Gk,l, where Ek,l

G =⋃
i{(Ak

i+sk,l
g
, Gk,l

i)}

• Given k,m, l, all the pairs (F k,l
i , Xm

j) such that xmj appears in the expression of fk,li form a directed

set-edge from F k,l to Xm, namely Ek,l,m
FX =

⋃
i,j{(F

k,l
i , Xm

j)}.

• Similarly, given k,m, l, all the pairs (F k,l
i , Am

j) such that amj appears in the expression of fk,li form

a directed set-edge from F k,l to Am, namely Ek,l,m
FA =

⋃
i,j{(F

k,l
i , Am

j)}.

• Given k,m, l, all the pairs (Gk,l
i , Xm

j) such that xmj appears in the expression of gk,li form a directed

set-edge from Gk,l to Xm, namely Ek,l,m
GX =

⋃
i,j{(G

k,l
i , Xm

j)}.

• Similarly, given k,m, l, all the pairs (Gk,l
i , Am

j) such that amj appears in the expression of gk,li form

a directed set-edge from Gk,l to Am, namely Ek,l,m
GA =

⋃
i,j{(G

k,l
i , Am

j)}.

The fact thats fk,li depends on xmj and that it has the same expression for all i implies that j can be
computed as a known function of i. This is, given i, we can compute which is the value of j such that
xmj appears in the expression of fk,li . This is true, at least, when xmj appears only once in the expression

of fk,li . This index function is denoted as j = map1[fk,l, xm](i).

11

If entries of xm appear more than once in the definition of fk,li (in expressions like fk,li = xmi−1 − xmi ,
for instance), then index functions map2[fk,l, xm], map3[fk,l, xm], etc. can be defined.

Thus, the set-edge Ek,l,m
FX can be defined as

Ek,l,m
FX =

(⋃
i

{(F k,l
i , Xm

map1[f
k,l,xm](i))}

)
∪

(⋃
i

{(F k,l
i , Xm

map2[f
k,l,xm](i))}

)
∪ . . .

Notice that this definition only requires to know the index functions mapr and they do not depend on
the size of the arrays involved.

The set-edges Ek,l,m
FA , Ek,l,m

GX , and Ek,l,m
GA can be analogously defined and then all the set–edges can

be defined by intension without any dependence on the size of the arrays involved.

3.3. Set-Based Graph Algorithm

For the set–based graph described above, we propose an extension of Algorithms 1-2 to produce the
code for the sparse Jacobian evaluation.

Algorithm 3 Set–Based Graph Sparse Jacobian Code

1: for i = 1 : n do
2: for j = 1 : ni do
3: AddCode(F i,j , ”f [i],[j]”) . Code for ∂f i,j/∂x
4: end for
5: end for
6: printCode ”r = 0” . Copy partial derivatives to sparse Jacobian matrix
7: for i = 1 : n do
8: for j = 1 : ni do
9: printCode ”for row = r + 1 : r + [F i,j .size]”

10: printCode ” for col = 1 : df [i,j]dx.size(row − r)”
11: printCode ” index(row, col) = df [i,j]dx.index(row − r, col)” . Copy the structure
12: printCode ” J(row, col) = df [i,j]dx(row − r, col)” . Copy the values
13: printCode ” end for”
14: printCode ” size(row) = df [i,j]dx.size(row − r)”
15: printCode ”end for”
16: printCode ”r = r + [F i,j .size]”
17: end for
18: end for

The algorithm copies the Jacobian matrix values and structure from the matrices that store the
partial derivatives of each function f i,j on the right hand side of Eq.(4). These partial derivatives have
also sparse representation and the code for its computation is produced by a recursive function that
extends Algorithm 2.

The new recursive function, besides producing the code for computing the partial derivatives in sparse
form, returns an array of dependences F i,j .depStates(d), with d = 1, . . . , F i,j .numDeps. Each dependence
is a subset of a set vertexedge, i.e., F i,j .depStates(d)⊆ Xk and it indicates that the components of function
f i,j depends on the corresponding components of xk. For each dependence, the recursive function also

12

computes a map F i,j .Map(d) that establishes the structure of this dependence, i.e., F i,j .Map(d)(l) = m
implies that f i,jl depends on xkm.

The dependence maps are built making use of the maps that define the different set edges EFX , EFA,
etc. The states grouped in the same dependence set F i,j .depStates(d)⊆ Xk have the properties that they
belong to the same array (xk) and that they are computed through the same map F i,j .Map(d). Thus,
their contribution to the matrix ∂f i,j/∂x can be computed using the same piece of code.

All the partial derivatives must be computed with respect to the global state vector x = [x1T , . . . ,xnT]T .
Thus, the recursive function makes use of a state map (xMap) that maps the components of the different
arrays into the components of the global state vector, i.e. xxMap(k,l) = xkl . The construction of this map
is straightforward and it is assumed to be known before the algorithm starts.

Based on these observations, the algorithm for producing the code that computes the partial deriva-
tives in sparse representation is the following one:

Algorithm 4 Set–Based Partial Derivative Computation

1: function AddCode(V ,v) . V is a function set-vertex, v is its name
2: d ← 0 . Number of different state dependences of v
3: for all Ai ∈ Succ(V) do . Algebraic variables that v directly depends on
4: if Ai.visited==false then
5: for all Gi,j ∈ Succ(Ai) do . gi,j are functions that compute components of ai

6: AddCode(Gi,j , ”g[i,j]”) . Code for computing ∂gi,j/∂x
7: end for
8: Ai.visited ← true
9: end if

10: end for
11: printCode ”for row = 1 : [V.size]” . Code for traversing all the components of v
12: for all Ai ∈ Succ(V) do . Algebraic variables that v directly depends on
13: for all mapm of Ei

V A do . Each map is a different dependence of v on ai

14: printCode ”aux = ” + ∂vl/∂a
i
mapm(l) . Code for symbolic partial derivative

15: Â← {ail ∈ Ai : l = mapm(k), 1 ≤ k ≤ size(Ai)}
16: for all Gi,j ∈ Succ(Ai) do . gi,j are functions that compute components of ai

17: for dg = 1 : Gi,j .numDeps do . Traverse the dependences of Gi,j

18: if Â ∩ dom(Gi,j .Map(dg)) 6= ∅ then
19: nMap ← [Gi,j .Map(dg) - si,jg] ◦ mapm . Map from v to Gi,j .depStates(dg)

20: X̂ ← {xkl ∈ Gi,j .depStates(dg) ⊆ Xk : l = nMap(m), 1 ≤ m ≤ size(V)} . X̂
contains only the states of Gi,j .depStates(dg) that can be reached from V through nMap.

21: if X̂ 6= ∅ then
22: d ← d+ 1 . X̂ ⊆ Xk is a new dependence for V
23: V .Map(d) ← nMap
24: V .depStates(d) ← X̂
25: printCode ”if [nMap](row) ∈ [X̂.indices] then” . Check that

xinMap(row) ∈ X̂
26: printCode ” xind = xMap([k], [nMap](row))” . vrow depends on global

xxind
27: printCode ” if xind /∈ d[v]dx, index(row, ·) then”

13

28: printCode ” d[v]dx.size(row) = d[v]dx.size(row) + 1” . New column
29: printCode ” col = d[v]dx.size(row)”
30: printCode ” d[v]dx.index(row, col) = xind”
31: printCode ” else”
32: printCode ” col = pos(xind in d[v]dx.index(row, ·))”
33: printCode ” end if”
34: printCode ”rowg = [mapm](row)− [si,jg]”

35: printCode ”colg = pos(xind in dg[i,j]dx.index(rowg, ·))” . We need
∂gi,jrowg/∂xxind to apply the chain rule

36: printCode ” d[v]dx(row, col) = d[v]dx(row, col) + aux · dgi,jdx(rowg, colg)”
37: printCode ”end if”
38: end if
39: end if
40: end for
41: end for
42: end for
43: end for
44: for all Xi ∈ Succ(V) do . State arrays that v directly depends on
45: for all mapm of Ei

V X do . Each map defines a different dependence

46: X̂ = {xil ∈ Xi : l = mapm(j), 1 ≤ j ≤ size(V)} . Image of V through mapm

47: d ← d+ 1
48: V .depStates(d) ← X̂ . New dependence
49: V .Map(d) ← mapm

50: printCode ”if [mapm](row) ∈ [X̂.indices] then” . Check that ximapm(row) ∈ X̂
51: printCode ” xind = xMap([i], [mapm](row))” . vrow depends on xxind
52: printCode ” if xind /∈ d[v]dx, index(row, ·) then”
53: printCode ” d[v]dx.size(row) = d[v]dx.size(row) + 1” . New column in the current row
54: printCode ” col = d[v]dx.size(row)”
55: printCode ” d[v]dx.index(row, col) = xind”
56: printCode ” else”
57: printCode ” col = pos(xind in d[v]dx.index(row, ·))”
58: printCode ” end if”
59: printCode ”aux = ” + ∂vl/∂x

i
mapm(l) . Code for the symbolic derivative

60: printCode ” d[v]dx(row, col) = d[v]dx(row, col) + aux”
61: printCode ”end if”
62: end for
63: end for
64: V .numDeps= d
65: printCode ”end for”
66: end function

This algorithm, just like the scalar algorithm (Algorithm 2), first perform a DFS in order to produce the
code for computing all the partial derivatives of functions gi,j that are needed to apply the chain rule.
Then, it produces the code for computing the partial derivatives of the current function ∂v/∂x.

The main difference with the scalar algorithm is that now the state dependences of each function

14

(V .depStates) are not individual states but are subsets of the state arrays. In addition, for each state
dependence X̂ ⊆ Xk, the algorithm builds an index map V.Map between the components of the function
V and the components of the state arrays Xk.

These differences are also reflected in the written code. First, the new algorithm writes a for loop

sentence that traverses the different components of v which are translated into rows of the sparse matrix
representing ∂v/∂x. In addition, during the traversal of the components of v, the code uses the maps
V.Map(d) to relate the rows with the components of the Xk and checks that the result of applying the
map leads effectively to components of each state dependence X̂ ⊆ Xk. It could happen that only some
components of V effectively depend on components of X̂.

This algorithm can be improved in several ways. Firstly, it does not take into account the situation in
which an algebraic variable aij depends on another algebraic variable aik that belongs to the same array

(with k < j to preserve causality). This case would be detected at line 16 when Gi,j = V (i.e., when a
function Gi,j is a successor of itself). Although for reasons of space this special case is not treated here,
the right code can be generated using the information about the recursive use of the maps mapm[gi,jai].

Another case that is not properly explained is the presence of expressions like aik =
∑

j x
m
j , where

a single algebraic (or state derivative) variable depends on several components of the same array. As
presented in the algorithm above, that case would be represented by the use of several maps (up to the the
number of terms in the sum). However, it can be simplified by generalizing the set–edge representation
so that they have not only an image map, but also a domain map, i.e.,

Ek,l,m
FX =

(⋃
i

{(F k,l
mapdom[fk,l,xm](i)

, Xm
mapim[fk,l,xm](i))}

)

so that a single equation depending on several states can be described by a single map. Then, this
compact information can be used to produce a compact piece of code (including iterations over the states
at the right hand side) for the Jacobian matrix.

Also, as in the previous example, the algorithm can be straightforwardly modified so that it splits the
code corresponding to the Jacobian values and its structure.

In order to illustrate the way this algorithm works, we consider the following model, which represent
the equations of a nonlinear RC transmission line of arbitrary size (given by the parameter N) and with
an inductive load.

a11 =
(10− x11)3

R
= g1,11 (·),

a1i+1 =
(x1i − x1i+1)3

R
= g1,2i (·), i = 1, . . . , N − 1

ẋ1i =
a1i − a1i+1

C
= f1,1i (·), i = 1, . . . , N − 1

ẋ1N =
a1N − x21

C
= f1,21 (·),

ẋ21 =
x1N
L

= f2,11 (·).

(6)

The set–graph representation for this model is depicted in Figure 2. It contains three set vertices for
the variables X1, X2, A1, and five set vertices for the functions, F 1,1, F 1,2, F 2,1, G1,1, and G1,2.

15

Figure 2: Bipartite directed set-based graph corresponding to Eq. (6)

There are eight set edges characterized by the following maps: map1[f1,1, a1](i) = i, map2[f1,1, a1](i) =
i + 1, map1[f1,2, a1](1) = N , map1[f1,2, x2](1) = 1, map1[f2,1, x1](1) = 1, map1[g1,1, x1](1) = 1,
map1[g1,2, x1](i) = i, map2[g1,2, x1](i) = i+ 1, map1[a1, g1,1](1) = 1, and map1[a1, g1,2](i) = i+ 1.

The steps performed and the code produced by the algorithm on this example is listed in Appendix Ap-
pendix A.

4. Implementation

A variant of Algorithms 3-4 described in the previous section was implemented as part of the Stand
Alone QSS Solver [8]. The implementation has the following features:

• The models are described in a subset of Modelica language called µ-Modelica. This sub-language
allows describing systems in ODE form and it has support for multi-dimensional arrays.

• The Modelica code is parsed and a Set-Based Graph is built based on the rules described in Sec-
tion 3.2. Set–Based Graph are implemented by extending features ofbased on the Boost library
[18].

• The different sets and subset of vertices involved in the algorithm are represented by unions of
Multidimensional Interval Arrays (MDI). Each MDI is defined by three integer numbers in each
dimension (initial index, final index and step). That way, the representation complexity is indepen-
dent on the size of the arrays.

• There are implementations of operations like union, intersection and mutual exclusion between sets.
These operation also produce sets of MDIs with a complexity that is independent on the size of the
arrays.

16

• The index maps that define the set-edges are limited to linear affine functions between MDIs indices.
Thus, each map is characterized by two integer numbers in each dimension. Also, it is simple to
apply the composition of several maps as it is required by the algorithm.

• There are also operations that compute the image map of sets represented by MDIs that do not
depend on the size of the MDIs.

• Making use of these features, the algorithm for establishing the sets of dependences of a function
(v.depStates) is almost identical to that described by Algorithm 4.

• The code generation, however, has some differences. Here, instead of computing a sparse matrix
for the partial derivative of each function (including those that define algebraic variables), the
algorithm directly produces the code for computing the sparse Jacobian at once. That way, a more
compact piece of code is produced, yet the algorithm is more complex.

• The algebraic differentiation needed in lines 14 and 59 of Algorithm 4 is performed using GiNaC
[19].

• The final piece of code produced is written in plain C language.

5. Examples

In order to evaluate the code produced by the proposed algorithm, we present two examples where
we measure the compilation time of the generated models for different problem sizes and the simulation
time for the sparse and dense Jacobian representations. Additionaly, we compare the compilation time
of the expanded models for different sizes (without for statements).

We first revisit the RC transmission line example presented previously and then we evaluate a two
dimensional advection diffusion reaction (ADR) model. In both examples we use the following setup:

• The reported results were obtained using an Intel(R) Core(TM) i7−8650U@1.90GHz CPU with 24
GB of RAM memory. We used QSS Solver version ADD TAG and CVODE BDF solver on Ubuntu
OS.

• For each experiment, 10% of the total output variables were randomly selected to compute the
error.

• The reported error was computed as the average of the selected output variables using the RMSE
(Root Mean Square Error) metric.

• The ground truth values were obtained using DASSL over 5000 sampled points with the following
tolerances: tolrel = 1 · 10−10 and tolabs = 1 · 10−10.

5.1. RC Transmission Line

This model defined previously in Eq.(6) represents a nonlinear RC transmission line of arbitrary
size, given by the parameter N and with an inductive load. Additionaly, we set the rest of the model

17

parameters to R = 1, C = 1, L = 1 with tolerances set to tolrel = 1 · 10−4 and tolabs = 1 · 10−4. Finally,
the initial condiciotns are x1i = 1 for i = 1, . . . , N and x21 = 0.

a11 =
(10− x11)3

R

a1i+1 =
(x1i − x1i+1)3

R
i = 1, . . . , N − 1

ẋ1i =
a1i − a1i+1

C
i = 1, . . . , N − 1

ẋ1N =
a1N − x21

C

ẋ21 =
x1N
L

(7)

Table 1 shows the simulation times and the errors obtained for different sizes of the N parameter with
CVODE BDF solver configured to use the sparse and dense representation he Jacobian. As expected the
error in both cases respect the selected tolerances with gains up to 33 times when N = 20000 when using
the sparse Jacobian representation due to the overhead of computing the dense Jacobian representation.

Size Sparse Dense
Simulation Error Simulation Error

Time Time
[msec] [msec]

100 14 4.54 · 10−4 38 6.17 · 10−4

200 21 9.78 · 10−5 104 9.44 · 10−5

500 70 3.70 · 10−4 586 2.36 · 10−4

1000 162 6.53 · 10−5 1062 1.21 · 10−4

2000 473 2.24 · 10−4 11335 2.49 · 10−4

5000 2584 1.08 · 10−4 77289 9.17 · 10−5

10000 9400 8.27 · 10−5 298457 6.84 · 10−5

20000 33260 3.08 · 10−5 1.11 · 106 4.54 · 10−5

Table 1: RC Transmission Line system results with different size of parameter N

The average compilation time for all models is 498 milliseconds and also as expected it remains
constant as the size of the problem grows, on the other hand Figure 3 shows how the compilation time
grows for different values of the N when for loops are expanded.1

1Appendix A contains the full code generated for this example.

18

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 100 200 300 400 500 600 700 800 900 1000

T
im

e
 [
s
e
c
]

Size

Figure 3: RC Transmission Line with for loops expanded compilation time.

5.2. 2D Advection-Diffusion-Reaction (ADR) problem

The following set of ODEs corresponds to the MOL (Method Of Lines) discretization of a 2D ADR
problem:

du1,1
dt

= −ax ·
u1,1
∆x

+ ay ·
u1,1
∆y

+ r · (u21,1 − u31,1)

dui,1
dt

= −ax ·
ui,1
∆x

+ ay ·
(ui,1 − ui−1,1)

∆y
+ r · (u2i,1 − u3i,1) i = 2 . . . , N

du1,j
dt

= −ax ·
(u1,j − u1,j−1)

∆x
+ ay ·

u1,j
∆y

+ r · (u21,j − u31,j) j = 2, . . . , N

dui,j
dt

= −ax ·
(ui,j − ui,j−1)

∆x
+ ay ·

(ui,j − ui−1,)

∆y
+ r · (u2i,j − u3i,j) i = 2, . . . , N j = 2, . . . , N

(8)

where N is the number of grid points, and we consider parameters ax, ay, r, ∆x and ∆y to be equal
to 1, and we set the initial conditions u1,1 = 1 and ui,j = 0 for i = 2, . . . , N j = 2, . . . , N .

The results obtained for the different Jacobian representation are shown in Table 2 where we can see
that in this case using the sparse Jacobian impementation is 375 times faster than the dense representation
for a grid of size 150. Again, as expected the error bounds are respected in both cases.

The average compilation time in this case is 404 milliseconds for all problem sizes, the compilation
time performance for the expanded for loop models is shown in Figure 4.

19

Size Sparse Dense
Simulation Error Simulation Error

Time Time
[msec] [msec]

10 2 4.91 · 10−5 4 4.91 · 10−5

20 6 4.57 · 10−5 34 4.58.2 · 10−5

30 14 6.12 · 10−5 196 6.11 · 10−5

40 25 1.04 · 10−4 662 1.03 · 10−4

50 39 1.56 · 10−4 1898 1.56 · 10−4

60 65 1.21 · 10−4 4127 1.20 · 10−4

70 98 1.34 · 10−4 8689 1.33 · 10−4

80 125 1.47 · 10−4 17216 1.46 · 10−4

90 184 2.20 · 10−4 22748 2.22 · 10−4

100 214 2.26 · 10−4 32644 2.26 · 10−4

150 555 2.15 · 10−4 208464 2.16 · 10−4

Table 2: 2D ADR results for different grid size paramter N

 0

 1000

 2000

 3000

 4000

 5000

 6000

 10 15 20 25 30 35 40 45 50

T
im

e
 [
s
e
c
]

Size

Figure 4: 2D ADR model with for loops expanded compilation time.

6. Conclusions and Future Research

We presented a novel algorithm that automatically computes a compact sparse symbolical Jacobian
matrices representation for a given model, in particular large scale. To that goal, the algorithm takes

20

advantage of the compact Set–Based Graph representation so that the computational cost does not depend
on the size of the model. We implemented the proposed approach in the Stand Alone QSS Solver and
presented two simple examples that shows the advantages of the proposed algorithm. We are currently
working on application of the Set–Based Graph compact representation of for loop statements to different
stages of the compilation of large scale models.

Funding

This work was partially funded by grant PICT–2017 2436 (ANPCYT).

References

[1] F. E. Cellier, E. Kofman, Continuous System Simulation, Springer, New York, 2006.

[2] S. D. Cohen, A. C. Hindmarsh, P. F. Dubois, Cvode, a stiff/nonstiff ode solver in c, Computers in
physics 10 (2) (1996) 138–143.

[3] L. A. Nejad, A comparison of stiff ode solvers for astrochemical kinetics problems, Astrophysics and
Space Science 299 (1) (2005) 1–29.

[4] S. A. Forth, M. Tadjouddine, J. D. Pryce, J. K. Reid, Jacobian code generated by source transforma-
tion and vertex elimination can be as efficient as hand-coding, ACM Transactions on Mathematical
Software (TOMS) 30 (3) (2004) 266–299.

[5] U. Naumann, The art of differentiating computer programs: an introduction to algorithmic differ-
entiation, Vol. 24, Siam, 2012.

[6] A. Elsheikh, An equation-based algorithmic differentiation technique for differential algebraic equa-
tions, Journal of Computational and Applied Mathematics 281 (2015) 135–151.

[7] P. Zimmermann, J. Fernández, E. Kofman, Set-based graph methods for fast equation sorting in large
dae systems, in: Proceedings of the 9th International Workshop on Equation-based Object-oriented
Modeling Languages and Tools, 2019, pp. 45–54.

[8] J. Fernández, E. Kofman, A Stand-alone Quantized State System Solver for Continuous System
Simulation, Simulation 90 (7) (2014) 782–799.

[9] P. Fritzson, Principles of Object-Oriented Modeling and Simulation with Modelica 3.3: a Cyber-
Physical Approach”, Wiley-IEEE Press, 2015.

[10] B. M. Averick, J. J. Moré, C. H. Bischof, A. Carle, A. Griewank, Computing large sparse jacobian
matrices using automatic differentiation, SIAM Journal on Scientific Computing 15 (2) (1994) 285–
294.

[11] E. Varnik, Exploitation of structural sparsity in algorithmic differentiation., Ph.D. thesis, RWTH
Aachen University (2011).

21

[12] W. Braun, L. Ochel, B. Bachmann, Symbolically derived jacobians using automatic differentiation-
enhancement of the openmodelica compiler, in: Proceedings of the 8th International Modelica Con-
ference; March 20th-22nd; Technical Univeristy; Dresden; Germany, no. 063, Linköping University
Electronic Press, 2011, pp. 495–501.

[13] J. Åkesson, W. Braun, P. Lindholm, B. Bachmann, Generation of sparse jacobians for the function
mock-up interface 2.0, in: Proceedings of the 9th International MODELICA Conference; September
3-5; 2012; Munich; Germany, no. 076, Linköping University Electronic Press, 2012, pp. 185–196.

[14] W. Braun, K. Kulshreshtha, R. Franke, A. Walther, B. Bachmann, Towards adjoint and directional
derivatives in fmi utilizing adol-c within openmodelica, in: Proceedings of the 12th International
Modelica Conference, Prague, Czech Republic, May 15-17, 2017, no. 132, Linköping University
Electronic Press, 2017, pp. 363–366.

[15] F. Casella, Simulation of large-scale models in modelica: State of the art and future perspectives,
in: 11th International Modelica Conference, 2015, pp. 459–468.

[16] W. Braun, F. Casella, B. Bachmann, et al., Solving large-scale modelica models: new approaches
and experimental results using openmodelica, in: 12 International Modelica Conference, Linkoping
University Electronic Press, 2017, pp. 557–563.

[17] G. Schweiger, H. Nilsson, J. Schoeggl, W. Birk, A. Posch, Modeling and simulation of large-scale
systems: A systematic comparison of modeling paradigms, Applied Mathematics and Computation
365 (2020) 124713.

[18] J. Siek, A. Lumsdaine, L.-Q. Lee, The boost graph library: user guide and reference manual, Addison-
Wesley, 2002.

[19] C. Bauer, A. Frink, R. Kreckel, Introduction to the GiNaC framework for symbolic computation
within the C++ programming language, Journal of Symbolic Computation 33 (1) (2002) 1–12.

Appendix A. Code generation for System (6)

// call A d d C o d e (F 1,1 ,"f1,1 ") , the only s u c c e s s o r is A1 (not v i s i t e d) .

// call A d d C o d e (G1,1 ,"g1,1 ") , the only s u c c e s s o r is X1

for row = 1 : 1

// the only map is mapm = map1[g1,1, x1](1) = 1
// G1,1 . d e p S t a t e s (1) ={x1

1}, G1,1 . Map (1) =map1[g1,1, x1]

if 1 ≤ row ≤ 1 then // b e c a u s e mapm(row) = row and X̂.indices=1
xind=xMap(1,row) // b e c a u s e mapm(row) = row
if xind /∈ dg1,1dx.index(row, ·) then

dg1,1dx.size(row) = dg1,1dx.size(row) + 1
col = dg1,1dx.size(row)
dg1,1dx.index(row, col) = xind

else

col = pos(xind in dg1,1dx.index(row, ·))
end if

dg1,1dx(row, col) = dg1,1dx(row, col)− 3/R · (10− x1
row)2 //∂g1,1i /∂x1

i
end if

// G ^{1 ,1}. n u m D e p s =1

22

end for

// end A d d C o d e (G1,1 ,g1,1) , back to A d d C o d e (F 1,1 ,"f1,1 ")

// call A d d C o d e (G1,2 ,"g1,2 ") , the only s u c c e s s o r is X1

for row = 1 : N-1 // size of G1,2

// t h e r e are two maps : map1[g1,2, x1](i) = i and map2[g1,2, x1](i) = i + 1

// G1,2.depStates(1) = X̂ = {x1
i |1 ≤ i ≤ N − 1}, G1,2.Map(1)=mapm =map1[g1,2, x1](i) = i

if 1 ≤ row ≤ N − 1 then // b e c a u s e mapm(row) = row and X̂.indices = [1, . . . , N − 1]
xind=xMap(1,row) // b e c a u s e mapm(row) = row
if xind /∈ dg1,2dx.index(row, ·) then

dg1,2dx.size(row) = dg1,2dx.size(row) + 1
col = dg1,2dx.size(row)
dg1,2dx.index(row, col) = xind

else

col = pos(xind in dg1,2dx.index(row, ·))
end if

dg1,2dx(row, col) = dg1,2dx(row, col) + 3/R · (x1
row − x1

row+1)2 //∂g1,2i /∂x1
i

end if

// G1,2.depStates(2) = X̂ = {x1
i |2 ≤ i ≤ N}, G1,2.Map(2)=map2[g1,2, x1](i) = i + 1

if 2 ≤ row + 1 ≤ N then // b e c a u s e map2[g1,2, x1](row) = row + 1 and X̂.indices = [2, . . . , N]
xind=xMap(1,row+1)

if xind /∈ dg1,2dx.index(row, ·) then

dg1,2dx.size(row) = dg1,2dx.size(row) + 1
col = dg1,2dx.size(row)
dg1,2dx.index(row, col) = xind

else

col = pos(xind in dg1,2dx.index(row, ·))
end if

dg1,2dx(row, col) = dg1,2dx(row, col)− 3/R · (x1
row − x1

row+1)2 //∂g1,2i /∂x1
i+1

end if

// G1,2.numDeps = 2
end for

// end A d d C o d e (G1,2 ,g1,2) , back to A d d C o d e (F 1,1 ,"f1,1 ")

for row = 1 : N-1 // size of F 1,1

// E1,1,1
FA c o n t a i n s two maps , take f i r s t mapm = map1[f1,1, a1](i) = i

aux = 1/C // ∂f1,1
i /∂a1i in map1

// G1,· has two c o m p o n e n t s

// G1,1 . n u m D e p s is 1 (it has one map map1[g1,1, x1](1) = 1)
// nMap = G1,1.Map(1) ◦mapm =⇒ nMap(1) = 1

// G1,1.depStates(1) = {x1
1}, X̂ = {x1

1}
// F 1,1 . Map (1) = nMap , F 1,1 . d e p S t a t e s (1) = {x1

1}
if 1 ≤ row ≤ 1 then // nMap (row) = row , X̂.indices = {1}

xind = xMap(1, row) // nMap (row) = row

if xind /∈ df1,1dx, index(row, ·) then

df1,1dx.size(row) = df1,1dx.size(row) + 1
col = df1,1dx.size(row)
df1,1dx.index(row, col) = xind

else

col = pos(xind in df1,1dx.index(row, ·))
end if

rowg = row
colg = pos(xind in dg1,1dx.index(rowg, ·))
df1,1dx(row, col) = df1,1dx(row, col) + aux · dg1,1dx(rowg, colg)

end if

// G1,2 . n u m D e p s is 2

// nMap = [G1,2.Map(1)− s1,2g] ◦mapm =⇒ nMap(i) = i− 1

// G1,2.depStates(1) = {x1
l |1 ≤ l ≤ N − 1}, X̂ = {x1

l |1 ≤ l ≤ N − 2}

23

// F 1,1 . Map (2) = nMap , F 1,1 . d e p S t a t e s (2) = {x1
l |1 ≤ l ≤ N − 2}

if 1 ≤ row − 1 ≤ N − 2 then // nMap (row) = row -1 , X̂ = {x1
l |1 ≤ l ≤ N − 2}.

xind = xMap(1, row − 1) // nMap (row) = row -1

if xind /∈ df1,1dx, index(row, ·) then

df1,1dx.size(row) = df1,1dx.size(row) + 1
col = df1,1dx.size(row)
df1,1dx.index(row, col) = xind

else

col = pos(xind in df1,1dx.index(row, ·))
end if

rowg = row − 1
colg = pos(xind in dg1,2dx.index(rowg, ·))
df1,1dx(row, col) = df1,1dx(row, col) + aux · dg1,2dx(rowg, colg)

end if

// s e c o n d d e p e n d e n c e : nMap = [G1,2.Map(2)− s1,2g] ◦mapm =⇒ nMap(i) = i

// G1,2.depStates(2) = {x1
l |2 ≤ l ≤ N}, X̂ = {x1

l |2 ≤ l ≤ N}
// F 1,1 . Map (3) = nMap , F 1,1 . d e p S t a t e s (3) = {x1

l |2 ≤ l ≤ N}
if 2 ≤ row ≤ N then

xind = xMap(1, row) // nMap (row) = row

if xind /∈ df1,1dx, index(row, ·) then

df1,1dx.size(row) = df1,1dx.size(row) + 1
col = df1,1dx.size(row)
df1,1dx.index(row, col) = xind

else

col = pos(xind in df1,1dx.index(row, ·))
end if

rowg = row − 1
colg = pos(xind in dg1,2dx.index(rowg, ·))
df1,1dx(row, col) = df1,1dx(row, col) + aux · dg1,2dx(rowg, colg)

end if

// E1,1,1
FA c o n t a i n s two maps , take now mapm = map2[f1,1, a1](i) = i + 1

aux = -1/C // ∂f1,1
i /∂a1i+1

// A p p l y i n g mapm y i e l d s Â = {a1l |2 ≤ l ≤ N}
// G1,· has two c o m p o n e n t s

// G1,1 . n u m D e p s is 1 (it has one map map1[g1,1, x1](1) = 1)

// G i v e n that Â ∩ dom(G1,1.Map(1)) = ∅
// there ’ s no d e p e n d e n c e on this path , so c o n t i n u e with the f o l l o w i n g v e r t e x .

// G1,2 . n u m D e p s is 2

// nMap = [G1,2.Map(1)− s1,2g] ◦mapm =⇒ nMap(i) = i

// G1,2.depStates(1) = {x1
l |1 ≤ l ≤ N − 1}, X̂ = {x1

l |1 ≤ l ≤ N − 1}
// F 1,1 . Map (4) = nMap , F 1,1 . d e p S t a t e s (4) = {x1

l |1 ≤ l ≤ N − 1}
if 1 ≤ row ≤ N − 1 then

xind = xMap(1, row) // nMap (row) = row

if xind /∈ df1,1dx, index(row, ·) then

df1,1dx.size(row) = df1,1dx.size(row) + 1
col = df1,1dx.size(row)
df1,1dx.index(row, col) = xind

else

col = pos(xind in df1,1dx.index(row, ·))
end if

rowg = row
colg = pos(xind in dg1,2dx.index(rowg, ·))
df1,1dx(row, col) = df1,1dx(row, col) + aux · dg1,2dx(rowg, colg)

end if

// s e c o n d d e p e n d e n c e : nMap = [G1,2.Map(2)− s1,2g] ◦mapm =⇒ nMap(i) = i + 1

// G1,2.depStates(2) = {x1
l |2 ≤ l ≤ N}, X̂ = {x1

l |2 ≤ l ≤ N}

24

// F 1,1 . Map (5) = nMap , F 1,1 . d e p S t a t e s (5) = {x1
l |2 ≤ l ≤ N}

if 2 ≤ row + 1 ≤ N then

xind = xMap(1, row + 1) // nMap (row) = row +1

if xind /∈ df1,1dx, index(row, ·) then

df1,1dx.size(row) = df1,1dx.size(row) + 1
col = df1,1dx.size(row)
df1,1dx.index(row, col) = xind

else

col = pos(xind in df1,1dx.index(row, ·))
end if

rowg = row
colg = pos(xind in dg1,2dx.index(rowg, ·))

df1,1dx(row, col) = df1,1dx(row, col) + aux · dg1,2dx(rowg, colg)
end if

// F 1,1 . n u m D e p s =5

end for

// end A d d C o d e (F 1,1 ,g1,1) , back to main a l g o r i t h m

// call A d d C o d e (F 1,2 ,"f1,2 ") , the only s u c c e s s o r is A1 (a l r e a d y v i s i t e d) .

for row = 1 : 1 // size of F 1,2

// E1,2,1
FA c o n t a i n s one map mapm = map1[f1,2, a1](i) = N

aux = 1/C // ∂f1,2
i /∂a1N

// In this case mapm y i e l d s Â = {a1N}
// G1,· has two c o m p o n e n t s

// G1,1 . n u m D e p s is 1 (it has one map map1[g1,1, x1](1) = 1)

// Again , g i v e n that Â ∩ dom(G1,1.Map(1)) = ∅
// there ’ s no d e p e n d e n c e on this path , so c o n t i n u e with the f o l l o w i n g v e r t e x .

// G1,2 . n u m D e p s is 2

// nMap = [G1,2.Map(1)− s1,2g] ◦mapm =⇒ nMap(i) = N − 1

// G1,2.depStates(1) = {x1
l |1 ≤ l ≤ N − 1}, X̂ = {x1

N−1}
// F 1,2 . Map (1) = nMap , F 1,2 . d e p S t a t e s (1) = {x1

N−1}
if N − 1 ≤ N − 1 ≤ N − 1 then // nMap (i) = N -1 ,

xind = xMap(1, N − 1) // nMap (1) = N -1

if xind /∈ df1,2dx, index(row, ·) then

df1,2dx.size(row) = df1,2dx.size(row) + 1
col = df1,1dx.size(row)
df1,2dx.index(row, col) = xind

else

col = pos(xind in df1,2dx.index(row, ·))
end if

rowg = row
colg = pos(xind in dg1,2dx.index(rowg, ·))
df1,2dx(row, col) = df1,1dx(row, col) + aux · dg1,2dx(rowg, colg)

end if

// s e c o n d d e p e n d e n c e : nMap = [G1,2.Map(2)− s1,2g] ◦mapm =⇒ nMap(i) = N

// G1,2.depStates(2) = {x1
l |2 ≤ l ≤ N}, X̂ = {x1

N}
// F 1,2 . Map (2) = nMap , F 1,2 . d e p S t a t e s (2) = {x1

N}
if N ≤ N ≤ N then

xind = xMap(1, N) // nMap (row) = N

if xind /∈ df1,1dx, index(row, ·) then

df1,2dx.size(row) = df1,2dx.size(row) + 1
col = df1,2dx.size(row)
df1,2dx.index(row, col) = xind

else

col = pos(xind in df1,2dx.index(row, ·))
end if

rowg = row

25

colg = pos(xind in dg1,2dx.index(rowg, ·))
df1,2dx(row, col) = df1,2dx(row, col) + aux · dg1,2dx(rowg, colg)

end if

// the o t h e r s u c c e s s o r of F 1,2 is X2

// the only map is mapm = map1[f1,2, x2](1) = 1
// F 1,2 . d e p S t a t e s (3) ={x2

1}, F 1,2 . Map (3) =map1[f1,2, x2]

if 1 ≤ 1 ≤ 1 then // b e c a u s e mapm(row) = 1 and X̂.indices=1
xind=xMap (2,1) // b e c a u s e mapm(row) = 1
if xind /∈ df1,2dx.index(row, ·) then

df1,2dx.size(row) = df1,2dx.size(row) + 1
col = df1,2dx.size(row)
df1,2dx.index(row, col) = xind

else

col = pos(xind in df1,2dx.index(row, ·))
end if

df1,2dx(row, col) = df1,2dx(row, col)− 1/C //∂f1,2
i /∂x2

i
end if

// F ^{1 ,2}. n u m D e p s =3

end for

// end A d d C o d e (F 1,2 ,f1,2) , back to main a l g o r i t h m

// call A d d C o d e (F 2, 1,f2,1))

// the only s u c c e s s o r of F 2,1 is X1

for row = 1 : 1

// the only map is mapm = map1[f2,1, x1](1) = N
// F 2,1 . d e p S t a t e s (1) ={x1

N}, F 2,1 . Map (1) =map1[f2,1, x1]

if N ≤ N ≤ N then // b e c a u s e mapm(row) = N and X̂.indices= N
xind=xMap(1,N) // b e c a u s e mapm(row) = N
if xind /∈ df2,1dx.index(row, ·) then

df2,1dx.size(row) = df2,1dx.size(row) + 1
col = df2,1dx.size(row)
df2,1dx.index(row, col) = xind

else

col = pos(xind in df2,1dx.index(row, ·))
end if

df2,1dx(row, col) = df2,1dx(row, col) + 1/L //∂f2,1
i /∂x1

N
end if

// F ^{2 ,1}. n u m D e p s =1

end for

// end A d d C o d e (F 2,1 ,f2,1) , back to main a l g o r i t h m

// Copy p a r t i a l d e r i v a t i v e s into J a c o b i a n m a t r i x

r = 0

// i =1 , j =1

for row = r + 1 : r + N -1 //F 1,1 . size = N -1

for col = 1 : df1,1dx.size(row − r)
index(row, col) = df1,1dx.index(row − r, col)
J(row, col) = df1,1dx(row − r, col)

end for

size(row) = df1,1dx.size(row − r)
end for

r = r + N -1

// i =1 , j =2

for row = r + 1 : r + 1 //F 1,2 . size = 1

for col = 1 : df1,2dx.size(row − r)
index(row, col) = df1,2dx.index(row − r, col)
J(row, col) = df1,2dx(row − r, col)

end for

size(row) = df1,2dx.size(row − r)

26

end for

r = r + 1

// i =1 , j =2

for row = r + 1 : r + 1 //F 2,1 . size = 1

for col = 1 : df2,1dx.size(row − r)
index(row, col) = df2,1dx.index(row − r, col)
J(row, col) = df2,1dx(row − r, col)

end for

size(row) = df2,1dx.size(row − r)
end for

27

	Introduction
	Problem Formulation

	Background
	Automatic Jacobian Matrix Computation
	Set–Based Graphs
	Stand-Alone QSS Solver
	Related Work

	Main Results
	A scalar algorithm
	Set-Based Graph Representation
	Set-Based Graph Algorithm

	Implementation
	Examples
	RC Transmission Line
	2D Advection-Diffusion-Reaction (ADR) problem

	Conclusions and Future Research
	Code generation for System (6)

