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Abstract

In this work, we explore the usage of Quantized State System (QSS)
methods in the simulation of networks of spiking neurons. We compare the
simulation results obtained by these discrete–event algorithms with the
results of the discrete time methods in use by the neuroscience community.
We found that the computational costs of the QSS–methods grows almost
linearly with the size of the network, while it grows at least quadratically
in the discrete time algorithms. We show that this advantage is mainly due
to the fact that QSS methods only perform calculations in the components
of the system that experience activity.
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1 Introduction

Continuous System Simulation is a topic that has rapidly evolved in the last
decades. The development of faster and more powerful computers has allowed
the representation of larger and more complex models which require the usage
of more efficient and sophisticated simulation algorithms.

Hundreds of numerical integration methods for ordinary differential equa-
tions (ODEs) can be found in the literature [1, 2, 3, 4]. These algorithms,
according to their features, are classified as one–step or multistep; implicit or
explicit; fixed or variable step; fixed or variable order; etc. In spite of their dif-
ferences, all the methods share a property: they are all based on time discretiza-
tion, i.e., given the solution at a time instant, they compute the approximate
solution for the next discrete time point.

In the last years, a new family of algorithms was developed that replace
the time discretization by the quantization of the state variables. Based on
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an original idea of Bernard Zeigler, who showed that Continuous Time Systems
with its inputs and outputs being quantized can be represented by DEVS models
[5, 6, 7], a general method for numerical integration of ODEs called Quantized
State System (QSS) was proposed in [8].

The formulation of the QSS–method was followed by second and third order
accurate algorithms (QSS2 [9] and QSS3 [10], respectively). The QSS family has
nice stability, convergence and error bound theoretical properties [8, 9, 4, 11],
and, from a practical point of view, offers important advantages to detect and
handle discontinuities [12].

QSS–methods are also very efficient to simulate large sparse systems [9, 4],
since they only invoke calculations on the states that experience sensible changes
in their values or derivatives. In other words, QSS algorithms intrinsically ex-
ploit the activity of the system [13, 14, 15].

In this work, we explore the usage of QSS methods to simulate deterministic
ODE models of spiking neural networks (SNN). These models are emerging as
a plausible paradigm for characterizing neural dynamics in the cerebral cortex.
The SNN models have high biological fidelity, and can model many character-
istics of brain architecture [16].

SNN models are usually large (they are composed by several neurons), sparse
(each neuron is generally connected to a small subset of neurons), and each
spike represents a discontinuity in the ODE. The presence of discontinuities
and its large dimension poses several difficulties to the different conventional
numerical methods used by SNN community. Consequently, the simulation of
large networks of spiking neurons becomes slow and demands for more suitable
numerical methods.

Taking into account that QSS methods are good at discontinuity handle and
sparsity exploitation, they are –in principle– good candidates to improve the
performance of SNN simulation. This hypothesis is reinforced by the fact that
previous works have shown some advantages of using the DEVS methodology in
the simulation of non–ODE models of SNN [17, 18]. Also, in [19] a discrete ver-
sion of Hodgkin-Huxley model (which could be used to model SNN) is efficiently
implemented with Cell–DEVS and a similar approach, which approximates the
continuous time behavior, is reported in [20].

The goal of this work is then to implement simulations of ODE models of
SNN based on QSS methods and to compare their performance with those of
conventional numerical methods currently in use for those models.

As a main contribution, we shall show that the principal advantage of using
QSS methods to simulate SNN is that the computational costs grow linearly
with the number of neurons in the network, while classic integration techniques
lead to quadratic growth (in the best case). In large networks, this property
is translated into a sensible reduction of the CPU time required to complete a
simulation.

The article is organized as follows: Section 2 provides the background for
the work, presenting different ODE models for SNN, analyzing the different
numerical methods used in the literature, and introducing the QSS methods as
well as the software tools for their implementation. Section 3 then describes the
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work done to model and to simulate SNN in a software tool that implements the
complete family of QSS algorithms. After that, Section 4 presents the simulation
results and compares those obtained with different QSS methods with those
obtained by classic methods for different SNN configurations. Finally, Section
5 finishes the work with conclusions and some ideas to continue with this line
of research.

2 Modeling and Simulation of Spiking Neural

Networks

This section provides the background on which the rest of the work is based.
We first introduce different ODE models of SNN and then we present the classic
numerical methods used to simulate them. After that, we introduce the family
of QSS methods and the software tools that implement them.

2.1 Models of Spiking Neural Networks

A single spiking neuron can be described by a system of ODEs with disconti-
nuities at the firing times. Several models have been proposed, with varying
complexity. Among the most used we can mention the following ones:

• Hodgkin-Huxley model [21]: This model was developed in the 1950s based
on the experiments performed on the squid giant axon. Due to this fact,
the model parameters have a clear observed meaning. The main inconve-
nience is that its simulation is very expensive due to the model complexity,
as each neuron is represented by four equations governed by ten parame-
ters. Thus, its usage is limited to networks formed by few neurons [22].

• Integrate and Fire [23, 24]. Contrary to Hodgkin-Huxley, this is an ex-
tremely simple model. A neuron is modeled by the equation

v̇(t) = I(t) + a− bv(t), if v(t) ≥ vu then v ← c,

where v(t) is the membrane potential, I(t) is input current, a, b, c and vu

are user defined parameters to obtain different behaviours.

Due to its simplicity, the equation can be analytically integrated between
discontinuities and large neural networks can be simulated. However, the
model is not rich enough to represent many features that are usually ob-
served in real neurons.

Several modifications have been proposed to improve this model, such as
the inclusion of a quadratic term on v(t) (quadratic Integrate and Fire
[25]), or the addition of a second state variable in order to represent more
complex behaviours (Integrate and Fire or Burst [26]).

3



• Izhikevich model [27, 28]: Recently, Izhikevich proposed a rather simple
but versatile model that can represent different behaviours according to
their parameter configuration. Its equations are:

Cv̇ = kv(v − vt)− u + I

u̇ = a(bv − u)
(1)

Where v(t) represents, as before, the membrane potential and u(t) models
the membrane restitution phenomenon. Variable I(t) is the input current
and the rest are user defined constant parameters that allow obtaining
different types of behaviour.

When at time t variable v(t) reaches a given threshold value, the firing is
produced and the state variables are reset as follows:

v(t+) = c

u(t+) = u(t) + d,
(2)

where c and d are user defined constant parameters.

The parameters of Eq.(1) are usually selected so that the equation becomes

v̇(t) = 0.04 · v2 + 5 · v + 140− u + I(t)
u̇(t) = a · (b · v − u)

(3)

As it can be observed in the three models described, there is always a trade–
off between simulation costs and the possibility of reproducing the different
behaviours observed in real neurons. There are several other models for SNN
and a comparison among them can be found in [22].

We shall use Izhikevich’s model along this work, as it combines rich dynamics
with fair computational effort requirements.

The interconnection between neurons (i.e., synapses) can be also modeled in
different ways. In this work, we selected the synaptic current approach [29, 16],
also taking into account excitatory and inhibitory currents [30].

Thus, the original Izhikevich’s model of Eq. (1) was transformed into Eq.
(4):

Cv̇ = kv(v − vt)− u− η(v − Eη)− γ(v − Eγ) + I

u̇ = a(bv − u)
(4)

Here, η and γ are the excitatory and inhibitory conductances, respectively;
while Eη and Eγ are the reversal potentials. When a neuron receives the firing
of an excitatory neuron, the excitatory conductance η increases its value in 6
nS, while when the firing comes from an inhibitory neuron then γ is increased in
67 nS. The rest of the time, η and γ decay exponentially following a first order
dynamic:

η̇ = −λη · η
γ̇ = −λγ · γ,

(5)

where λη and λγ are the decay rate parameters.
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2.2 Numerical Integration of SNN Models

When a classic numerical method is used to simulate a SNN a problem appears.
The models of SNN exhibit a discontinuous behaviour each time a neuron fires.

Conventional numerical methods cannot integrate across a discontinuity.
The numerical integration methods are always based on polynomial approxi-
mations of some functions; which are no longer valid when those functions are
discontinuous. Thus, when they perform an integration step that jumps through
a discontinuity, the error committed is unacceptable. To solve this problem, the
methods must detect the discontinuity first, advance the simulation time until
that instant, and then restart the simulation from the new situation [4].

SNN discontinuities belong to the state event type, i.e., their occurrence
depends on a condition on the state variables (typically, a zero–crossing of some
signal). The detection of this type of discontinuities requires iterations, and it
is computationally expensive. The simulation restart is also time–consuming,
as the simulation step size must be restarted, typically from a small value.

From a practical point of view, the interesting SNN models are those com-
posed by several neurons. As firings at different neurons occur at different times,
the rate of firings in a network grows linearly with the number of neurons.

This is, if each neuron provokes on average 100 firings per second, a network
of 1000 neurons will provoke about 100000 firings per second. Then, any clas-
sic numerical method simulating a single neuron will have an upper bound for
its step size of 1/100 in order to properly handle discontinuities (accuracy and
stability considerations may impose a lower upper bound). However, when sim-
ulating a network of 1000 neurons that upper bound will be as low as 1/100000.
Also, each step will be 1000 times more expensive as it involves the evaluations
on the derivatives of 1000 times more states.

Due to these facts, the computational cost grows at least quadratically with
the number of neurons in the network.

Yet, classic numerical methods are widely used for simulating SNN. Among
them, Runge–Kutta and Bulirsch-Stoer [3] appear frequently reported in the
literature.

A recent work proposes a discrete event like solution based on the lineariza-
tion of the ODE and its analytical solution between firings [31], yet for neuron
models involving more than one state variable this approach is only first order
accurate. Thus, for the case of Izhikevich’s model –which is a second order
system– this approach cannot offer decent results. The fact that the algorithm
results only first order accurate implies that it will not be able to achieve an
acceptable accuracy without increasing enormously the computational costs.
However, it is worth mentioning as this solution, called voltage stepping, has
some connection with the Quantized State System methods that we describe
below.
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2.3 Quantized State System Simulation

While all classic methods are of discrete time type, a new approach was recently
developed which replaces time discretization by state quantization.

The first of these algorithms was the Quantized State System method of first
order (QSS1), which is defined below.

Consider a time invariant ODE:

ẋ(t) = f(x(t),u(t)) (6)

where x(t) ∈ R
n is the state vector and u(t) ∈ R

m is an input vector, which is
a known piecewise constant function.

The QSS1 method [8, 4] analytically solves an approximate ODE, which is
called Quantized State System:

ẋ(t) = f(q(t),u(t)) (7)

where q(t) is a vector of quantized variables which are quantized versions of
the state x(t). Each component qj(t) of q(t) follows a piecewise constant tra-
jectory, related with the corresponding component xj(t) of x(t) by a hysteretic
quantization function so that1

qj(t) =

{

xj(t) if |qj(t
−)− xj(t)| = ∆Qj

qj(t
−) otherwise

(8)

and qj(t0) = xj(t0). This is, qj(t) only changes when it differs from xj(t) by
±∆Qj. The magnitude ∆Qj is called quantum. Figure 1 shows a typical QSS1
quantization function.

Figure 1: Hysteretic quantization

The piecewise constant evolution of the quantized variables qj(t) implies that
the state derivatives ẋj(t) follow piecewise constant trajectories, and then the

1We denote qj(t
−) = limτ→t− qj(τ), i.e., the limit from the left of qj(t).

6



states xj(t) evolve in a piecewise linear way. These facts permit the analytical
integration of the system of Eq.(7) in a straightforward manner.

The QSS1 method has some nice stability and global error bound properties
[9, 4, 11]. Yet, it performs only a first order approximation and a good accuracy
cannot be obtained without significantly increasing the number of steps.

A second order accurate method called QSS2 was proposed in [9]. QSS2 has
the same definition of QSS1, except that the components of qj(t) are now calcu-
lated to follow piecewise linear trajectories. Figure 2 shows a typical evolution
of state and quantized variables.

Figure 2: QSS2 quantization

In QSS2 the state derivatives ẋj(t) are computed as piecewise linear trajec-
tories and then the states xj(t) follow piecewise parabolic trajectories. Like in
QSS1, the analytical solution of the quantized system of Eq.(7) can be easily
obtained following a simple algorithm.

QSS1 and QSS2 ideas were also extended to obtain a third order accu-
rate method called QSS3 [10]. In QSS3, quantized variables follow piecewise
parabolic trajectories and states are piecewise cubic.

Both methods, QSS2 and QSS3, share the stability and error bound prop-
erties of QSS1. The family of QSS is completed with a Backward QSS algo-
rithm (BQSS) and the Centered QSS (CQSS) conceived to integrate stiff and
marginally stable systems, respectively [32].

Since Izikhevich’s model is not stiff nor marginally stable, we shall use QSS3
as it offers the maximum accuracy order among all the QSS methods. Thus, it
will obtain the best relationship between accuracy and computational costs.

The quantization functions shown in Figs.1–2 use a uniform quantum ∆Qj .
Alternatively, QSS methods can use logarithmic quantization, where the quan-
tum is proportional to the corresponding state magnitude [33].

When uniform quantization is used, the absolute global simulation error is
bounded by a linear function of the quantum [4]. In the case of logarithmic
quantization, the relative global simulation error is intrinsically controlled [33].
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Steps in QSS methods are only produced when some quantized variable
qj(t) changes, i.e., when the corresponding state xj(t) differs from qj(t

−) in
a quantum. That change implies also that some state derivatives (those that
depend on xj) are also changed. Then, each step involves a change in only one
quantized variable and in some state derivatives.

Thus, when a large sparse system experiences activity only in a few states
while the rest of the system remains unchanged, the QSS methods intrinsically
exploit this fact performing computations only when and where the changes
occur.

Another important advantage of the QSS methods is that they handle dis-
continuities in a straightforward and very efficient manner [12]. According to
the order of the method, the state variables follow piecewise linear, parabolic
or cubic trajectories. Then, detecting zero crossings is straightforward, as it
involves solving a cubic equation in the worst case. Once a discontinuity is de-
tected, the algorithm handles it as an ordinary step, since each step is in fact a
discontinuity in a quantized variable. Hence, the occurrence of a discontinuity
implies only some local calculations to recompute the state derivatives that are
directly affected by that event.

2.4 QSS Methods and DEVS

Although QSS algorithms can be easily coded in any programming language,
they are usually implemented as discrete event systems within the DEVS for-
malism framework [7].

Notice that each component of Eq.(7) can be considered as the coupling of
two elementary subsystems. A static one,

dj(t) = fj(q1, · · · , qn, u1, · · · , um) (9)

and a dynamical one

qj(t) = Qj(xj(·)) = Qj(

∫

dj(τ)dτ) (10)

In the case of the first order QSS1 method, Qj is the hysteretic quantization
function (it is not a function of the instantaneous value xj(t), but a functional
of the trajectory xj(·)).

Since the components uj(t) and qj(t) are piecewise constant, the output
of Subsystem (9), i.e., dj(t), will be piecewise constant. In this way, both
subsystems have piecewise constant input and output trajectories.

If we represent every change of a piecewise constant trajectory as an event,
then the trajectories can be considered sequences of events.

Thus, the sub–systems of Eqs.(9) and (10) can be seen as discrete event
systems that process event sequences.

The DEVS formalism [7] allows to describe any model that processes event
sequences and the representation of the models of Eqs.(9) and (10) is in fact very
simple. The DEVS equivalent of Eq.(9) is called static function and the DEVS
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equivalent of Eq.(10) is called hysteretic quantized integrator. Their definition
can be found in [4].

Figure 3 shows the block diagram representation of Eq.(7). It is composed by
n static subsystems like that of Eq.(9) and n dynamic subsystems like Eq.(10).

Figure 3: Block Diagram representation of a QSS1 approximation.

By connecting the DEVS models corresponding to static functions and quan-
tized integrators following the block diagram of Fig.3, a coupled DEVS model
is obtained that exactly represents the dynamics of Eq.(7).

The same idea can be applied to represent QSS2 approximations as DEVS
models, but now the events carry two variables with the initial value and slope of
each segment of a piecewise linear trajectory. The DEVS models corresponding
to static functions and quantized integrators are more complex since they take
into account also the slopes of the corresponding trajectories.

The QSS3 method can be also implemented following these ideas.
The family of QSS methods, including QSS1, QSS2, QSS3, BQSS and CQSS

algorithms were implemented in PowerDEVS [34], a DEVS–based simulation
software.

Figure 4 at the left shows the QSS continuous library of PowerDEVS. The
blocks contained in this library implement the quantized integrators and static
functions for the mentioned QSS methods.

Hybrid systems can be represented and simulated in PowerDEVS coupling
blocks of the continuous library with the blocks of the QSS hybrid library shown
at the right of Figure 4. The hybrid blocks are DEVS models that handle
different types of discontinuities making use of the piecewise polynomial features
of quantized variable trajectories in QSS methods.

For instance, the hybrid system corresponding to Izhikevich’s model of Eqs.(3)–
(2) can be implemented by the PowerDEVS model of Figure 5.
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Figure 4: PowerDEVS QSS Continuous and Hybrid Libraries.

The models of continuous and hybrid systems in PowerDEVS can be built
using the classic Block Diagram approach. This is, we include an integrator
for each state variable and then we build the expression of the state derivatives
using continuous and/or hybrid blocks. Additionally, for input signals, we use
source blocks.

Figure 5: Izhikevich’s model in PowerDEVS.

The first order accurate QSS1 algorithm was also implemented in other simu-
lation tools: CD++ [35], VLE [36], and Dymola/Modelica [37]. However, those
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implementations do not include higher order methods like QSS3 (with the ex-
ception of ModelicaDEVS, but this implementation is not efficient enough [37]),
so we shall focus only on PowerDEVS.

3 PowerDEVS Modeling and Simulation of SNN

This section describes the work done to simulate SNN in PowerDEVS using QSS
methods. We first describe the PowerDEVS model of a single isolated neuron,
then the model of a neuron with synapsis interface, and finally the model of a
network of neurons and the modifications introduced in PowerDEVS in order
to efficiently simulate large coupled systems.

3.1 PowerDEVS Model of a Single Isolated Neuron

A single isolated neuron, following Izhikevich’s model of Eqs.(1)–(2), was mod-
eled in PowerDEVS as Figure 5 shows. This Block Diagram was built following
the classic procedure mentioned above, and it is the direct representation in
Block Diagrams of the corresponding differential equations.

There, the blocks ‘Reset QSS Integ1’ and ‘Reset QSS Integ2’ compute the
states v and u, respectively. Similarly, the static blocks ‘Wsum1’, ‘Square Pow1’,
and ‘Wsum2’ calculate the state derivatives, making use also of the source blocks
‘Constant1’ and ‘Step1’. The block ‘Cross detect1’ produces an event each time
its input signal crosses a given level, in this case when the condition v = 60 is
reached. This event is used to reset the first integrator to the value v = −30
and to compute the signal u− 30 and reset the second integrator.

3.2 PowerDEVS Model of a Neuron with Synapsis Inter-

faces

The addition of the synapsis ports transforms Eqs.(1)–(2) into Eqs.(4)–(5).
Thus, we modified the PowerDEVS model of Fig.5 by adding new blocks as
Fig.6 shows.

In this new PowerDEVS block diagram, the new blocks ‘Reset QSS Integ3’
and ‘Reset QSS Integ4’ calculate the new states η and γ, and the blocks ‘Gain1’
and ‘Gain2’ compute the corresponding state derivatives. The blocks ‘Com-
manded Sampler2’ and ‘Commanded Sampler3’ are in charge of reseting the
integrators of η and γ when they receive the events that indicate the firing of
other neurons.

The blocks ‘WSum4’, ‘WSum5’, ‘Wsum6’, ‘Multiplier1’, and ‘Multiplier2’
calculate the additional terms of the derivative v̇(t) at the right hand side of
Eq.(4), and finally, the blocks ‘WSum7’ and ‘WSum8’ compute the reset values
for η and γ.
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Figure 6: Izhikevich’s model with synapsis in PowerDEVS.

3.3 Modeling and Simulation of a Large Neural Network

Modeling and simulating a large network of neurons like those of Fig.6 using
PowerDEVS requires to solve some problems first.

3.3.1 Model Construction

The first of the problems is related to the construction of a very large model
with a graphical user interface like that of PowerDEVS. Although it allows to
encapsulate complex models so that the entire block diagram of Fig.6 appears
as a single block, copying and coupling 1000 of these blocks (in order to simulate
a network of 1000 neurons) is impossible.

We also wanted to generate the connection structure in a random way in
order to perform multiple simulation runs of different networks and the graphical
user interface of PowerDEVS does not have that capability.

So, we used the PowerDEVS GUI only to build the model of a single neuron
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(with and without synapsis ports) and then we wrote a C++ program that
replicates that model as many times as we want and that generates random
interconnections (if necessary) between the different neurons.

3.3.2 Model Simulation

The second problem we faced was related to the size and the structure of the
model and the way PowerDEVS searches the next event time and the next
transitioning model.

Notice that the model of a single neuron with synapsis interfaces (Fig.6)
contains 27 blocks (without taking into account the Gnuplot block in charge
of plotting the results). Thus, a model of 1000 connected neurons has 27000
atomic blocks.

After producing and propagating an event, the simulation engine must find
which is the block that provokes the next event and when that event is being
produced. As PowerDEVS was not originally designed to simulate large net-
works, it simply looks at the next event time of each block and then it takes the
one having the smallest (in case two or more blocks share the minimum time,
PowerDEVS uses a priority list to decide among them).

This solution, although being appropriate for small models, is completely
inefficient for a large network, as it implies searching along the whole structure
at each step. Thus, the cost of each search for the next event time grows linearly
with the size of the system.

Taking into account that the number of neuron firings grows linearly with
the size of the network, so will grow the number of simulation events. If the
search for the next event time also grows linearly, then the total cost will grow at
least quadratically with the network dimension. Consequently, we shall obtain
something similar to that conventional numerical methods. Thus, if we want
to improve this, we need to avoid performing a linear search for the next event
time.

The problem of optimizing the search for the next event time in large models
has been previously discussed in the literature.

The DEVS abstract simulator of [7] proposes a tree structure for the DEVS
model. That way, the search for the next event time is no longer linear. However,
in a SNN model, we can have connections from any neuron to any other neuron
and there is no natural way of splitting the model in a tree–like form at the
modeling stage. The best we can do to reduce the size of the higher hierarchy
level is to build a single coupled model for each neuron. However, the number
of neurons is still very large and the cost of performing a linear search among
them is still linear.

In order to improve the performance of the time scheduling procedure some
authors have proposed to parallelize part of the algorithms and also to reduce the
search space among a subset of atomic models having a minimum time advance
[38, 39]. As we want to show an algorithm working in a single processor, we
cannot take the first solution. The second one, although it would improve the
performance, will not avoid the linear growth.
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Another solution consists in leaving aside from the search to those atomic
models in passive states, i.e., with time advance equal to infinite [40, 41]. As
before, this solution in a SNN network will not prevent the search for the next
event time from growing linearly.

Finally, to accelerate the search among the models with finite time advance,
a heap structure is usually implemented [40, 41].

As this solution reduces the cost from linear to logarithmic, we made our
implementation based on that. We could have also combined this idea with the
other solutions analyzed above. That way, we might have improved further the
results. However, we only wanted to reduce the time search from linear to loga-
rithmic in order to prevent the total simulation cost from growing quadratically
with the size of the network.

We organized the atomic models with a binary tree structure. Every leaf of
the tree contains a reference to an atomic model and to its next event time. Ev-
ery node of the tree contains the minimum time of its children and the reference
to the corresponding atomic model. Thus, the main node of the tree contains
the minimum time of the network and the reference to the corresponding atomic
model.

After an event, for each atomic model that changed its next event time, we
only need to compare it with the time of its brother. If the smaller time does
not change, nothing else has to be done. Otherwise, we need to propagate the
new minimum time to its father node that will in turn compare it back with
its brother node. In the worst case, the propagation will reach the main node.
In that worst case, only about log2(N) comparisons are performed (where N is
the number of blocks) for each atomic model that changed its time advance.

As the number of connections per neuron is bounded by a constant in these
models, each event is propagated to a maximum number of blocks which does
not depend on the total number of blocks. Thus, the number of comparisons
needed after each transition is bounded in a logarithmic way.

According to some preliminary results, the usage of the binary tree allowed us
to reduce the total simulation time by two orders of magnitude in the simulation
of a model with 1000 neurons.

4 Simulation Results

This section shows and discusses the simulation results. Here, we compare
the results obtained with the QSS3 method (in PowerDEVS) using constant
and logarithmic quantization, with those obtained using Runge–Kutta–Fehlberg
and Bulirsch–Stoer (for both methods we used the code provided in [3] with the
addition of discontinuity handling routines).

We worked on three examples: a single isolated neuron, a large network of
isolated neurons and finally a large network of interconnected neurons.
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4.1 Simulation of a Single Neuron

We first simulated a single neuron with a final simulation time of 1 second.
We used the model of Eq.(3). For the parameters, we followed [27] choosing
a = 0.02, b = 0.2, c = −65 + 15 · r2, and d = 8 − 6 · r2, where r is a random
variable with uniform distribution in the interval [0, 1]. Similarly, I(t) was taken
as a constant function with random value.

We ran each simulation 100 times in order to obtain meaningful statistical
data. We measured, for different tolerance and quantum settings, the mean
absolute error and the total simulation time. We used as reference solution that
obtained with QSS3 using a quantum ∆Q = 10−11.

We used this solution as a reference since the analytical solution cannot be
obtained. In order to check that the different methods converge to the reference
solution, we included simulations performed with those methods using small
tolerances.

Figure 7 shows the state trajectories for a particular simulation run. They
coincide with the typical solutions of Izhikevich’s model.
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Figure 7: State trajectories of a single neuron simulation using QSS3. The dif-
ference between the solutions given by the three numerical integration methods
cannot be distinguished by the naked eye.
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Tables 1, 2, 3, and 4 summarize the results. Figures 8 and 9 illustrate the
evolution of the CPU Time and Error as a function of the tolerance or quantum
parameter for the different methods.

For small tolerances, we see that the error of BS and RK45 (i.e., the difference
with the reference solution of QSS3) is around 1E − 8. This means that the
reference solution is useful up to this tolerance.

Parameter Mean CPU Time in sec. (Variance) Mean Error (Variance)
10−03 7.21E-04 (1.69E-04) 6.51E-01 (4.17E-01)
10−04 7.93E-04 (1.76E-04) 9.95E-02 (6.91E-02)
10−05 8.85E-04 (1.93E-04) 6.62E-03 (7.19E-03)
10−06 1.05E-03 (2.09E-04) 3.78E-04 (5.43E-04)
10−07 1.32E-03 (2.41E-04) 4.71E-05 (5.71E-05)
10−08 1.78E-03 (3.00E-04) 4.96E-06 (6.07E-06)
10−09 2.26E-03 (3.42E-04) 6.31E-07 (5.35E-07)
10−10 3.22E-03 (4.63E-04) 8.13E-08 (4.43E-08)
10−11 4.80E-03 (6.50E-04) 7.16E-09 (7.76E-09)

Table 1: Simulation with RK45. Parameter = relative tolerance.

Parameter Mean CPU Time in sec.(Variance) Mean Error (Variance)
10−03 1.12E-03 (2.41E-04) 1.41E+00 (6.84E-01)
10−04 1.44E-03 (3.03E-04) 3.67E-01 (2.31E-01)
10−05 1.53E-03 (4.59E-04) 1.40E-01 (9.88E-02)
10−06 2.17E-03 (4.40E-04) 1.05E-02 (1.69E-02)
10−07 2.23E-03 (4.93E-04) 1.70E-04 (2.30E-04)
10−08 2.72E-03 (6.53E-04) 1.53E-05 (1.11E-05)
10−09 2.88E-03 (5.71E-04) 1.26E-06 (1.04E-06)
10−10 3.32E-03 (7.19E-04) 1.57E-05 (8.49E-05)
10−11 3.66E-03 (7.38E-04) 1.24E-08 (1.31E-08)

Table 2: Simulation with BS. Parameter = relative tolerance.

The results exhibit a clear advantage of the RK and BS methods over QSS3.
The dynamics do not exhibit many discontinuities and the system is fully in-
terconnected. Thus, QSS3 does not have much to offer here. Moreover, the
PowerDEVS implementation (Fig.5) is quite inefficient as every event of the
integrators is propagated to several static atomic blocks, which are in turn
propagated back along the coupled structure. So, the simulation engine spends
more time handling the coupling structure than doing useful calculations. Addi-
tionally, the PowerDEVS engine performs some initialization procedures before
each simulation that take some fixed time (it takes about 0.01 seconds), so there
is a lower bound for the total simulation time.

When it comes to errors and tolerance, we found that the performance of
QSS3 compared with RK and BS worsens when the tolerance becomes more
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Parameter Mean CPU Time in sec.(Variance) Mean Error (Variance)
10−03 2.35E-02 (1.53E-03) 1.16E-01 (7.50E-02)
10−04 3.17E-02 (3.29E-03) 1.74E-02 (9.74E-03)
10−05 5.05E-02 (6.64E-03) 1.52E-03 (2.11E-03)
10−06 8.88E-02 (1.42E-02) 2.64E-04 (1.04E-03)
10−07 1.74E-01 (3.11E-02) 7.74E-06 (2.94E-06)
10−08 3.58E-01 (6.71E-02) 7.63E-07 (3.12E-07)
10−09 7.55E-01 (1.53E-01) 8.26E-08 (5.21E-08)
10−10 1.62E+00 (3.16E-01) 6.71E-09 (6.37E-09)
10−11 3.47E+00 (6.32E-01) 0.00E+00 (0.00E+00)

Table 3: Simulation with QSS3. Parameter = ∆Q.

Parameter Mean CPU Time in sec.(Variance) Mean Error (Variance)
10−03 1.92E-02 (8.78E-04) 1.15E+00 (3.08E-01)
10−04 2.26E-02 (3.74E-03) 1.66E-01 (1.10E-01)
10−05 2.82E-02 (2.97E-03) 6.73E-03 (8.38E-03)
10−06 4.12E-02 (5.60E-03) 1.41E-03 (3.55E-03)
10−07 6.96E-02 (1.08E-02) 4.67E-04 (1.39E-03)
10−08 1.31E-01 (2.31E-02) 1.89E-04 (8.97E-04)
10−09 2.66E-01 (5.33E-02) 3.02E-06 (5.27E-06)
10−10 5.51E-01 (1.09E-01) 3.02E-07 (5.46E-07)
10−11 1.18E+00 (2.50E-01) 1.89E-08 (2.52E-08)

Table 4: Simulation with logarithmic QSS3. Parameter = ∆Qrel.

stringent (Fig.8). This is due to the fact that QSS3 is only a third order accurate
algorithm and thus the CPU Time grows with the cubic root of the required
accuracy.

4.2 Simulation of Networks of Isolated Neurons

In this second experiment, we simulated different systems of disconnected neu-
rons. We ran different simulations of systems with 10, 100, 1000, and 2000
neurons using the same methods of the previous example. In order to have
similar errors with the different algorithms, we selected a tolerance of 10−4 for
RK, and 10−5 for BS. Similarly, we selected a quantum ∆Q = 10−3 for QSS3
and ∆Qrel = 10−4 for QSS3 with logarithmic quantization. With these values,
according to the simulation results of the previous example, all the methods
have a mean absolute error around 10−1.

Table 5 exhibits the mean time (after 30 simulation runs) required by each
method to complete the simulation. The final simulation time was set to 1
second.

Figure 10 plots the CPU time required by each method for the different
number of neurons.
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Figure 8: CPU Time vs. tolerance (quantum) for different methods.

Method 10 neurons 100 neurons
RK 1.41E-02 (1.78E-02) 1.31E-01 (3.00E-02)
BS 1.30E-02 (5.27E-03) 3.70E-01 (8.33E-02)

QSS3 2.08E-01 (2.02E-01) 7.70E-01 (2.19E-01)
QSS3 log 1.24E-01 (8.39E-02) 5.93E-01 (9.40E-02)

Method 1000 neurons 2000 neurons
RK 1.04E+01 (8.36E-01) 3.88E+01 (3.30E+00)
BS 3.71E+01 (4.33E+00) 1.35E+02 (1.53E+01)

QSS3 7.89E+00 (2.09E+00) 1.72E+01 (3.49E+00)
QSS3 log 7.07E+00 (1.74E+00) 1.61E+01 (3.51E+00)

Table 5: Mean CPU Time in sec. for simulating 10, 100, 1000, and 2000 dis-
connected neurons. The variance is reported between parentheses.

The results become now more interesting. For small systems (10 to 100
neurons), QSS3 methods show a poor performance compared with BS and RK.
However, when the number of neurons increases, QSS3 rapidly outperforms both
discrete time algorithms.

This fact can be easily explained taking into account the way in which QSS
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Figure 9: Error vs. tolerance (quantum) for different methods.

methods exploit activity. As we mentioned in Section 2.2, discrete time al-
gorithms must evaluate all the state derivatives at each step, and they must
restart the whole simulation after each discontinuity (i.e., after each firing). As
the number of firings as well as the size of the right hand side function of the
ODE grow linearly with the size of the network, the discrete time algorithms
experience a quadratic growth of the CPU time.

Although the QSS3 method is inefficient to simulate a single neuron, every
step and every firing only provokes calculations at one neuron. Thus, the al-
gorithm only performs computations where the changes occur, i.e., where the
system shows some activity. In consequence, the CPU Time grows almost lin-
early with the number of neurons. This fact can be observed in Table 5.

4.3 Simulation of Networks of Interconnected Neurons

In this last test we simulated different networks of interconnected neurons. To
this end, we followed the scheme proposed in the Benchmark I of [16].

We considered networks composed by 400, 1000, 2000, and 4000 neurons. In
each case, 80% of the neurons are of excitatory type while the remaining 20%
are of inhibitory type. We also established that each neuron is connected (in a
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Figure 10: CPU Time (sec.) for RK, BS, QSS3, and QSS3 logarithmic in the
simulation of a system of 10, 100, 1000, and 2000 disconnected neurons.

random way) with 80 neurons.
We compare the performance of the four algorithms of the previous example,

with the same tolerance and quantum settings, but now we selected a final sim-
ulation time of 250 milliseconds. As before, we ran each simulation 30 times and
computed the mean CPU time required for each algorithm. Table 6 summarizes
the results.

Method 400 1000 2000 4000
RK 9.79 (1.62) 68.89 (7.94) 300.29 (25.84) 1231.24 (76.98)
BS 30.08 (3.69) 165.58 (16.40) 568.40 (43.50) 2124.14 (293.23)

QSS3 17.74 (1.59) 61.33 (2.71) 139.76 (4.79) 301.76 (11.00)
QSS3 log 12.56 (0.85) 44.15 (2.19) 101.80 (3.55) 218.19 (7.61)

Table 6: Mean CPU Time (sec.) for 400, 1000, 2000, and 4000 interconnected
neurons. The variance is reported between parentheses.

Figure 11 plots the CPU Time as a function of the number of neurons for
each algorithm.

These new results agree with the previous case of disconnected neurons.
When the number of neurons becomes larger, QSS3 methods become more effi-
cient than both discrete time algorithms.

As we observed in the previous example, Figure 11 shows that the CPU Time
grows almost linearly in QSS3 methods, while it grows at least quadratically in
the other algorithms.
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Figure 11: Mean CPU Time vs. Number of Neurons.

5 Conclusions

In this article we studied the use of QSS algorithms in the simulation of spiking
neural networks. We found that their efficient discontinuity handling and their
activity driven features offer very important advantages over the most widely
used discrete time methods.

The greatest advantage exhibited by the QSS methods is that its computa-
tional costs grow almost linearly with the number of neurons, while it grows at
least quadratically for discrete time methods. Consequently, the performance
of the QSS algorithms in the simulation of large networks of neurons is clearly
superior.

As a side result, we implemented an algorithm to manage the time advance
of the simulation engine based on a binary tree of the submodels. While the
cost for computing the next event time is linear with the number of submodels
in most DEVS implementations, in our algorithm it results only logarithmic.

Although the results are promising and the QSS methods noticeably improve
the performance of discrete time algorithms in the systems analyzed, some work
has to be done before claiming that this discrete event approach constitutes a
valid and general alternative for spiking neural networks simulation.
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First, we need to perform experiments with different models (so far, we used
only Izhikevich’s model with a particular type of synapses). We conjecture that
we shall find the same advantages, but we cannot affirm that without running
simulations.

In the current work, as we explained in Section 3, the models were built
using an ad–hoc C++ program that generated the PowerDEVS model structure.
If we want to convince people from the neurosciences community to use our
algorithms, we definitely need to develop a better end–user interface.

Moreover, it is possible that PowerDEVS (or any other DEVS–based mod-
eling tool) is not the best choice to implement these simulations. Any general
purpose DEVS simulation engine performs several tasks that are not useful in
the context of simulating a QSS approximation of an ODE. We are currently
working on the development of standalone QSS solvers. Some preliminary re-
sults show a simulation speedup of one order of magnitude with respect to the
same QSS approximation executed by PowerDEVS. Thus, if we can develop a
specific end–user interface for modeling large SNN and then we integrate them
with these standalone solvers, we can expect a significant improvement of the
results shown in this article.

Finally, for larger networks of neurons, we will need to tackle the problem
of parallelization of the algorithms.
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