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We introduce an extension of the classic Discrete Event System Specification (DEVS) formalism
that includes stochastic features. Based on the use of the probability spaces theory we define the
stochastic DEVS (STDEVS) specification, which provides a formal framework for modeling and sim-
ulation of general non-deterministic discrete event systems. The main theoretical properties of the
STDEVS framework are treated, including a new definition of legitimacy of models in the stochas-
tic context and a proof of STDEVS closure under coupling. We also illustrate the new stochastic
modeling capabilities introduced by STDEVS and their relation with those found in classic DEVS.
Practical simulation examples are given involving performance analysis of computer systems and
hybrid modeling of networked control systems, applications where the modeling of stochastic com-
ponents is vital.
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1. Introduction

DEVS (Discrete Event System Specification) is a formal-
ism that was developed in the mid-1970s [1, 2] as a gen-
eral methodology for describing discrete event systems.
DEVS is a system theoretic-based representation of the
systems whose input/output behavior can be described by
sequences of events. Being a universal formalism for dis-
crete event systems [3], other methodologies (e.g. finite
state automata, Petri nets, grafcets, statecharts, etc.) can
be represented by DEVS. This generality converted DEVS
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into a widely used formalism to describe and to simulate
most classes of discrete systems, including discrete time
systems [2]. Moreover, numerical integration methods that
approximate continuous systems (differential equations)
by DEVS models have been developed [4] and several
applications and extensions of the DEVS formalism for
modeling and simulation of continuous and hybrid sys-
tems have been proposed [5, 6].

Many DEVS-based modeling and simulation software
tools have been developed through the years [7–10]. Al-
though most of these tools have incorporated the use of
random functions, DEVS has only been formally defined
for modeling deterministic systems, which limits the ex-
tent of the formal framework to a wide family of stochastic
systems.

This work introduces a general DEVS-based formal-
ism for modeling generalized stochastic systems. The new
formalism, called STDEVS (stochastic DEVS) is an ex-
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tension of DEVS that establishes a formal framework for
modeling and simulation of stochastic discrete event sys-
tems. The main theoretical properties of STDEVS (such
as closure under coupling, legitimacy, etc.) are formally
defined in the context of the new framework.

Stochastic models play a fundamental role in discrete
event system theory. In fact, any system involving uncer-
tainties, unpredictable human actions or system failures
requires a non-deterministic treatment. Examples of tra-
ditional stochastic discrete event formalisms are Markov
chains [11], queueing networks [12] and stochastic Petri
nets [13]. These techniques permit stochastic models to
be analyzed and simulated in several applications.

Some early works have dealt with the links between
DEVS and stochastic systems [14–16]. Nevertheless, none
of them provided a general theory or a formal theoretic
support for modeling general stochastic DEVS models

The STDEVS methodology, besides providing a mech-
anism to specify general stochastic DEVS models, de-
scribes the probabilistic behavior from a state transition
specification level and covers coupling properties in a
straight manner. STDEVS inherits the DEVS multimodel-
ing capabilities to represent hybrid systems, and offers en-
hanced simulation performance compared with traditional
techniques when combining stochastic discrete time and
continuous time systems.

The work is organized as follows. Section 2 provides
the required background about DEVS, previous attempts
to link DEVS and stochastic phenomena, and the prob-
ability spaces theory (which we use to define STDEVS
in terms of general state sets). Section 3 introduces sev-
eral motivating modeling problems and formulates exam-
ples to make evident the main limitations of the classic
DEVS framework to represent general stochastic systems.
Section 4 provides the rationale behind the proposition
of STDEVS and defines the STDEVS formalism. Sec-
tion 5 shows that STDEVS is closed under coupling, and
it defines the property of legitimacy. Section 6 shows that
any measurable DEVS model where the transition func-
tions depend on random variables defines an equivalent
STDEVS model (which permits some STDEVS models
to be modeled without making use of probability spaces
and provides a formal framework for DEVS simulation
tools using pseudo-random sequence generators). The sec-
tion ends with a summary and discussion that substanti-
ates the benefits of STDEVS by solving the motivating
problems posed in Section 3. Finally, Section 7 illustrates
the use of the new formalism in the context of a stochastic
modeling process, using different examples in computer
and networking applications that involve hybrid (continu-
ous/discrete) modeling and control theory.

2. Background

2.1 DEVS Formalism

As we said earlier, the DEVS formalism can describe
most discrete systems, including discrete time systems
and, more recently, continuous and hybrid systems. This
generality is achieved by the ability of DEVS to repre-
sent general discrete event systems, i.e. any system whose
input/output behavior can be described by sequences of
events.

More specifically, a DEVS model [2] processes an in-
put event trajectory and, according to that trajectory and
to its own initial state, provokes an output event trajec-
tory. Formally, a DEVS atomic model is defined by the
following structure:

M � �X�Y� S� �int� �ext� �� ta��

where

� X is the set of input event values, i.e. the set of all
the values that an input event can take�

� Y is the set of output event values�

� S is the set of state values�

� �int, �ext, � and ta are functions which define the
system dynamics.

Each possible state s (s � S) has an associated time
advance calculated by the time advance function ta�s�
(ta�s� : S ���0 ). The time advance is a non-negative real
number saying how long the system remains in a given
state in absence of input events.

Thus, if the state adopts the value s1 at time t1, after
ta�s1� units of time (i.e. at time ta�s1� � t1) the system
performs an internal transition, going to a new state s2.
The new state is calculated as s2 � �int�s1�, where �int
(�int : S � S) is called the internal transition function.

When the state goes from s1 to s2 an output event is
produced with value y1 � ��s1�, where � �� : S � Y � is
called output function. Functions ta, �int and � define the
autonomous behavior of a DEVS model.

When an input event arrives, the state changes instan-
taneously. The new state value depends not only on the in-
put event value but also on the previous state value and the
elapsed time since the last transition. If the system goes to
the state s3 at time t3 and then an input event arrives at
time t3 � e with value x1, the new state is calculated as
s4 � �ext�s3� e� x1� (note that ta�s3� 	 e). In this case, we
say that the system performs an external transition. Func-
tion �ext (�ext : S 
 ��0 
 X � S) is called the external
transition function. No output event is produced during an
external transition.

DEVS models can be coupled in a modular way [2]. A
DEVS coupled model N is defined by the structure:

N � �X N �YN � D� �Md�� �Id�� �Zi�d�� Select�

2 SIMULATION Volume 00, Number 0



A FORMAL FRAMEWORK FOR STOCHASTIC DISCRETE EVENT SYSTEM SPECIFICATION MODELING AND SIMULATION

where:

� X N and YN are the sets of input and output values
of the coupled model�

� D is the set of component references, so that for
each d � D, Md is a DEVS model�

� for each d � D  �N �, Id � �D  �N ��� �d� is the
set of influencer models on subsystem d�

� for each i � Id , Zi�d is the translation function,
where

Zi�d :

����
���

X N � Xd if i � N

Yi � YN if d � N

Yi � Xd otherwise

� Select: 2D � D is a tie-breaking function for si-
multaneous events� it must verify Select�E� � E ,
with E � 2D the set of components producing the
simultaneity of events.

DEVS models are closed under coupling, i.e. the cou-
pling of DEVS models defines an equivalent atomic
DEVS model [2].

2.2 Early Links between DEVS and Stochastic
Phenomena

From an early stage it was clear that there is a need to
establish formal relationships to allow DEVS to describe
stochastic characteristics of the systems under study. In
[14, 1] the authors showed that a discrete event simulation
driven by pseudo-random sequences defines an equiva-
lent DEVS model. In other words, the DEVS formalism
can capture the behavior of stochastic systems that are be-
ing simulated using pseudo-random sequences, i.e. they
perform deterministic modeling of stochastic systems [1].
However, it does not provide a methodology to describe
DEVS stochastic models. In [15] the author established
a relationship between probabilistic experiment outcomes
and the evolution of a DEVS simulation, by assigning sto-
chastic measures to the externally observable state trajec-
tories. However, this work is limited to models described
at the input/output level of specification [2] (i.e. it does
not specify the dynamics at the state transition level).

The first structural approach to extend DEVS to take
into account an internal stochastic behavior at the state
transition level was sketched in [16]. However, that work
was limited to DEVS models with finite state sets. Since
one of the most important features of DEVS is its capabil-
ity to deal with arbitrary state sets, the restriction to finite
sets is a problem. These works led to a set of useful re-
sults that were sufficient to tackle some specific problem
domains, but only from a behavioral perspective.

Figure 1. A sample space Ssp and its generated sigma-field � .
Each member Fi of the collection � satisfies the required condi-
tions imposed to constitute a sigma-field. The empty space � and
the original sample space Ssp are required members of � .

2.3 Probability Spaces

As we will see, to overcome this difficulty, we define
STDEVS in terms of general probability spaces, relying
on the general theory of probability spaces [17, 18].

A sample space Ssp of a random experiment is a set
that includes all of the possible outcomes of the experi-
ment. A sigma-field (also referred as a sigma-algebra1)�
of the sample space Ssp is a non-empty collection made
of subsets of Ssp. The idea is that, when we work with a
continuous sample space Ssp, we can assign probabilities
to subsets of Ssp and not to single elements of Ssp. Thus,
the probabilities are assigned to the elements of the sigma-
field � (which are subsets of Ssp).

A sigma-field cannot be any arbitrary collection of sub-
sets of Ssp. A collection� must satisfy the following prop-
erties in order to constitute a sigma-field:

� if F � � , then Fc � � (where Fc is the comple-
ment of F in Ssp, Fc  F � Ssp)�

� if Fi � � for i � 1� � � � ��, then also
��

i�1 Fi � � .

Note that since Fc  F � Ssp, the last two conditions
imply that Ssp � � and also� � � . In Figure 1 we show a
schematic representation of a sigma-field generated from
an arbitrary sample space and its members.

These conditions are necessary in order to build up
a general measurable structure from Ssp, which can be
equipped with probability measures as we show shortly.

One particular example of a sigma-field over the sam-
ple space Ssp is the collection of all of the possible subsets
of Ssp (2Ssp , called the power set of Ssp). Although this is
not a very useful sigma-field (as it may include many un-
interesting subsets, to which we may not want or may not
be able to assign probabilities), it helps in many theoreti-
cal proofs.

1. A sigma-algebra is also called an event space, but we avoid this
term in order not to become confused with the meaning we give to the
word event in the DEVS methodology.
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In most practical problems, we would only describe
the probabilities of certain subsets of Ssp (e.g. if Ssp was
the real set �, we normally assign probabilities only to
open intervals). Although an arbitrarily chosen collection
of these subsets (that may be of interest for working on
a particular problem) may not constitute a sigma-field it-
self, it always generates a sigma-field. Let � be a particu-
lar collection of subsets of Ssp. The sigma-field generated
by �, denoted����, is the smallest sigma-field that con-
tains all of the elements of �.

A pair (Ssp��) consisting on a sample space Ssp and
a sigma field � of subsets of Ssp is called a measurable
space. A probability measure P on a measurable space
(Ssp��) is an assignment of a real number P�F� to every
member F of the sigma-field, such that P obeys the fol-
lowing rules.

� Axiom 1: P�F� 	 0 for all F � � (the probabilities
are non-negative).

� Axiom 2: P�Ssp� � 1 (the probability of an outcome
in the complete sample space is equal to 1).

� Axiom 3: if Fi � � , i � 1� � � � �� are disjoint sets,
then P�

��
i�1 Fi � ���

i�1 P�Fi �.

When we have a sigma-field � � ���� generated
from a particular practical collection � of subsets of Ssp,
the knowledge of P�G� for every subset G � �, readily
defines the function P for every subset F � � .

Finally, our random experiment can be fully described
by a probability space defined as the triplet (Ssp��� P)
consisting of a sample space Ssp, a sigma-field � of sub-
sets of Ssp, and a probability measure P defined for all
members of � .

Synthesizing, for every F � � , P�F� expresses the
probability that the random experiment produces a sample
s � F � Ssp as the experiment outcome.

2.4 Measurable Functions

We also need to use the concept of measurable func-
tions [18] to describe certain requisites for the model
functions. The concept is described through the following
definitions.

Definition 1. (Preimage) Given a function f : A �
B and the set B1 � B, we define the preimage A1 �
f �1�B1� of the set B1 under f as

A1 � �a � A � f �a� � B1��

Definition 2. (Measurable function) Given a sigma-
field � over a set A and a sigma-field � over a set B,
a function f : A � B is said to be measurable �/� when
it holds:

A1 � f �1�B1�� A1 � A� �B1 � B�

The idea is that when a measurable function renders
a measurable image set it ensures a measurable preimage
set. These sets are measurable provided that they belong
to their corresponding sigma-fields, and the function itself
is regarded measurable in the context of � and �. For
brevity, in general the reference to sigma-fields is omitted,
and f is simply called a measurable function.

3. Motivation

In this section we expose the main theoretical issues that
raise the need for a reconsideration of the DEVS formal-
ism for modeling stochastic processes. We discuss a series
of open questions that show the need for a new approach
to solve this problem.

3.1 DEVS with Random Numbers: DEVS-RND

We start with the following basic question: can random
number generators be used in DEVS functions?

We study some very simplistic DEVS models that in-
corporate the use of random numbers, and find that it is
not difficult to quickly reach very important limitations
that invalidate the correctness of the models. In the fol-
lowing, we call those DEVS models whose functions de-
pend on (at least one) random numbers DEVS-RND mod-
els, and focus mainly on the internal transition function
to build our cases. Let us start with a basic DEVS-RND
model MU that throws a uniformly distributed random
number between zero and one on its output every second.
Such a model can be defined as follows:

MU � �X� Y� S� �int� �ext� �� ta�

where:

� X � � (the model has no inputs)�

� Y � �[0�1]�

� S � �[0�1] 
��0 �
� �int�a� � � � �RND�0� 1�� 1� (always one internal

transition per second)�

� �ext�s� e� x� � � (the model has no external transi-
tions)�

� ��s� � a (where a � �[0�1] is the part of the state
used to store the last generated random value)�

� ta�s� � � (where � � ��0 is the part of the state
used to store the time to the next internal transition).

Now suppose that at a given time the model state is
s � �0�5� 1�. The next state s� will be determined by
s � � �int�0�5� 1� which is an undetermined value until the
random experiment described by RND�0� 1� is evaluated.
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This situation shows that �int is not a function (it does not
assign a unique value to a given set of input variables).
So, the model is not a proper DEVS model (�int must be a
function according to its formal definition).

The workaround to this simple situation is to rewrite2

�int��� with a proper structure that mathematically reflects
a function, yet describing the random behavior. (In the
work of [1] where �int was first defined formally, a grocery
store example is provided where a function 	 : [0� 1] �
[0� 1] is used as a random number generator to build an
internal transition function such as �int�s� � f ��� 	�s��.
This is a proper DEVS definition given 	��� represents
a case of deterministic modeling of a stochastic system.
Strictly speaking, �int thus defined does not depend on a
true random variable, but instead on a deterministic trajec-
tory of values 	. This trajectory is intended to mimic the
statistical properties of a real random process being mod-
eled (i.e. a pseudo-random sequence). With the purpose
of accurate modeling representativeness, function 	 is re-
quired to provide the ‘notion of an ideal random number
generator’, and the guidelines to formulate this require-
ment in formal terms are provided in [1]. Nevertheless,
�int remains deterministic, thus complying with its mathe-
matical definition as a function.)

This is achieved by incorporating the random variable
as an argument. With this alternative approach, we can
write

�int�a� � � r� � �r� 1� with r � U�0� 1�

In general, we may say that now the internal transition
function depends on the state s and some random vari-
able r with a given statistical distribution, and that this is
mathematically sound.

Working in that way, the function �int�s� r� computes a
state s � S according to the choice of a random number r .

3.2 Generality of DEVS-RND

Now that we have our DEVS-RND form with a well-
defined internal transition function, we pose the next ques-
tion: is the form �int�s� r� the most general way of choos-
ing an element out of set S?. The answer is no.

Since S in DEVS is an abstract set, it can have a very
complex structure so that real numbers cannot be uniquely
mapped into elements of S. For instance, we can think of
a DEVS-RND model that every second randomly chooses
a function fc : [0� 1] � � from the space of all con-
tinuous functions C�[0� 1]�, with fc � C�[0� 1]�. Then, it
calculates the average value of fc over the [0� 1] interval
and sends it as an output value. In such a model, the state
space is infinite-dimensional, and given the fact that real
numbers cannot be mapped into this space, the model can-
not be defined using the DEVS-RND structure. The only

2. We use the symbol � in the argument of a function to denote that
the given function depends on some list of arguments.

general way to randomly choose elements from the space
of continuous functions is through the use of probability
spaces. Although for most practical situations in simula-
tion choosing real numbers would suffice, our goal is to
develop a general modeling formalism.

3.3 Consistency of DEVS-RND

We proceed now with the next question: is DEVS-RND
consistent? The idea is to know whether or not it is
consistent3 in DEVS-RND to add random variables as ar-
guments as we did in the function �int.

To answer this question, we introduce a second exam-
ple. The following model MV chooses a random number
r � U�0� 1� every second in the same way as model MU
does, but this time MV also computes the average num-
ber of times the outcome of r belongs to a given subset
V � �[0�1]. The new model looks as follows:

MV � �X�Y� S� �int� �ext� �� ta�

where:

� X � � (the model has no inputs)�

� Y � �[0�1]�

� S � �[0�1] 
�
��0 �
� �int�
� n� � � r� � �
 �� n � 1� 1� with


 � �
� 
�n�1

n�1 � if r � V � �[0�1]


�n
n�1 � otherwise

(where n is the part of the state used to count the
number of experiments)�

� �ext�s� e� x� � � (the model has no external transi-
tions)�

� � � 
 (where 
 � �[0�1] is the part of the state
used to store the average number of successes for
V � �[0�1])�

� ta � � (where � � ��0 is the part of the state used
to store the time to the next internal transition).

It is clear that as n goes to infinity the output value
converges to the probability that a real number between
zero and one belongs to V . However, if V was a Vitali set
[19], that probability does not exist, since sets of the Vitali
type are non-measurable sets. A Vitali set is an example
of a set of real numbers that is not Lebesgue measurable,
being inconsistent to talk about its length.

3. We refer to the concept of consistency informally, to denote the
situation when a model does not lead to a mathematical contradiction.
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Hence, although the model MV looks correct accord-
ing to our solution of adding r into the arguments of �int, it
is mathematically inconsistent. We cannot generate a ran-
dom real number and then ask whether it belongs to a Vi-
tali set, as this set has no measure on the real numbers.

Thus, the answer to our question is again no. We can
find inconsistent models when adding random variables
in the arguments of the transition functions.

3.4 Closure Under Coupling of DEVS-RND

Now we start checking DEVS-RND regarding the fun-
damental theoretical properties of classical DEVS, start-
ing with closure under coupling. So our next question is:
does the coupling of consistent DEVS-RND models al-
ways define an equivalent consistent DEVS-RND model?

In other words, we ask whether or not the closure under
coupling can be still guaranteed when random variables
are added to a DEVS model.

Consider again the model MU introduced in Sec-
tion 3.1, expressed according the DEVS-RND form:

MU � �X� Y� S� �int� �ext� �� ta�

where:

� X � � (the model has no inputs)�

� Y � �[0�1]�

� S � �[0�1] 
���
� �int�a� � � r� � �r� 1� with r � U�0� 1� (one internal

transition per second)�

� �ext�s� e� x� � � (the model has no external transi-
tions)�

� ��s� � a�

� ta�s� � � .

Now let us connect the output of MU to the input of
a deterministic DEVS model MA, which computes in its
state the average of the received values when they belong
to the Vitali set V � �[0�1]:

MA � �X� Y� S� �int� �ext� �� ta�

where:

� X � �[0�1]�

� Y � �[0�1]�

� S � �[0�1] 
�
 0���
� �int�
� n� � � � �
� n����

� �ext�
� n� � � � �
 �� n � 1� 0� with


 � �
� 
�n�1

n�1 � if r � V � �[0�1]


�n
n�1 � otherwise

� ��
� n� � � � 
 �
� ta�
� n� � � � � .

Both DEVS models are perfectly consistent. The first
is very simple, and the second is just a classic determin-
istic DEVS model. However, the coupling of the consis-
tent models MU and MA results in a model that behave
in exactly same way as the MV atomic model studied in
Section 3.3, which is indeed inconsistent.

Thus, the answer to our question is no� working in this
way we cannot guarantee closure under coupling while
preserving consistency.

3.5 Legitimacy of DEVS-RND

Another important theoretical property of classic DEVS is
about legitimacy. Thus, our next question is: can we apply
the concept of legitimacy in classic DEVS to DEVS-RND
models?

Consider now the following DEVS-RND model, which
simply throws a value of one on its output on a randomly
chosen time basis:

ML � �X� Y� S� �int� �ext� �� ta�

where:

� X � � (the model has no inputs)�

� Y � 1�

� S � �[0�1]�

� �int�� � r� � r with r � U�0� 1��

� �ext � � (the model has no external transitions)�

� ��s� � 1�

� ta�s� � � .

Is this model legitimate, i.e. will it always perform a
finite number of events in a given finite interval of time?

Note that the following sequence of values of r is fea-
sible and results in an illegitimate model state trajectory:
�1� 1

2 �
1
4 �

1
8 � � � ��. Also, the sequence �0� 0� 0� 0� � � �� can

occur, leading our model to a illegitimate condition.
However, we can easily prove that the probability of

obtaining an illegitimating sequence is zero, thus obtain-
ing a legitimate model in some way. However, to affirm
this fact, we redefine the concept of legitimacy in the con-
text of stochastic models.
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3.6 The Need for a New Formalism

Now we reach to the last question: do we need a new for-
malism to define stochastic DEVS models?

The simple examples examined before in this section
showed that adding stochastic features to DEVS models
may lead to inconsistencies.

Other discrete event formalisms (such as Petri nets,
finite state automata, statecharts, etc.) work with finite (or
countable) state sets. Thus, adding stochastic features to
them is straightforward.

DEVS, however, admits arbitrary state sets. Unfortu-
nately, the only way of consistently working with random
processes over arbitrary sets is through the use of proba-
bility spaces. All of the problems we saw in this section
were a result of the fact that we tried to add stochastic
features without taking care of the generality of the state
space.

Thus, the answer to the last question is yes. It is clear
that a general DEVS-based stochastic formalism must be
provided if we propose to incorporate elements from the
probability spaces theory. We introduce this new formal-
ism, namely STDEVS, in the next section.

In practice, computers use a finite number of bits for
data representation. Thus, when we simulate a DEVS
model, the state set S is represented as a finite set (avoid-
ing the problems discussed in this section). However, as
DEVS distinguishes modeling from simulation, we should
not make any assumption about the finiteness of the state
space (which is a particular consequence of the simulation
implementation).

Wrapping up, the benefit of a new STDEVS formal-
ism is to provide the missing theory for obtaining a gen-
eral, consistent, closed, legitimate and sound description
for stochastic DEVS models.

4. STDEVS Formalism

This section introduces the new STDEVS formalism. Af-
ter an informal description of the main idea, it presents the
formal definition of an STDEVS atomic model and that of
a coupled STDEVS model.

4.1 Concepts

Our basic approach is to take the deterministic DEVS
definition (keeping the essence of its model structure),
and then to derive a new stochastic model structure re-
placing the way dynamics are described. Namely, the de-
terministic functions �int and �ext should be replaced by
their probabilistic counterparts in terms of the probabil-
ity spaces theory. The new stochastic model structure will
be referred to as STDEVS (which stands for STochastic
DEVS), and guarantees the correctness of the usage of
random-like functions into the model description and the
coupling between stochastic and deterministic models.

We use the transition functions to incorporate stochas-
tic behavior, thinking of each state transition event as a
random experiment of which the possible outcomes will
determine the next system state. As in DEVS internal tran-
sitions the future state �s is determined by the current state
s, we define a probability space for each current state s
(i.e. we assign probabilities to the transitions from s to fu-
ture states). Similarly, in DEVS external transitions, the
future state �s is determined by the current state s, the
elapsed time e and the input event x . Thus, in STDEVS
we define a probability space for each triplet �s� e� x� (i.e.
we assign probabilities to the transitions from the triplet
�s� e� x� to future states).

Both DEVS transitions and STDEVS stochastic exper-
iments give �s � S as a state transition result. Thus, the
natural link between both types of structures (determinis-
tic DEVS and stochastic STDEVS) is the set S. The set
S acts as the state set for both structures, and as the sam-
ple space Ssp required to build a stochastic description in
terms of probability spaces in the context of the STDEVS
structure.

As the state set S can be continuous, a state-to-state
probability measure might be useless, because it will be
equal to zero for most possible future states �s. When S
is continuous, we need a continuous sample space and a
continuous probability distribution to measure the proba-
bilities of the future possible elements of S. This descrip-
tion is given by probability density functions (pdfs) which
need to be integrated over an interval to produce the prob-
ability measure for the event that a random experiment
outcome will land on that interval. In this scenario, if we
choose an individual future state �s and calculate the inte-
gral of the pdf over a point, the calculation will render
always zero. Thus, the general approach must consider
probability measures describing the likelihood for the sys-
tem being in state s arriving to sets G � S of future states
(rather than to a single element �s � S) after a model inter-
nal transition (and analogously for the case of the external
transition).

In order not to lose generality, each transition in
STDEVS must be seen as an independent random exper-
iment. Thus, for an internal transition, depending on the
current state, we should be able to assign probabilities
for the future state belonging to different subsets of S. In
other words, the collection � that contains the subsets of
S to which we assign probabilities when the current state
is s must depend on s. Thus, we define an internal set-
collecting function �int�s� which, together with the sam-
ple space S and a probability function define a probability
space that replaces the DEVS internal transition function.
A similar remark can be made for the external transition,
where the set-collecting function �ext�s� e� x�will also de-
pend on the elapsed time and the input event.

Our approach relies on using the stochastic description
only to the state transition functions. This allows us to
greatly reduce description complexity for the stochastic
structure, without losing generality. Randomness in func-
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tions � and ta, can be incorporated by taking into account
that these functions depend on the state s � S. Since s
is always chosen by random experiments at the internal
and external transition functions, the randomness of the
remaining functions can be modeled as part of the infor-
mation stored in the state. A straightforward way of doing
this is to define the state as s � ��s� � � �� and then to make
ta�s� � � and ��s� � �. Then, we can define an arbitrary
random experiment for choosing � and � at the internal
and external transitions, and we obtain an arbitrary ran-
dom behavior for the functions ��s� and ta�s� (in spite of
their deterministic definition).

4.2 STDEVS Definition

A STDEVS model has the structure:

MST � �X�Y� S��int��ext� Pint� Pext� �� ta�

where:

� X� Y� S preserve the original definition they have in
DEVS�

� �int��ext� Pint� Pext are new functions that replace
the functionality of the original �ext and �int DEVS
functions�

� �� ta extend the original definition they have in
DEVS with the additional requirement that they
have to be measurable functions.

Here �int : S � 2S is a function that assigns a col-
lection of measurable sets �int�s� � 2S to every state s.
Given a state s, the collection �int�s� contains all of the
measurable subsets of S that the future state might belong
to with a known probability, determined by the function
Pint : S 
 2S � [0� 1]. When the system is in state s the
probability that the internal transition carries it to a set
G � �int�s� is computed by Pint�s�G�.

Calling �int�s� � ���int�s�� to the minimum sigma-
field generated by �int�s�, the triplet (S��int�s�� Pint�s� ��)
is a probability space for each state s � S.

In a similar way, �ext : S
��0 
 X � 2S, is a function
that assigns a collection of sets �ext�s� e� x� � 2S to each
triplet �s� e� x�. Given a state s and an elapsed time e, if an
event with value x arrives, �ext�s� e� x� contains all of the
measurable subsets of S that the future state can belong
to, with a known probability calculated by Pext : S
��0 

X 
 2S � [0� 1].

Calling �ext�s� e� x� � ���ext�s� e� x�� to the min-
imum sigma-field generated by �ext�s� e� x�, the triplet
(S��ext�s� e� x�� Pext�s� e� x� ��) is a probability space for
every triplet �s� e� x�.

4.3 Coupling in STDEVS

Proceeding in a similar manner as Section 2.1 for DEVS
coupling, we state that STDEVS models can be coupled
modularly, in such a way that a STDEVS coupled model
N is defined by the structure:

N � �X N �YN � D� �Md�� �Id�� �Zi�d�� Select�

where the components are identical to those of the
DEVS definition, except that the components Md are now
STDEVS structures.

The new introduced requisite for � and ta functions
about being measurable functions in atomic STDEVS
models, will guarantee the desired measurability of �int
and �ext in coupled STDEVS models. We will see this in
more detail in Section 5.1.

5. Properties of STDEVS

This section studies the main properties of STDEVS. It
first shows that STDEVS is closed under coupling (i.e. the
coupling of atomic STDEVS models defines an equivalent
atomic STDEVS model). Then, we redefine the concept of
DEVS legitimacy in the context of stochastic DEVS.

5.1 Closure Under Coupling

We show that a coupled STDEVS model

N � �X N �YN � D� �Md�� �Id�� �Zi�d�� Select�
with Md � �Md� being STDEVS atomic models for all d,
defines an equivalent atomic STDEVS model, thus veri-
fying STDEVS closure under coupling.

To achieve this, we find an atomic STDEVS
model MST � �X� Y� SN ��intN ��extN � PintN � PextN � �� ta�
defined by the coupling expression N .

We begin by defining the relationships that are shared
with the classic proof for deterministic DEVS [2]:

� X � X N , Y � YN �

� SN � 

d�D
��sd� ed�� with sd � Sd� ed � ��

each component of SN has the form sN �
�� � � � �sd� ed�� � � ���

� ta�sN � � min�� d � d � D�, with � d � tad �sd��ed �

� d� � Select�IMM�sN ��, where IMM is the set of
sub-models with minimum time to next event, i.e.
IMM � �d�� d � ta�sN ���

� we have

��sN � �
�

Zd��N ��d��sd��� if d� � IN �

� otherwise
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Then, we need to obtain the probability spaces that will
represent the stochastic dynamics of the coupled model,
as a result of the stochastic behavior of its atomic compo-
nents.

First, for internal transitions, we define the set-
collecting function:

�intN �sN � � 

d�D
��d 
 ��ed��

where

�d �

����
���
�int�sd�� if d � d�

�ext�sd� �ed� xd� if xd �� �
�sd� otherwise

with

xd �
�

Zd��d��d��sd��� if d� � Id

� otherwise

�ed �
�

0 if d � d� or xd �� �
�ed otherwise

and
�ed � ed � tad��sd��� ed� �

Then, the sets GN � �intN �sN � will have the form G N �
�� � � �Gd� �ed��� � � �� and will verify G N � SN .

We also call �intN �sN � � ���intN �sN �� the mini-
mum sigma-field generated by �intN �sN �. Then, the prob-
ability measure for the internal transition process in N ,
PintN : SN 
 2SN � [0� 1] is defined as:

PintN �sN �GN �

� Pintd� �sd� �Gd��
	

d�xd ���
Pextd �sd� �ed� xd�Gd�

and it can be verified that the triplet (SN � �intN �sN ��
PintN �sN � ��� is a probability space.

Similarly, for external transitions we define the set-
collecting function:

�extN �sN � e� xN � � 

d�D
��d 
 ��ed��

where

�d �
��ext�sd� �ed� xd� if xd �� �
�sd� otherwise

�ed �
�

0 if xd �� �
�ed otherwise

with

xd �
�

Z N �d�xN � if N � Id

� otherwise

and
�ed � ed � e�

The sets G N � �extN �sN � e� xN � will also have the form
G N � �� � � �Gd� �ed��� � � �� and will verify G N � SN .

Again, we define �extN �sN � e� xN � � ���extN �sN �
e� xN �� the minimum sigma-field generated by
�extN �sN � e� xN �. Then, the probability measure for the ex-
ternal transition process in N , PextN : SN
�
X
2SN �
[0� 1] is defined as

PextN �sN � e� xN �GN � �
	

d�xd ���
Pextd �sd� �ed� xd�Gd�

and the triplet (SN ��extN �sN � e� xN �� PextN �sN � e� xN � ���
is a probability space.

Note that the functions ��sN � and ta�sN � resulting from
the coupling procedure are guaranteed to be measurable
functions. It is given that any finite number of opera-
tions involving measurable functions over measurable sets
always result in measurable functions and/or sets. The
same argument can be applied to show that the subsets
G N � �intN ��� and G N � �extN ��� will be measurable sets.

This constructive proof shows that the generic coupled
STDEVS model N is equivalent to the atomic STDEVS
model MST. Thus, we can couple STDEVS models in a
hierarchical way, encapsulating complex coupled models
and coupling them with other atomic or coupled models.
This property is just analogous to that of the classic deter-
ministic DEVS formalism.

5.2 Legitimacy

Legitimacy in deterministic DEVS is a property that en-
sures that a model cannot perform an infinite number of
transitions in a finite interval of time.

In STDEVS, this property must be redefined now ex-
pressing that the probability of having an infinite number
of transitions in a finite interval of time is zero.

Given a STDEVS model, we consider a function
Pk : S 
�� � [0� 1], so that Pk�s� z� evaluates the prob-
ability that departing from state s � S, after k internal
transitions, the system accumulates an elapsed time equal
or less than z.

We then define the legitimacy of STDEVS as follows.

Definition 3. A STDEVS model is said to be legitimate
when it verifies

lim
k�� Pk�s� z� � 0� �z ��� �s � S� (1)

In other words, a STDEVS model is legitimate when,
starting from any state s, the probability of accumulating
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a finite elapsed time after an infinite sequence of consec-
utive state changes is zero.

For instance, according to this definition, the model
ML introduced in Section 3.5 is legitimate, as it
verifies (1).

Note that in this model it holds that

Pk�s� z� � P



k�

i�1

ri � z

�
� �s � S

where ri are k uniformly distributed random numbers be-
tween zero and one. Given any small  � 0, the weak law
of large numbers establishes that

lim
k�� P



k�

i�1

ri

k
� 1

2

 � 
�
� 1

from where it can be easily derived that

lim
k�� P



k�

i�1

ri � k

�
1

2
� 
��

� 1

and then

lim
k�� P



k�

i�1

ri � k

�
1

2
� 
��

� 0�

Now, by taking  � 1�2, the term k�1�2 � � becomes
greater than any z as k goes to�. Then,

lim
k�� P



k�

i�1

ri � z

�
� 0

and thus the model ML verifies the STDEVS legitimacy
condition.

In order to complete Definition 3, we now derive a
general expression for Pk�s� z� in terms of the STDEVS
characteristic functions Pint and ta. Note that the follow-
ing construction of Pk�s� z� is only an example among
other valid procedures that might be found to check
Definition 3.

We start by selecting a small positive scalar , with
0 �  � 1 and defining the sets Sx� composed by states
verifying a bounding criteria for their time advance val-
ues, according to

Sx� � �s � x  ta�s� � x � �� (2)

Now we introduce the function pk�s� z� � that evaluates
the probability that the system, departing from state s, ac-
cumulates an elapsed time in the interval [z� z � � after
k internal transitions. For k � 1, and taking into account
the function Pint and the sets Sx� defined above, it follows
that

p1�s� z� � � Pint�s� Sz��� (3)

Let us suppose that we know the expression of pk for
certain values of k. In order to find the expression for
pk�1, we first define Rk�z� x� c� � as the set of the states
s � Sx� with probability in the interval [c� c � � of ac-
cumulating an elapsed time between z and z �  after k
transitions. Formally,

Rk�z� x� c� � � �s � Sx� � c  pk�s� x� z� � c��� (4)

Then, assuming that  is small enough, we can evaluate
pk�1�s� z� � as the probability of making a step of dura-
tion between x and x �  followed by k steps with a total
duration between z � x and z � x � . This probability
can be calculated as the sum of the probabilities of pass-
ing through the different disjoint sets Rk�z � x� x� c� �
with different values of c (between zero and one) and x
(between zero and z). This is,

pk�1�s� z� � �
[z�]�
mx�0

[1�]�
mc�0

Pint�s� Rk�z � �x� �x� �c� �� �c (5)

with
�x � mx� �c � mc� (6)

We have found a general expression for pk with k 	 1.
Then, we can build Pk�s� z� according to

Pk�s� z� � lim
�0

z��
mx�0

pk�s� �x� � (7)

in cases where this limit exists4. This expression, together
with (1), expresses a legitimacy condition for STDEVS as
a function of Pint�s� �� and ta�s�.

6. DEVS, RND Functions and STDEVS

In this section we study the links between deterministic
DEVS and stochastic STDEVS. We first show that we can
build STDEVS models using DEVS conventional models
equipped with RND functions in the transition functions.
Then, we also show that DEVS models with measurable
functions are particular cases of STDEVS and that this
property allows us to formally couple together DEVS and
STDEVS models.

6.1 DEVS Models with Functions RND

We show that a DEVS-like model whose transition func-
tions depend on random variables (typically generated us-
ing RND functions) define, under certain conditions, a
STDEVS model.

4. Otherwise, any other valid procedure to find an expression for
Pk�s� z� according to Definition 3 can be used.
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Thus, it will first be clear that STDEVS can repre-
sent any practical and consistent stochastic DEVS model
defined by the usual method of using RND functions.
Second, this property allows us to define and simulate
STDEVS models in a very simple and straightforward
way, getting rid of the need to use probability spaces
which add complexity to the model definition structure
and terminology.

As before, we call DEVS models whose transition
functions depend on RND functions DEVS-RND models.
We distinguish the concept of DEVS-RND (a definition
for mathematical modeling purposes) from the concept
of Zeigler’s original utilization of a pseudo-random num-
ber generator in a DEVS transition function [1] (a
specification for practical simulation purposes on a com-
puter). Eventually (but not necessarily) a given DEVS-
RND model specification can be practically simulated us-
ing pseudo-random sequences in DEVS transition func-
tions with satisfactory results.

Also, we say that a DEVS-RND model is measurable
when all of its functions (�int, �ext, ta, �) are measurable
on the corresponding sets.

Theorem 1. A measurable DEVS-RND model

MD � �X� Y� S� �int� �ext� �� ta�

in which its state change functions �int and �ext depend
dynamically on a random experiment through a random
variable r (i.e. �int � �int�s� r� and �ext � �ext�s� e� x� r�)
with r � R � �n characterized by a probability measure
P�r � B � B � � � 2R�, defines an equivalent STDEVS
model5.

Proof. We obtain a STDEVS model

MST � �X�Y� S��int��ext� Pint� Pext� �� ta�

equivalent to MD , assuming that X�Y� S� �� ta are iden-
tical for MD and MST. Thus, we only need to find
�int��ext� Pint and Pext.

We start by defining the collecting set �int�s� in relation
to the sigma-field � of the random experiment. For each
set B � � and for each state s � S, we define the preimage
set Gs�B � S according to

�s � Gs�B !� " r � B��int�s� r� � �s�
Since �int is a measurable function and the set B is mea-
surable, then as a result the set Gs�B is also measurable.
Then, we define �int�s� as

�int�s� � �Gs�B �B � ���

5. We use � to denote the sigma-field where the function P is
defined.

Therefore, for the system being in state s, the probability
of transition to a new state belonging to Gs�B � �int�s� is

Pint�s�Gs�B� � P�r � B��

Then, for each state s � S, the function Pint�s� �� is a prob-
ability measure in the measurable space �S��int�s��, being
�int�s� � M���s�� the minimum sigma-field generated
by �int�s�. This is proved by verification of the following
axioms:

1. Pint�s�Gs�B� 	 0 because Pint�s�Gs�B� � P�r �
B� 	 0�

2. Pint�s� S� � 1 , given
�
�s� r� � S� �s� r �

3. let B1� B2 � �, then, if Gs�B1 # Gs�B2 � � �
B1 # B2 � �, therefore, the following holds

Pint�s�Gs�B1  Gs�B2� � P�r � B1  B2�

� P�r � B1�� P�r � B2�

� Pint�s�Gs�B1�

� Pint�s�Gs�B1��

So far, we obtained �int and Pint for the STDEVS model
MST departing from the DEVS-RND model MD definition
and the randomness condition incorporated in �int�s� r�.

In the case of �ext and Pext we proceed analogously,
this time replacing the state s by the triplet �s� e� x� for
the analysis. This concludes the proof. �

Consider now the particular case r � R � [0� 1]n �
�n with uniform distribution. We say that r is uniformly
distributed when every component of r have uniform dis-
tribution over the interval [0� 1]:

ri � U�0� 1�� i � 1� 2� � � � � n

This is the typical case emulated by pseudo-random
sequence generators used in most of the programming
languages (we call them RND). It is interesting to take a
look separately for this particular case given that STDEVS
models are usually simulated using RND functions.

The following is then a corollary of Theorem 1, partic-
ularizing the properties of STDEVS models when using
RND functions within the transition definitions.

Corollary 1. A measurable DEVS-RND model in which
�int�s� r� depends on n functions RND (i.e. r � U�0� 1�n)
defines a STDEVS equivalent model.

This corollary does not need any proof, given that it is a
particular case of Theorem 1, taking R � [0� 1]n . Anyway,
we can make explicit reference of the components of the
resulting STDEVS model.
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Proceeding as in the general case, for each image set
Gs�B � ��s�, the probability of transitioning from state s
to a new state belonging to the set Gs�B will be

Pint�s�Gs�B� � P�r � B�

which turns out to be the Lebesgue measure for the set B.

6.2 DEVS and STDEVS

In the case that one (or both) transition function(s) is de-
terministic, it can still be defined as ���� r�, but in such a
way that it is independent on r . Hence, the whole previous
analysis remains valid.

Following this reasoning, the theorem presented here
is an alternative way of proving that deterministic
measurable6 DEVS is a particular case of stochastic
STDEVS, where randomness is removed from state tran-
sition dynamics.

Finally, if we consider that both transition functions are
deterministic (the DEVS case) and use the same concept
of defining them with ���� r� independent on r , the follow-
ing corollary can be derived.

Corollary 2. A deterministic and measurable DEVS
model always defines an equivalent stochastic STDEVS
model.

6.3 Coupling of DEVS and STDEVS

An important feature of STDEVS models should be its
transparent integration with measurable DEVS models
into hybrid structures. The coupling of DEVS atomic
models (along with their closure under the coupling prop-
erty) was defined in [2], and has also now been defined
for STDEVS models in Sections 4.3 and 5.1. Now, in or-
der to guarantee connectivity between both types of mod-
els it is sufficient to prove that a single measurable DEVS
atomic model structure can always be connected to a sin-
gle STDEVS atomic model structure. To this aim we can
make use of Corollary 2, and consider any given mea-
surable DEVS atomic model as its STDEVS equivalent.
Thus, the closure under coupling for STDEVS guarantees
that a valid connection between both types of models re-
sults in a new STDEVS coupled model.

This also allows for the composition of models by the
hierarchical connection of measurable DEVS models and
STDEVS models. This implies that a coupled STDEVS
can be used, in turn, into a more complex coupled model� a
procedure called hierarchical coupling. The procedure can
be extended as many times as needed and at any hierarchi-
cal level, thus allowing us to naturally combine measur-
able DEVS and STDEVS models according to the needs
of the user.

6. As in the case of DEVS-RND, we say that a DEVS model is
measurable when all of its functions are measurable.

Figure 2. Relationship between categories of models.

It is worth noting that it is enough to have one single
STDEVS atomic model as part of a more complex model
structure, in order to need an STDEVS description for the
whole coupled system.

6.4 Summary and Discussion

We close the theoretical body of our work with a clas-
sification of the formalisms discussed so far, namely
DEVS, DEVS-RND and STDEVS, from the point of view
of the main properties that distinguish the models belong-
ing to them, i.e. measurability and dimensionality of their
sets and functions. Also, we map to this classification
those initial problems found in the motivational models
introduced in Section 3 to provide a comprehensive un-
derstanding of the context in which they operate.

Each set in the Venn diagram of Figure 2 represents
a particular family of models. The limits between the
sets imply some kind of distinction according the dif-
ferent abilities of each model family to represent cer-
tain modeling problems. The formalisms are conformed
as DEVS � 1  2, DEVS-RND � DEVS  3  4 and
STDEVS � 2  4  5.

The difference between models belonging to 12 (clas-
sic DEVS) and those belonging to 3  4 is that the latter
are able to represent stochastic behavior (to a limited ex-
tent). As we saw in Section 3.1, the functions in classic
DEVS cannot formally represent stochastic behavior, be-
cause this leads to a situation where they lose the property
of assigning a unique value to each element of a given in-
put set. As depicted in Figure 2, all DEVS models define
DEVS-RND models.

Another important difference is between models be-
longing to 2  4 and those belonging to 1  3. Models in
2  4 are required to operate over measurable sets, while
models in 1  3 are not. This is why the models in 2  4
are called measurable DEVS-RND, and the models in 2
are called measurable DEVS.
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STDEVS was defined by taking into account that con-
sistent stochastic processes must operate over measurable
sets. In that way, STDEVS cannot represent models in
1  3. However, STDEVS extends the domain of DEVS-
RND. The family of models number 5 is exclusive to
the STDEVS representation. These models are different
from the rest because of their ability to represent sto-
chastic behavior over (measurable) infinite-dimensional
spaces, which provide the generality property we asked
for in the motivational example of Section 3.2. STDEVS
also defines measurable DEVS-RND models (family 4)
and measurable DEVS models (family 2). The inability of
STDEVS to represent models in 1  3 is in fact an advan-
tage, because it prevents STDEVS from defining incon-
sistent models (both at the atomic and coupled levels).

All of the aforementioned remarks can be illustrated
using the motivating examples discussed previously in
Section 3. Model MU in Section 3.1 belongs to family 4
(i.e. it is a DEVS-RND model operating over measurable
sets). It also defines a STDEVS model. The model de-
scribed in Section 3.2 belongs clearly to family 5 (i.e. it
is a STDEVS model operating over infinite-dimensional
spaces that cannot be represented by DEVS-RND). Model
MV in Section 3.3 is inconsistent because it attempts to
assign a measure over a non-measurable set, thus, it is a
DEVS-RND model in family 3, but it does not define a
STDEVS model. In Section 3.4 the model MA is a de-
terministic DEVS model in family 1 that does not define
a STDEVS model, and MU is a consistent DEVS-RND
model of family 4 that does define a STDEVS model.
While MA is not inconsistent itself, when coupled with
MU the result is an inconsistent model that behaves in the
same way as model MV in family 3 and does not define a
STDEVS model.

One final concept about this categorization of DEVS-
related models into families is, again, the distinction be-
tween modeling and simulation. Most practical models
ever implemented in DEVS-based simulators belong to
the zone 2  4. This is mainly due to the finiteness of the
data-representation capabilities of known computing plat-
forms, which inherently lead to a finite and measurable
representation of perhaps more sophisticated theoretical
models for simulation purposes. Moreover, in most prac-
tical cases, after a system is modeled mathematically as
a measurable DEVS-RND model (zone 4 in Figure 2),
it still needs to be assigned a computationally imple-
mentable algorithm that approximates satisfactorily some
selected statistical properties. When such an algorithm ex-
ists, and is selected, the measurable DEVS-RND model
is ultimately simulated as a deterministic DEVS model
(zone 2 in Figure 2) that uses pseudo-random number se-
quences (i.e. deterministic sequences, strictly speaking) to
evaluate state transitions.

However, as we showed throughout the present work,
very important issues arise when dealing with the theo-
retical stochastic modeling capabilities and limitations of
the formalisms, not limiting the analysis to the computa-

tionally practical subsets of possibilities. These issues be-
come evident and necessary when introducing the proba-
bility spaces theory into the DEVS framework.

7. Case Study

In this section we develop two case studies to illustrate
the use of STDEVS for modeling stochastic systems and
its relation with the further simulation process. We first
introduce a model of a task load-balancing system. We
then present the model of a hybrid networked control sys-
tem. Using the theory presented we see that the practical
measurable DEVS-RND representations of the random
processes are consistent with their STDEVS specification
in terms of probability spaces.

7.1 A Foreword on the Process of Stochastic
Modeling and Simulation with STDEVS

As discussed throughout this work (and stressed in partic-
ular in Section 6.4) the distinction between modeling and
simulation becomes a sensitive issue when dealing with
stochastic systems.

Indeed, we already know that there exist practical sim-
ulatable DEVS models using RND functions that can lead
to completely incorrect probabilistic results (e.g. those
involving unmeasurable sets, that can be defined with
DEVS)� and there also exist completely valid stochastic
mathematical models that can never be simulated with
today’s digital computers (e.g. those involving infinite-
dimensional spaces, that can be defined with STDEVS).

We also already know that STDEVS is a formal frame-
work that allows for consistent and general mathematical
modeling of DEVS stochastic systems, relying on a sound
theory supporting them: the probability spaces theory.

Now, when it comes to the subject of practical case
studies using STDEVS, it is important to focus on the
stochastic model-to-simulation process that leads from a
formally sound stochastic model to an executable piece
of code. A diagram of this process involving STDEVS is
shown in Figure 3. The full process comprises three activ-
ities and two transitional steps.

Activities represent the action of obtaining a DEVS-
based representation of a given stochastic system. The
process can start directly at any Activity. When the input
information for an Activity is only the real-world stochas-
tic system to be modeled, no previous transitional Step is
involved. When an Activity starts from a previous com-
pleted Activity, the transitional Step represents the adap-
tation of the previous state of the stochastic model to a
new state of representation (i.e. a model transformation
procedure).

We claim that by starting the stochastic modeling
process at any point other than Activity �a� increases the
methodological risk of obtaining an inaccurate model.
Nevertheless, in some cases the risk can be sufficiently
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Figure 3. Stochastic model-to-simulation process. Activities and transitional steps.

understood and considered low enough to proceed with
the process by starting at any desired point.

For example, starting directly in Activity �c� may or
may not lead to the reproduction of a valid and consistent
stochastic model, and its accuracy relies on the theoretical
background and experience of the programmer. Of course,
well-known and widely used practical probabilistic distri-
butions are readily available for their code implementa-
tion by means their algorithmic descriptions [20] or even
reusable code libraries of public domain [21].

Nevertheless, it is obvious that these practical shortcuts
(when correct) are confined to represent a very particular
subset of stochastic models: the subset of those models
that �a� are representable by measurable DEVS-RND de-
scriptions and �b� preserve satisfactorily some stochastic
properties when implemented in a DEVS simulator with
pseudo-random number generators.

Thus, the existence of the above-mentioned wide fam-
ily of practical stochastic algorithms does not provide any
generalization of their mathematical description, and is
not enough to substitute a formal and general stochastic
modeling formalism. On the other hand, STDEVS (while
closer to the analytic description of the models than to
their practical implementation) provides the mathematical
tool to assess the correctness of any possible stochastic
DEVS model in the context of probability spaces theory,
including those frequently implemented by DEVS practi-
tioners.

Put another way, every possible measurable DEVS or
measurable DEVS-RND simulatable model running on
a digital computer, is a practical implementation of a
STDEVS model. At this point, it is clear that by simply

throwing pseudo-random number generators into the tran-
sition functions of our favorite DEVS simulator, we can-
not claim for guarantees of the measurability property of
their equivalent DEVS-RND models� afterwards, we can-
not ensure their representation as a STDEVS model, and
consequently we cannot make any assumption about their
consistency with the probability spaces theory.

Thus, it makes sense to work in the opposite way,
as suggested in Figure 3. This is, from the STDEVS
model specification, down to the DEVS-RND model
specification, and finally down to the implementation on
a digital computer (i.e. DEVS with pseudo-random gen-
erators). If we succeed through these steps, the model-
to-simulation process itself guarantees an executable code
that complies with the theoretical requirements needed to
represent a proper stochastic model.

Note: As we shall see, in practice, things become much
easier when we know in advance that we are modeling
some classic probabilistic distributions, that are known
to operate over well-defined probability spaces. In sit-
uations such as these, we can make use of Theorem 1
and claim that the measurable DEVS-RND descriptions of
those models are also STDEVS models. This situation al-
lows us to skip Activity �a� and Step �1� in the modeling
process7, which is an advantage in terms of the reduction
of modeling effort. Then, from Activity �b� downwards in

7. With this decision, we accepted the risk involved because (a) we
know that the risk exists and (b) we have a sufficient amount of previous
knowledge about the problem at hand to be confident that the risk of
being wrong is extremely low.
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Figure 3, the process does not differ from the typical pro-
cedure being carried out through the years for DEVS mod-
eling and simulation of stochastic systems.

Finally, the aim of the examples below is to show the
complete stochastic model-to-simulation process, involv-
ing STDEVS explicitly in some situations, and resorting
to Theorem 1 in other cases, completing the usual DEVS
modeling and simulation procedures with subsequent re-
sults analysis. As we want to reach successfully simulat-
able situations, we pick examples that do not pose any
difficulty in completing the full process.

7.2 Load Balancer Model

The example load-balancing model (LBM) introduced in
this section is a simplification of a computing system that
processes successive tasks. This simple example shows a
system in which the dynamics fully depend on random
experiments.

The LBM is formed by the following atomic models:
load generator (LG), weighted balancer (WB) and two
servers (S1,S2) with no queuing policy (i.e. the tasks ar-
riving at a busy server are discarded). The set {WB,S1,S2}
forms the subsystem cluster (CL), a coupled model.

As before, transition functions are expressed in terms
of r � U�0� 1�, namely �int��� � �int�s� r� and �ext��� �
�ext�s� e� x� r�.

7.2.1 Load Generator (LG)

This model generates a number of tasks per time unit ac-
cording to a discrete Poisson random distribution being dr
the mean expected departure rate. It can be proven that the
inter-departure time � k between tasks k and k�1 is expo-
nentially distributed according to P�� k  t� � 1 � e�at ,
where a � dr and 1�a is the mean expected value. We
assume that the model LG generates only one type of task
(task1) which goes out through the only output port (out1).
The LG model does not have any inputs, thus only internal
transitions are possible. The STDEVS definition for LG is

MLG
ST � �X� Y� S��int��ext� Pint� Pext� �� ta�

with deterministic components:

� X � �, Y � ��task1�out1���
� S � ��0 �
� ��s� � �task1�out1��

� ta�s� � s�

and stochastic functions:

� �int�s� � �At � t 	 0� , At � [0� t��

� Pint�s�G� � Pint�s� At� � 1� e�at , G � �int.

As we can see the stochastic description for the inter-
departure time of tasks is mapped directly to the func-
tion Pint through the corresponding cumulative distribu-
tion function. As only internal transitions are possible, we
do not need to define �ext� Pext.

To implement this STDEVS model in a digital com-
puter, the probabilistic description must be translated into
an algorithm to be evaluated into the internal transition
code, representing the associated DEVS �int��� function. It
is, we have to transition from Activity �a� to Activity �b�
completing Step �2� in the process of Figure 3. To accom-
plish this, and according to our previous definitions, we
define

�int�s� r� � ��1�a�log�r�

where by means of the inverse transformation method we
have obtained an exponentially distributed function mak-
ing use of a uniform distributed variable r � U�0� 1�
available as a RND() function in most programming lan-
guages.

Consequently, the equivalent measurable DEVS-RND
specification for LG is

MLG
D � �X� Y� S� �int� �ext� �� ta�

where:

� X � ��
� Y � ��task1�out1���
� S � ��0 �
� �int�s� r� � ��1�a� log�r��

� �ext�s� e� x� r� � s�

� ��s� � �task1�out1��

� ta�s� � s.

In this component, the next randomly calculated inter-
departure time is stored in the real-valued state s, which is
then used by the time advance function ta�s� � s making
LG ‘inactive’ during that period8.

Note that by making state s an arbitrarily designed n-
tuple we are able to apply independent random distribu-
tions to decide the next state value for each of the n ele-
ments in s after a state transition. Thus, by simply includ-
ing the time advance � as one of the n component ele-
ments of s and afterwards using � to evaluate ta�s�, we
are readily able to apply any stochastic distribution to the
lifetime of the next state. If m of the n components of s
�m  n� are to be decided with independent random gen-
erators, then we can use a random vector r � U�0� 1�m of
dimension m.

8. Similar reasoning can be applied for the rest of the components,
where the state values are used for storage purposes.
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Note: From now on, we build the models of this ex-
ample directly in DEVS-RND. We make use of Theo-
rem 1 and only refer to the DEVS-RND form of those
components with some form of stochastic behavior, con-
taining RND() functions in the algorithms that evaluate
transitions. We can do this because the models we cre-
ate represent classic probability distributions belonging
to well-defined finite-dimensional probability spaces, thus
yielding measurable DEVS-RND models. This is an eas-
ier modeling approach than defining the STDEVS struc-
ture of the model (as we did before for LG), because in
DEVS-RND we do not need to define the stochastic func-
tions �int��ext� Pint� Pext. Still, by means of Theorem 1, the
corresponding equivalent STDEVS model can always be
obtained from a measurable DEVS-RND model, building
the STDEVS structure following the same reasoning used
for LG.

7.2.2 Weighted Balancer (WB)

The WB component delivers the incoming tasks arriving
at input port (Port: inp1) to the output ports out1 and out2
based on a balancing factor b f � [0� 1] that determines
the weight relation between both ports. For b f � 0�5 both
outputs have the same weight and therefore the outgoing
load will be balanced equiprobably. For b f � 0�5, out1 is
privileged and for b f � 0�5, out2 is privileged, in a linear
fashion. The tasks accepted belong to a set T � �task1�
� � � � taskm� with m different possible tasks.

The measurable DEVS-RND definition MWB
D for WB

is
MWB

D � �X� Y� S� �int� �ext� �� ta�

with:

� X � T 
 �inp1� , Y � T 
 �out1�out2��
� S � T 
 �out1�out2� 
 ��0 �
� ���� p� � � � ��� p��

� ta��� p� � � � � .

The state is a triplet s � ��� p� � �, where � repre-
sents the last task received, p is the port where that task
is delivered and � is the time advance. For our example
T � �task1�. After receiving an event �x
 � x p� the new
state must be evaluated by

�ext���� p� � �� e� �x
 � x p�� r� � �x
 � �p� 0�
with

�p �
�

out1 if r � b f

out2 otherwise

Finally, the internal transition will be

�int���� p� � �� r� � ��� p���
in this case, independent of r .

7.2.3 Server 1 and Server 2 (S1,S2)

The servers S1 and S2 are components that receive the
tasks delivered by the balancer WB. The servers process
each task received, which takes a service time st . Once
processed, the task is sent out to a sink, where it is recog-
nized as a completed task. The service time variable st is
distributed exponentially with P�st  t� � 1� e�bt , and
its mean expected value is 1�b.

There is no queuing policy nor preemption defined for
the servers. If a new task arrives at a busy server, the task
is ignored.

We give the measurable DEVS-RND definition M Sn
D

with n � 1� 2 for S1 and S2, respectively:

M Sn
D � �X� Y� S� �int� �ext� �� ta�

where:

� X � T 
 �inp1� , Y � T 
 �out1��
� S � T 
 �false�true� 
 ��0 �
� ����busy� � � � ����
� ta���busy� � � � � .

The state is a triplet s � ���busy� � �, where � rep-
resents the last task received, busy represents the status
of the server (if busy � true the server is processing a
task and if busy � false the server is free) and � is the
time to the next scheduled event. For our example, we
have T � �task1� and only one input port and one out-
put port. After receiving an event �x
 � xp� the new state
will be evaluated according to:

�ext���� busy� � �� e� �x
 � x p�� r� � � ��� true� ���
with � �� � x
 � �� � ��1�b� log�r� if not�busy�

�� � �� �� � � � e if busy

with r � U�0� 1�. The internal transition will be com-
pleted as

�int���� busy� � �� r� � ��� false���
independently of r .

7.2.4 LBM Coupled Model

As discussed earlier, this model is intended to show a
scenario where random variables affect all of its building
components. Here, we have a Poisson process dominating
the task generation, a uniform process (with a latter deter-
ministic bias) affecting the balancing between two servers
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Figure 4. Topology of the LBM example.

and a negative exponential process representing task ser-
vicing times at servers. Nevertheless, the implementation
always rely on the use of a uniform distributed variable
r � U�0� 1�.

In Figure 4 the model topology is represented along
with the main model parameters and derived traffic mag-
nitudes that will be used in the next section.

7.2.5 Simulation Results

Based on the measurable DEVS-RND specification of
the components and their interconnections, we built the
complete model in a DEVS simulation tool (PowerDEVS
[10]). This implies completing the transitional Step �2�
and the Activity �c� in the process depicted in Figure 3.
We do not go in further detail about this part of the process
because it does not introduce any new concepts and does
not present interesting complexities. Also, we refer to the
model as the STDEVS model, given that we already know
that what is obtained following the proposed stochastic
model-to-simulation process are all particular instantia-
tions explained by the general STDEVS framework.

Then, we ran several simulations at different system
operating points. In order to validate the STDEVS model,
we used the simulation results and some formulas known
in queuing theory [22]. We then compared the expected
theoretical values against the simulated results.

A single server with no queuing capacity can be de-
scribed by a M�M�m�m system with m � 1. This de-
scription assumes exponential inter-arrival times and ex-
ponential service times (which match our case). For the
i th server we have the parameters �i (arrival rate) and �i
(service rate). The traffic intensity is defined as

�i � �i��i � (8)

Owing to the limited buffering capacity (in our sim-
plest case, only the servicing task can be ‘buffered’) there
is a probability of losing tasks, which will never be ser-
viced. This probability is denoted by Plossi (probability of

loss) and is related with the traffic intensity by Erlang’s
loss formula [22] in its simplest form for a single server:

Plossi � �i��1� �i �� (9)

The i th server will see at its input port an effective arrival
rate of

��i � �i �1� Plossi � (10)

which under stability conditions9 is equal to the server
throughput at its output port. In our LBM example, we
have i � 1� 2 for the two servers in the cluster (CL) sub-
model. The total system throughput �� must be �� � ��1 �
��2, hence being a function of the total system arrival rate
� and the traffic intensities �1� �2 at the servers.

These magnitudes are calculated from the model para-
meters set up for simulation: dr (mean departure rate at
LG, in tasks per second), b f (balancing factor at WB),
st1� st2 (mean service time at S1 and S2 respectively, in
seconds) as follows:

� � dr

�1 � 1�st1� �1 � b f �

�2 � 1�st2� �2 � �1� b f ��� (11)

Now, with (8) and (11) in (9) we derive the internal loss
probabilities

Ploss1 �
b f dr st1

1� b f dr st1
�

Ploss2 �
�1� b f �dr st2

1� �1� b f �dr st2
� (12)

Finally, we want to express the total system throughput
in terms of a total system loss probability Ploss as we did
for the individual servers. So with (10) and (12) we obtain

Ploss � b f Ploss1 � �1� b f �Ploss2

�� � ��1� Ploss�� (13)

With (13) we completely characterize the system in
terms of offered load, loss probabilities and effective
throughput. Figure 5 shows the theoretical curves for
Ploss� Ploss1 � Ploss2 and �� as functions of b f in a test sce-
nario 1 chosen as T S1 � �dr � 10� b f � [0� 1] � st1 �
0�2� st2 � 0�2�. In the same figure we have plotted simu-
lation results for the STDEVS model LBM parameterized
according the scenario T S1, at a set of illustrative opera-
tional points sweeping b f between zero and one.

9. In lossy systems, the effective traffic intensity ��i � ��i��i is al-
ways ��i � 1 so the typical stability condition �i��i � 1 is not required.
Finite buffer systems are always stable since arriving tasks are lost when
the number of tasks in the system exceeds system capacity.
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Figure 5. Simulation results (points) versus theoretical curves (lines). Test scenario 1: dr � 10, b f � [0� 1], st1 � 0�2, st2 � 0�2.

It can be observed that the simulation results closely
match the expected theoretical curves, for 15 successive
repetitions at each point.

The simulation point values were derived from the out-
put event log files produced by the simulation runs, using
the computed task rate10 variables, thus obtaining ��sim

and P sim
lossi

� 1 � ���sim
i ��sim

i �. The statistical properties
of the random variables produced by the atomic models
were verified to match with those expected: uniform dis-
tribution for b f , discrete Poisson distribution for � and
exponential distribution for st1 and st2. This also produced
Poisson distributed series of values for all of the observed
task rates, as expected.

10. A general �sim
k task rate at an arbitrary observation place k is:

�sim
k �NumberOfTasksLoggedk�TotalSimulationTime.

7.3 Networked Control System

In this example we show another practical DEVS rep-
resentation of random processes, consistent with their
STDEVS specifications, in a system including hybrid
modeling and control theory. We present the hybrid model
of a Networked Control System (NCS) [23, 24] with com-
ponents driven by continuous time and discrete time sig-
nals. NCSs are control systems with control loops closed
through real-time networks, where the information of the
main signals is distributed throughout system components
over the underlying networks. The conceptual block di-
agram of the model is shown in Figure 6. The system
consists in a LTI (linear time-invariant) plant modeled as
a SISO (single-input single-output) system, in which the
output signal y��t� must be kept in a certain reference in-
put value. To accomplish this, a feedback control system
is implemented, which utilizes a shared digital control net-
work for communicating the sensed output data to the con-
trol module.
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Figure 6. Topology of the NCS hybrid system example.

The system is affected by two stochastic processes.
First, the continuous-time output signal of the plant to be
controlled is perturbed by a continuous random process
modeled as additive white Gaussian noise (AWGN) that
represents the perturbation to be compensated by the con-
troller. Also, a uniformly distributed random process mod-
els the varying network-induced delays affecting the net-
work data packets carrying information from the sensor to
the controller.

The continuous-time part of the model consists on the
input reference, the controller, the actuator, the plant, the
AWGN perturbation added at the plant’s output signal (be-
fore it is sensed) and the sensor. The controller/actuator
subsystem is a continuous-time event-driven component
that calculates control signals and acts on the plant in-
puts whenever it receives new sensing information from
the shared control network.

The discrete-time part of the model is composed of the
sensor, the control network, and the respective analog-to-
digital (sample) and digital-to-analog (hold) signal con-
verters. Through this loop the noisy output of the plant
is sensed and fed back on a periodic clock-driven basis af-
fected by a random, upper-bounded, extra time delay. This
random delay represents the resulting superposition of all
the possible sources of delay found in the data network
(e.g. queuing effects, access to physical medium, packet
processing time, priority policies, etc.) owing to the fact
that the control network is a shared, bandwidth-limited re-
source, with other NCSs.

The feedback closed-loop is composed of the sensor,
the control network and the controller/actuator path, and is
a hybrid loop that combines continuous-time and discrete-
time signals with clock-driven and event-driven compo-
nents.

We defined this system using STDEVS and imple-
mented it in the discrete-event-based PowerDEVS simu-
lator. We also implemented the same system in the well-
known Matlab–Simulink discrete-time-based simulator. A
control-related cost function is defined and then studied
under several control network conditions by running sim-
ulations with both tools and then comparing the results.

7.3.1 NCS System Specification

The reference input value to be tracked by the system out-
put is Ref � 1. The continuous-time plant is described
by means of its transfer function, which is a mathemati-
cal representation (in terms of frequency) of the relation
between the input and the output of an LTI system. The
transfer function G P�s� � Y �s��U�s� in the Laplace do-
main is a linear mapping of the Laplace transform of the
input U�s� � ��u�t��, to the Laplace transform of the out-
put Y �s� � ��y�t��, with s being the complex frequency
of the system.

In our NCS system, the transfer function of the plant
in the Laplace domain is G P�s� � 1��s2 � 0�8s� which
is an unstable system at open loop (i.e. no feedback loop
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Figure 7. NCS PowerDEVS model.

between input and output) and stabilizes under unity feed-
back closed-loop conditions (which is the case of our sys-
tem). At the output of the plant, the AWGN ��t� has mean
zero and variance 
� � 0�001. The sampling period for
the discrete-time components is h � 1 seconds, and the
network induced random delay is uniformly distributed
according to � net�s� � U�0� �max�. Also, the delay is con-
strained with �max � h, so no queuing situation can hap-
pen at the component that models random network delay.

7.3.2 STDEVS NCS Model

In this section we show an implementation of the NCS
system with PowerDEVS. In Figure 7 we show the block
diagram of the STDEVS NCS model, including a branch
(at the bottom) that calculates the cost function used for
results analysis (see Section 7.3.6). We take as a reference
the conceptual topology of the NCS system in Figure 6,
and for each part of the topology we describe its functional
match with a STDEVS component in the block diagram
of Figure 7. The reference input is provided by the Refer-
ence Generator component with a constant output value
of one. The controller and actuator subsystems are simply
resolved by the Difference component, as it is a simple
unity feedback control loop. The continuous time plant

is composed of the Integrator1, Integrator2 and Sum1�
with the additive noise at its output signal provided by the
AWGN Generator and Sum2 components. The functional-
ities of sensor, sample and hold are resolved by a single
Sense, Sample and Hold component. Finally, the shared
control data network is modeled by a component that im-
plements the network delay functionality, called the Net-
work Induced Random Delay component.

Those components that raise special interest are the
continuous-time integrators and the stochastic-related
AWGN and random delay generators. In the case of the
integrators, the QSS (quantized state systems) method [4]
was used to approximate the continuous time subsystem11.
In the following section we discuss the definition of
those components that include stochastic behavior using
STDEVS formal specification. The rest of the components
defined as deterministic DEVS specifications are omitted
for brevity, and can be found in [25].

11. QSS methods discretize continuous systems (ordinary differen-
tial equations) based on the quantization of the state variables. The re-
sulting systems are equivalents to DEVS models.
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7.3.3 Formal Specification for Stochastic
Components

The components to be described are the AWGN generator
(AWGN) and the Network Induced Random Delay gener-
ator (NIRD).

As we did in our first example (Section 7.2) for
STDEVS specifications, we can rely on Theorem 1 and re-
fer only to the measurable DEVS-RND form of the com-
ponents that have their stochastic behavior expressed by
RND() functions in their transition functions (here rep-
resented by the random variable r ). Again, we can be
confident of this because we know in advance that the
stochastic models to be created are defined on finite-
dimensional probability spaces, thus yielding measur-
able DEVS-RND models. This simplifies the modeling
process avoiding the need to define the stochastic func-
tions �int��ext� Pint� Pext.

Nevertheless, for the sake of completeness, we cover
the STDEVS formulation for the AWGN component, and
rely on Theorem 1 for the NIRD component.

AWGN Generator The AWGN component has no in-
puts and one output port through which it delivers nor-
mally distributed real-valued numbers representing the
noise signal level ��t�.

The signals ��t� have to be obtained from a continuous
Gaussian distribution describing the probability P��  
��, where � is a real value representing all of the possi-
ble noise levels, with �� � � � �. This description is
as follows:

P��  �� � ���
���

���
 ��� � 1$


$

2�

� �

��
exp

�
�
�
�u � ��2

2


��
du�

� � �
where ���
 is the cumulative distribution function of the
signal, with � and 
 the mean expected value and the vari-
ance of the probability distribution, respectively. With this
information we can start defining the stochastic compo-
nents for the STDEVS model of the AWGN generator:

� �int�s� � �B� � �� � � � ��, with B� �
���� ��

� Pint�s�G� � Pint�s� B�� � ���
���, G � �int.

As we can see, the stochastic description of the noise
level is mapped directly to the function Pint through the
corresponding cumulative distribution function.

Now the STDEVS definition for AWGN,

MAWGN
ST � �X� Y� S��int��ext� Pint� Pext� �� ta�

can be completed defining the state s � ��� � � (where �
represents the noise level and � is the time advance), and
the deterministic components:

� X � �� Y � �
 �out1��
� S � �
��0 �
� ���� �� � ���out1��

� ta��� � � � � .

As only internal transitions are possible, we do not
need to define �ext� Pext.

Now, we advance to the Activity �2� of our process, and
pick a mathematical procedure that allows us to obtain
successive Gaussian-distributed � values by manipulating
uniform RND() outcomes. We want to find the measurable
DEVS-RND formulation of our STDEVS AWGN model.

We denote the noise mean expected value as�� and the
noise variance as 
� for the noise level ��t�, and model
them as external parameters.

The model can be defined in its measurable DEVS-
RND form as follows:

MAWGN
D � �X� Y� S� �int� �ext� �� ta�

where

� X � ��
� Y � �
 �out1��
� S � �
��0 �
� ���� �� � ���out1��

� ta��� � � � � .

The internal transition is

�int���� � �� r� � � ��� h�

with ������������
�����������

�� � �$�2 log�r1� cos�2�r2�
�$

� � ��

r � �2� r � U�0� 1�2� r � �r1� r2�

h � sampling interval

�� � noise mean expected value


� � noise variance

The external transition function will be �ext�s� e� x�
r� � � independent of r .

In this case, the calculation of the successive values of
��t� is solved in �int using the Box–Müller transform [26],
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a well-established and satisfactorily accurate12 procedure
for generating independent standard normally distributed
random numbers given a source of uniformly distributed
random numbers.

Network Induced Random Delay We give the measur-
able DEVS-RND definition for MNIRD

D :

MNIRD
D � �X� Y� S� �int� �ext� �� ta�

The state has the form s � �y�� � �, where y� � � repre-
sents the sampled version of the output signal with noise.
Then, �����������

����������

X � �
 �inp1�
Y � �
 �out1�
S � �
��0
��y�� � � � �y�� out1�

ta�y� � � � �
The internal transition will be

�int��y
�� � �� r� � �y����

independent of r , and the external transition function is

�ext��y
�� � �� e� �x� inp1�� r� � �x� ���

with ����
���
�� � r � �max

r � �� r � U�0� 1�

�max � network delay upper bound

This definition inherently implies preemption. If an ex-
ternal transition is triggered by the arrival of the �k � 1�th
sample before the lifetime ta�yk� � k� of the kth sample
has elapsed, the state will switch immediately from sk to
sk�1 � �ext��� � �xk�1� �� k�1�, thus preempting the kth
sample processing.

Nevertheless, as stated before, because of the condition
�max � h imposed for � net�t� for all t there is no chance
that the �k � 1�th sample can arrive at this component be-
fore the delay action is fully completed for the kth sample.

7.3.4 Simulations and Results

In this section we show a comparison between the sim-
ulation results obtained with Matlab and PowerDEVS.

12. The Box–Müller transform is only one of several possible ap-
proximation approaches [27, 20], and is attached to particular advantages
and disadvantages for its numerical implementation. This analysis is out
of the scope of the present work.

For both models, we swept the simulation parameter �max
from 0.1 to 0.8 seconds with increments of 0.1 seconds.
Then, given that the sampling period is h � 1 second, the
worst additive network induced delay considered is 80%
of the system digital clock period (for 0�8h � �max � h
we verified an excessive variance of the cost function val-
ues as the system tends to be unstable, therefore these
points were excluded as long as they do not offer any inter-
esting information for our model comparison purposes).

7.3.5 Matlab Model

In the Matlab implementation of the model we used the
standard building blocks provided by the Simulink Con-
tinuous, Discrete, and Sources libraries. We make some
remarks about the components of most interest, and fur-
ther details can be found in [28].

The Continuous-time Plant G p � 1��s2 � 0�8s� is de-
scribed by a Transfer Function block. As mentioned be-
fore, the Controller and Actuator of this system is simply
described by a subtraction block that calculates the differ-
ence between the Reference signal and the delayed sam-
pled version of the noisy plant output (i.e. the error signal).

For the AWGN Generator we used the Band-limited
White Noise block, which produces a random sequence
of numbers with a selectable correlation time tc, that can
simulate the effect of white noise if tc is chosen to be much
smaller than the shortest time constant (i.e. the inverse of
the real part of the fastest eigenvalue) of the system. We
followed the rule of thumb suggested for accurate simula-
tions and set tc � 0�1 so that tc � 2��100 fmax holds, with
fmax expressed in radians per second. While the covari-
ance of true white noise is infinite, the approximation used
in this block (because of the conversion from a continu-
ous power spectral density to a discrete noise covariance)
has the property that the covariance of the block output
(co
) is the NoisePower parameter of the block divided
by tc. Accordingly we set NoisePo�er � co
 � tc, which
for the case of the AWGN is NoisePo�er � 
� � tc �
0�001tc � 0�0001 given 
� � co
� holds for zero mean
normal distributions.

For the Network Random Delay generator we used the
Uniform Random Number block for producing a random
strip of numbers uniformly distributed between zero and
the upper bound network delay parameter �max.

The clock-rate of the discrete-time part of the model is
imposed by a Zero-order Hold block that covers the func-
tions of the Sample and the Hold components of the con-
ceptual model in Figure 6.

7.3.6 Cost Function

Cost functions are usually defined to give a measure of
the control Quality of Performance (QoP). Popular cost
functions (also referred as performance criteria) such as
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Figure 8. NCS hybrid model simulation results for Matlab and PowerDEVS.

the Integral Time Absolute Error (ITAE) and Integral Ab-
solute Error (IAE) are calculated based on some form of
treatment of the error signal along the simulation time
[29].

We used the Mean Squared Error (MSE) cost function,
which will help us to understand and compare the system
simulation results for different network delay conditions
by means of its system control performance. Its mathe-
matical formula is as follows:

MSE � 1

T

� t f

t0

e�t�2 dt

where t0 and t f are the initial and final times of the sim-
ulation period of length T � t f � t0 and e�t� is the error
between the reference value and the sampled and delayed
version of the plant output trajectory (see Figure 7).

7.3.7 Results Analysis

Simulation results are shown in Figure 8, where simula-
tions were run for t f � 10�000 seconds and each point in
the figure represents the MSE mean value and dispersion
bars for 15 runs. We verify that the two curves are closely
matched, thus validating the confidence and usefulness of
STDEVS applied to a NCS hybrid model case.

However, there is a very important advantage of the
STDEVS methodology over Matlab’s discrete-time-based

simulation in terms of robustness and computational effort
of the results.

Regarding robustness, when using Matlab, we had to
adjust the numerical integration method tolerance to a
value of 1
10�6 (we used the ode45 method). Otherwise,
the results had an unacceptable error. This is due to the
hybrid nature of the problem, which combines discrete-
event, discrete-time and continuous-time dynamics. When
using STDEVS, we had to make no adjustments to the
simulation parameters to produce reliable results. Thus,
the efficient treatment of events becomes crucial.

Regarding computational effort, when using Pow-
erDEVS (where all of the simulation is run under
DEVS), we obtained faster simulations than Matlab by
a speedup factor of about 5.7 times. This figure was
obtained in a comparison study [28] where we ran
and measured both simulators under controlled condi-
tions. The simulation platform consisted of a Dell In-
spiron 9400 computer with an Intel Core 2 Duo T7200
(2 GHz/667 MHz FSB/Family6/Model15/Stepping6)
processor, 1 GB (DDR2/667 MHz) of memory and Win-
dows XP Professional SP2 operating system. The per-
formance studies were run for different combinations
of possible configurations. We compared the simulator’s
processes both in normal priority and real-time prior-
ity and changed their processor core affinity to 1 and
2 cores alternatively. In all cases, for a virtual simula-
tion time of T � 50�000 seconds we obtained similar
speedup results, with wall–lock simulation times of about

Volume 00, Number 0 SIMULATION 23



Castro, Kofman, and Wainer

TMatlab � 21�5 seconds for Matlab and TPowerDEVS �
3�75 seconds for PowerDEVS. The DEVS-based simu-
lation speedup appears essentially because the numeri-
cal methods that approximate the continuous part (we
used the QSS3 method) are particularly efficient to han-
dle discontinuities and to integrate this type of hybrid sys-
tem [30].

In consequence, the DEVS-based simulations are faster
and more reliable than those based on time discretization.

8. Conclusions

We have presented a novel formalism for describing sto-
chastic discrete event systems. Based on the system-
theoretical approach of DEVS and making use of prob-
ability spaces theory, STDEVS provides a formal frame-
work for modeling and simulation of generalized non-
deterministic discrete event systems.

STDEVS is a general and comprehensive modeling
formalism that provides the ability to represent stochas-
tic behavior over measurable infinite-dimensional spaces,
along with the ability to represent the traditional stochas-
tic discrete event formalisms used widely in many ap-
plications (e.g. Markov chains, queuing networks, sto-
chastic Petri nets, etc.). Owing to its DEVS-based roots,
STDEVS is also a system-theoretic-based representation,
which provides unique multimodeling advantages for the
specification of hybrid systems, and important simula-
tion performance enhancements when dealing with heav-
ily discontinuous hybrid systems.

Next steps will be oriented to developing STDEVS-
based libraries in PowerDEVS and CD++ for modeling
and simulation of general purpose stochastic systems. The
study of the implications of the STDEVS definition into
the parallel DEVS formalism [31] will be also part of our
future work.
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