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ABSTRACT
This paper introduces new algorithms for the efficient conversion of

large sets of DAEs into ODEs based on the extension of maximum

matching and Tarjan’s strongly connected component algorithms

using a novel concept of Set–Based Graph. These algorithms have

the capability of solving the problems without expanding the arrays

of unknowns and without unrolling the for-loop equations so that

the complexity becomes independent on the size of the arrays. The

implementation of the new algorithms in an experimental Modelica

compiler is also described and two examples are presented.
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• Mathematics of computing → Differential algebraic equa-
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1 INTRODUCTION
The usage of modern object oriented mathematical modeling lan-

guages invariably leads to sets of differential algebraic equation

systems. While there are DAE solvers that can directly deal with

some of these models [9, 25], it is more efficient and robust to first

transform the DAEs into ODEs and then use standard ODE solvers.

This conversion, called causalization, is normally performed using

graph–theory–based algorithms [9, 22].

Causalization algorithms decide which unknown has to be com-

puted out of each equation or (matching) and they must also place

the resulting causalized equations in a proper order inside the simu-

lation code (sorting). In presence of algebraic loops, the algorithms

should also find the minimal sets of unknowns that has to be simul-

taneously solved. For that goal, a bipartite graph is built where the
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nodes represent equations and unknowns while the edges represent

the presence of an unknown in an equation. Then, the most used

strategy is to perform first a matching procedure converting the

bipartite graph into a directed graph, in which a topological sorting

is obtained using Tarjan’s strongly connected components algo-

rithm [30]. This procedure has a linear computational complexity

on the number of nodes and edges.

Models from diverse engineering domains contain arrays of

equations, that can be the result of the spatial discretization of

PDEs [5], or that can be due to the presence of large sets of sim-

pler models, as it occurs in Buildings and Energy models (having

many houses/rooms/consumers) [4, 15, 20], in particle dynamics

[13, 27], crowd simulation [31] and ODE-based multi–agent models,

amongst others. Moreover, these models can be also multidimen-

sional (which is typical in 2D or 3D PDEs), and the number of

individual equations and unknowns may become huge (of the order

of several millions).

Therefore, even when the causalization procedure has a linear

complexity with the number of equations and unknowns, its usage

on these huge models becomes prohibitive and, in spite of some

improvements proposed along the years [6, 16, 21], this fact re-

mains as one of the main obstacles to simulate very large systems

represented by sets of DAEs [8].

One particular modeling language that usually leads to prob-

lems of this type is Modelica [18, 23]. Modelica models are usually

described by the coupling of simpler models described by sets of

DAEs, but they can also contain large sets of equations inside loops

(for-loop) relating arrays of unknowns.

The simulation of large scale Modelica models offers several

difficulties, not only at the causalization, but also at the flattening

and code generation stages [7]. A benchmark presented in [17]

tested the efficiency of three Modelica simulation tools on large

scale models showing that their processing time (at compilation

phase) grows almost quadratically with the model size. A survey

on different variations of the causalization algorithm is presented

in [16], where the author analyses the different implementations

on models with thousands of equations obtaining similar results to

those of the previously cited work.

A crucial observation to overcome these problems is that very

large models are rarely formed by thousands or millions of individ-

ual equations. They generally present some regularity that allows

them to be iteratively described.

First attempts to exploit this feature at the index reduction phase

were presented in [1] and recently extended to the causalization

phase in [14], with both strategies being implemented in OpenMod-

elica [19]. These solutions are based on collecting and collapsing
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repeated sub-structures of the incidence graph in order so that they

are uniformly treated.

A different approach is followed in [3], where arrays of un-

knowns and for-loop equations are kept unexpanded at the flat-

tening and causalization stages. The resulting flat and causalized

Modelica model can be then used by the Stand-Alone QSS solver

[12], that produces the C language simulation code without ex-

panding arrays or unrolling for-loop equations. That way, this

strategy achieves a computational cost throughout all the compila-

tion pipeline that is independent on the size of the arrays involved.

However, the work was limited to large scale models without alge-

braic loops and having one–dimensional arrays and some particular

connection structures. A similar result for the causalization stage

is presented in [29, Ch.9] and there is a tool called IDA Modelica

that avoids the array expansion on certain sub-classes of Modelica

models [26].

In this article, we formalize, extend and generalize the results

of the work of [3] regarding the causalization stage. For that goal,

we first introduce the concept of Set–Based Graphs (SB-Graphs)

in which each vertex can represent an arbitrary set of equations

or unknowns while the edges comprise the information about the

appearance of sets of unknowns in sets of equations. Then, we

extend maximum matching and Tarjan’s algorithm for these types

of graphs. In that way, in absence of structural singularities, the

complete causalization stage can be completed without expanding

arrays or unrolling for-loop equations.

We also describe the implementation of the algorithms as part

of the experimental Modelica C Compiler (ModelicaCC) [3], that

already incorporates a compact flattening procedure. The resulting

compact causalized models can be then used by the stand-alone QSS

solver, that can produce the simulation C language code without

expanding arrays or unrolling for-loop equations. That way, the full

Modelica compilation process (from flattening to C code generation)

is performed with computational costs that are independent on the

size of the arrays.

In order to demonstrate the advantages of the new approach,

we show the usage of the algorithms in two different applications,

where we compare the results obtained with the novel algorithm

against those of standard expanding strategies.

2 PRELIMINARIES
2.1 Equation Sorting in Dynamical Systems
The transformation of a set of DAEs into a set of ODEs allows

a more efficient usage of numerical integration algorithms. The

problem can be stated as follows.

We consider a set of N equations f1, . . . , fN , and N unknowns

u1, . . . ,uN of the form

f1 (u1, . . . ,uN , t ) = 0

...

fN (u1, . . . ,uN , t ) = 0

where some unknowns represent state derivatives, and where the

functions fi do not necessary depend on all the unknowns. The

goal is to sort the set of equations both vertically and horizontally

such that an execution order is obtained. This is, obtaining a BLT

ordering of the form

uk (1) = д1 (t )

uk (2) = д2 (uk (1) , t )

...

uk (N ) = д2 (uk (1) , . . . ,uk (N−1) , t )

where some subsets of unknowns should be simultaneously solved

(algebraic loops).

This problem is usually treated making use of graph theory pro-

cedures. For that goal, a bipartite graph is constructed associating a

vertex to each unknown ui and a vertex to each equation fj . Then,
the edges represent the appearance of each unknown on each equa-

tion. This is, an edge between the vertex fj and the unknown ui
represents that unknown ui appears in the expression of fj .

After the bipartite graph is built, a maximum matching must be

found. When the maximum matching is not found, the problem

is possibly of higher index and an index reduction algorithm like

Pantelides must be applied until the problem can be fully matched

(or until discovering that it is structurally singular). The resulting

maximum matching establishes which unknown is obtained from

each equation.

Then, in order to establish the vertical sorting and the subsets of

equations that must be simultaneously solved, a directed graph is

built. Each vertex of the directed graph is obtained as the collapse

of two matched vertices of the bipartite graph. Also, the unmatched

edges of the bipartite graph are converted into directed edges of the

directed graph. More precisely, assuming that fi is matched with

uj and that fk is matched with ul , and that the expression of fk
also depends on uj , then two collapsed vertices are created: f ui j
and f ukl and a directed edge from f ukl to f ui j is included. This is,
the unmatched edge connected fk and uj , then the direction of the

resulting edge is from f ukl to f ui j (from equation to unknown).

That way, the existence of a directed edge from fkl to fi j indicates
that fk cannot be solved before fi .

Taking into account this last observation, the equations corre-

sponding to each strongly connected component on the resulting

directed graph must be simultaneously solved and the overall ver-

tical sorting of the system of equations is given by the reverse

topological sorting. The use of Tarjan’s SCC algorithm solves both

problems and it is then the usual tool for completing the causaliza-

tion procedure.

Synthesizing, the whole procedure involves the construction of a

bipartite graph, its maximum matching and collapsing and the use

of Tarjan’s algorithm on the resulting directed graph. We describe

next these algorithms on which the novel results are based.

2.2 MaximumMatching Algorithms
In order to sketch the principles of maximum matching algorithms,

we introduce first some definitions and notation:

• A graph is denoted as G = (V ,E) where V = {v1, . . . ,vn } is
the set of vertices and E = {e1, . . . , em } is the set of edges.
Each edge is a set of two vertices ei = {vk ,vl }.
• We consider in particular a bipartite graph in which V =
F ∪U where F is the set representing equations andU is the

set representing unknowns, each of them having N vertices.
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• In the algorithm below, we shall denote EM to the set of

matched edges.

• VM = {v |∃ṽ : {v, ṽ} ∈ EM } denotes the set of matched

vertices.

• A path of lengthn−1 is an–Tuple of verticesp = (v1, . . . ,vn )
with n ≥ 2 such that for all i ∈ [1,n − 1], the set {vi ,vi+1} ∈

E.
• An alternating path is a path p = (v1, . . . ,vn ) with the re-

striction that for all i ∈ [2,n − 1], {vi ,vi+1} ∈ EM ⇐⇒

{vi−1,vi } < EM .

• An augmenting path is an alternating path p = (v1, . . . ,vn )
where v1 < VM and vn < VM .

A simple maximum matching algorithm can be then stated as

follows:

1: EM ← ∅, VM ← ∅.
2: for i = 1 : N do
3: if fi < VM then ▷ unmatched edge

4: Find an augmenting path p = { fi , . . . ,u
j }

5: EM ← EM ⊕ p ▷ Update set of matched edges
1

6: VM ← VM ∪ { fi ,uj } ▷ Update set of matched vertices

7: end if
8: end for
This algorithm obtains a maximum matching EM finding aug-

menting paths from the unmatched vertices. Each augmenting path

can be simply found performing a Depth First Search (DFS) follow-

ing alternating paths until an unmatched vertex is found.

There are more efficient algorithms in the literature for solving

this problem, but this simple procedure can be easily extended to

set–based graphs as we shall see later in this work.

2.3 Strongly Connected Component
Algorithms

After the matched bipartite graph is collapsed and converted into a

directed graph, the vertical sorting requires finding the correspond-

ing SCC and their reversal topological sorting. Both problems are

simultaneously solved by Tarjan’s algorithm sketched below, after

providing the following definitions:

• A directed graph is denoted as Gd = (V ,E) where V =
{v1, . . . ,vn } is the set of vertices and E = {e1, . . . , em } is
the set of directed edges. Each directed edge is a pair ei =
(vk ,vl ).

• A strongly connected component of Gd is a maximal sub-

set of vertices {v1, . . . ,vm } where there is a path in each

direction between each pair of vertices.

The next algorithm then obtains a tuple of SCC denoted Vs
containing all vertices in Gd in reversal topological order. It makes

use of a function that obtains a tuple of SCC starting from a single

vertex.

1: index ← 0

2: Vs ← ∅ ▷ Initial tuple of SCC

3: Vind ← ∅ ▷ Set of indexed vertices

4: for i = 1 : n do
5: if vi < Vind then ▷ Not indexed vertex

1
The symbol ⊕ denotes the symmetric difference set operation (everything that belongs

to both sets individually, but does not belong to their intersection)

6: Vs ← Vs ◦ SCC (vi ) ▷ Add SCC from vi
7: end if
8: end for
1: function SCC(v)
2: v .index ← index
3: v .lowlink ← index
4: index ← index + 1

5: S .push(v )
6: v .onstack ← true
7: U ← ∅ ▷ Local tuple of SCC

8: for all (v,w ) ∈ E do
9: if w < Vind then ▷ Not indexed successor

10: U ← U ◦ SCC (w ) ▷ Recurse on successor

11: v .lowlink ← min(v .lowlink,w .lowlink )
12: else if w .onstack then
13: v .lowlink ← min(v .lowlink,w .index )
14: end if
15: end for
16: if v .lowlink = v .index then ▷ Root vertex of a SCC

17: SC ← ∅ ▷ Create new SCC

18: repeat
19: w = S .pop
20: w .onstack = f alse
21: SC ← SC ∪ {w } ▷ Addw to current SCC

22: untilw = v
23: returnU ◦ SC
24: else
25: return ∅
26: end if
27: end function

2.4 Sorted System of Equations
The final result Vs contains a tuple of SCCs in reverse topological

sorting. This is, if a SCC Si is located before another SSC Sj , then
there are not edges from Si to Sj meaning that the unknowns

computed in Sj are not required by Si and then the equations of Si
can be placed before in the final code.

2.5 The Modelica C Compiler
ModelicaCC [3] is a collection of open source tools used to translate

a Modelica model into a subset of the Modelica language called

µ-Modelica [12]. This sub-language is understood by the QSS Stand-

Alone Solver [12], a simulation tool that has certain advantages

to simulate large scale models: it does not unroll for loops when
producing the final simulation code, it can use QSS integration

methods that are convenient in some large scale cases [5], and it

can execute simulations in parallel in a straightforwardmanner [11].

It contains different modules that perform the different compilation

stages (flattening, anti–alias, causalization). Each module attempts

to works without expanding arrays or unrolling for loops, so they

can handle large scale models without suffering the problems of

the other compilers.

Previous to the current work, a limitation of ModelicaCC was

that it only worked with one–dimensional arrays and it could not

handle nested for loops. Moreover, it did not handle general con-

nection structures. This limitation was mainly due to the fact that
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the algorithms used in the causalization stage were not general [3].

In addition, it did not handle algebraic loops.

3 SET-BASED GRAPHS
The algorithms presented in this work are based on the use of Set-
Based Graphs (SB-Graphs). This section introduces the concepts of

undirected and directed graphs of this type.

3.1 Undirected Set-Based Graphs
The formalization of Set–Based Graphs is based on the following

definitions:

Definition 1 (Set–Vertex). A Set–Vertex is a set of vertices
V = {v1,v2, . . . ,vn }.

Definition 2 (Set–Edge). Given two Set–Vertices, V a and V b ,
with V a ∩V b = ∅, a Set–Edge connecting V a and V b is a set of non
repeated edges E[{V a ,V b }] = {e1, e2, . . . , en } where each edge is a
set of two vertices ei = {vak ∈ V

a ,vbl ∈ V
b }.

Then, a Set–Based Graph is defined as follows:

Definition 3 (Set–Based Graph). A Set–Based Graph is a pair
G = (V, E) where
• V = {V 1, . . . ,V n } is a set of disjoint set–vertices (i.e., i ,
j =⇒ V i ∩V j = ∅).
• E = {E1, . . . ,Em } is a set of set–edges connecting set–vertices
of V , i.e., Ei = E[{V a ,V b }] with Va ∈ V and Vb ∈ V . In
addition, given two set edges Ei ,E j ∈ E with i , j, such that
Ei = E[{V a ,V b }] and E j = E[{V c ,V d }], thenV a∪V b ∪V c ∪

V d , V a ∪ V b . This is, two different set–edges in E cannot
connect the same set–vertices.

A particular case of Set–Based Graph is a bipartite Set–Based

Graph defined as follows:

Definition 4 (Bipartite Set–Based Graph). A Bipartite Set–
Based Graph is a Set–Based Graph G = (V, E) where two disjoints
sets of set–verticesV1,V2 can be found verifyingV1∪V2 = V , such
that for every edge Ei = E[{V a ,V b }] ∈ E the condition V a ∈ Vi
implies that V b < Vi

3.2 Directed Set-Based Graphs
Directed set-based graphs use directed set-edges, defined as follows:

Definition 5 (Directed Set–Edge). Given two Set–Vertices,V a

andV b , withV a∩V b = ∅ orV a = V b , a directed Set–Edge fromV a to
V b is a set of non repeated edges E[(V a ,V b )] = {e1, e2, . . . , en } where
each edge is an ordered pair of vertices ei = (vak ∈ V

a ,vbl ∈ V
b ).

Then, a Directed Set–Based Graph is defined as follows:

Definition 6 (Directed Set–Based Graph). A Directed Set–
Based Graph is a pair G = (V, E) where
• V = {V 1, . . . ,V n } is a set of disjoint set–vertices (i.e., i ,
j =⇒ V i ∩V j = ∅).
• E = {E1, . . . ,Em } is a set of directed set–edges connecting
set–vertices of V , i.e., Ei = E[(V a ,V b )] with Va ∈ V and
Vb ∈ V . In addition, given two set edges Ei ,E j ∈ E with i , j ,
such that Ei = E[(V a ,V b )] and E j = E[(V c ,V d )], then either

V a , V c or V b , V d . This is, two different set–edges in E
cannot connect the same set–vertices with the same direction.

3.3 Relations between regular and set–based
graphs

The following properties relating set–based graphs with regular

graphs can be straightforwardly verified:

Proposition 1 (Regular Graph defined by a Set–Based

Graph). A (directed) set–based graph G = (V, E) with V =

{V 1, . . . ,V n } and E = {E1, . . . ,Em } defines a regular (directed)
graph G = (V ,E) where

V =
n⋃
i=1

V i
; E =

m⋃
i=1

Ei

Proposition 2 (Bipartite Graph defined by a Bipartite

Set–Based Graph). A (directed) bipartite set–based graph G =
(V, E) defines a regular (directed) bipartite graph.

Notice that Proposition 1 establishes that a set–based graph

unambiguously defines a regular graph. However, a regular graph

can be equivalent to several set–based graphs that contain the same

elementary edges and vertices but grouped in a different way.

4 SET-BASED EQUATION SORTING
This section introduces the main results.

4.1 Bipartite Set-Based Graph Construction
We consider a set of DAEs described by a total of N scalar equations

and N scalar unknowns, represented as follows:

• Unknowns: We assume that the unknowns are originally

declared as different objects of class Real, class Real[size]
or, in general, Real[size_1, size_2, ..., size_m] for

multidimensional arrays. Then, we represent each object by

an unknown array of the form ui = [ui
1
, . . . ,uis (i )] , where

s (i ) is the size of the object ui (i.e., the number of scalar

components, with s (i ) = 1 for scalar unknowns).

Denoting with Nu the number of unknown arrays, the total

number of scalar unknowns is then N =
∑Nu
i=1

s (i ).
• Equations: We assume that the model contains equations

that can be inside (possibly nested) loops (for-loop). Each

equation inside a for-loop is then represented by an equation
array of the form f j = [f

j
1
, . . . , f

j
r (j )] where r (j ) is the size of

the loop that f j belongs to. Single equations (not belonging
to loops) are represented in the same way, with r (j ) = 1.

Notice that all the components of each equation array share

the same expression.

Denoting with Nf the number of equation arrays, the to-

tal number of scalar equations can be computed as N =∑Nf
j=1

r (j ).

Taking into account this DAE formulation, the corresponding

bipartite SB–Graph is represented as follows:

• We associate a set–vertex F j = { f
j

1
, . . . , f

j
r (j ) } to each equa-

tion array f j = [f
j

1
, . . . , f

j
r (j )].
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• We associate a set–vertex U i = {ui
1
, . . . ,uis (i ) } to each un-

known array ui = [ui
1
, . . . ,uis (i )].

• For each scalar equation f
j
k and for each unknown uil that

appears in the expression of f
j
k , we associate a scalar edge

en = { f
j
k ,u

i
l }.

• Then, for each pair of set–vertices (F i ,U j ) such that there

is at least one scalar edge connecting their components, we

associate a set–edge containing the corresponding scalar

edges Ek = E ({F i ,U j }) = {en = { f
j
k ,u

i
l } : f

j
k ∈ F

j ,uil ∈ U
i }.

• Finally, the resulting SB–Graph is G = (V, E) whereV =

F ∪ U , F = {F 1, . . . , FNf },U = {U 1, . . . ,U Nu }, and E =

{E1, . . . ,ENe }.

The following algorithm shows a procedure to build the bipartite

SB–Graph that, under certain conditions, has a complexity that not

depends on the size of the arrays s (i ) and r (j ).

(1) For each unknown array ui create the corresponding set–

vertexU i
.

(2) For each equation array f j :
• Create the corresponding set–vertex F j .
• For each unknown array ui appearing in the expression

of f j , create the set edge E ({F j ,U i }) =
⋃r (j )
k=1
{ f

j
k ,u

i
M1

j (k )
}

whereM1

j (k ) is an index function representing that the k–

th component of equation f j involves the l–th component

of array ui , with l = M1

j (k ).

• If an unknown array ui appears more than once in f j

(in expressions like z[i]+z[i+1]+z[1]=...) then add to

the previous set–edge the sets

⋃r (j )
k=1
{ f

j
k ,u

i
Mq
j (k )
} with the

new functionsM
q
j (k ), for q = 2, . . . according to different

number of appearances of the unknown.

Notice that all set–vertices can be represented by intension. In

addition, provided that we know an expression for functionsM
q
j (k )

related the appearance of unknowns inside equations, the edges

can be also represented by intension and the full graph can be built

without taking into account the size of the arrays.

4.2 MaximumMatching Algorithm for
Bipartite SB-Graphs

We introduce next a maximum matching algorithm for a bipartite

SB–Graph G = (V, E) defined as in Sec.4.1. The algorithm uses

the following definitions:

• EM ⊆ E =
⋃Ne
k=1

Ek ∈ E denotes the set of matched edges.

• A set path of length n − 1 and sizem is a set of disjoint paths

P = {p1, . . . ,pm } of the form pj = (v1

j , . . . ,v
n
j ) such that

{vi
1
, . . . ,vim } ⊆ V k ∈ V . This is, the i–th vertices of all

paths belong to the same vertex–set.

• The i–th set of vertices of a set path P is denoted V (P , i ) =
{vi

1
, . . . ,vim }.

• The i–th set–edge is denoted E (P , i ) = {ei
1
, . . . , eim } with

eij = {v
i
j ,v

i+1

j }.

• An alternating set path is a set path where E (P , i ) ⊆ EM ∨
E (P , i )∩EM = ∅, and, E (P , i ) ⊆ EM ⇐⇒ E (P , i+1)∩EM =
∅.

• An augmenting set path is an alternating set path where

V (P , 1) ∩VM = ∅ and V (P ,n) ∩VM = ∅.

The matching algorithm can be then written as follows:

1: EM ← ∅, VM ← ∅.
2: for i = 1 : Nf do
3: F ← { f ∈ F i | f < VM } ▷ Subset of unmatched equations of

F i

4: while F , ∅ do
5: Find a set augmenting path P with V (P , 1) = F̃ ⊆ F
6: EM ← EM ⊕

⋃n
i=1

E (P , i ) ▷ Update set of matched

edges

7: VM ← VM ∪V (P , 1) ∪V (P ,n) ▷ Update set of matched

vertices

8: F ← F \ F̃ ▷ Remove F̃ from the set of unmatched

equations

9: end while
10: end for
While the procedure looks simple, it has a tricky step in line 5

that defines the entire performance of the algorithm.

A trivial choice for F̃ would be taking a single unmatched equa-

tion F̃ = { f } for some f ∈ F . In that case, the entire procedure

would result identical to that of a simple maximum matching algo-

rithm for regular graphs. A simple way of doing this is to perform

a DFS starting from the unmatched equation until an unmatched

unknown through an alternating path is reached.

Amore clever way of implementing the algorithm is to start from

a large unmatched set of equations F̃ ⊆ F i and then performing

the DFS through alternating set paths, until an unmatched set of

unknowns Ũ is found. In particular, one can start with the entire

set–vertex F̃ = F . The formalization of the procedure uses the

following additional definitions:

• Given a set of vertices V a
and a set of edges Ec , we denote

V b = R (V a ,Ec ) = {v |∃{v
a ,v} ∈ Ec ∧ va ∈ V a } to the

reachable set from V a
through Ec .

• Given two sets of verticesV a
,V b

and a set of edges Ec with

R (V a ,Ec ) ∩ V b , ∅, we say that a set path Pd of length

1 is a set path from V a
to V b

through Ec provided that

V (Pd , 1) ⊆ V a
, V (Pd , 2) ⊆ V b

, and E (Pd , 1) ⊆ Ec .
• Given a set of vertices Ṽ ⊆ V , we define the split operation

S (Ṽ ,V ) = {Ṽ 1, . . . , Ṽm } with
⋃n
i=1

Ṽ i = V and Ṽ i ⊆ V ki ∈

V . This is, function S splits an arbitrary set of vertices into

subsets of the set–vertices of the SB Graph.

• Given two paths pa = {v
1

a , . . . ,v
n
a }, p

b = {v1

b , . . . ,v
q
b }, with

vna = v1

b , we denote the composed path pc = pa ◦ pb =

{v1

a , . . . ,v
n
a ,v

2

b , . . . ,v
q
b }.

• Given two set paths, Pa and Pb with V (Pa ,n) ∩V (Pb , 1) ,
∅ where n − 1 is the length of Pa , and where V (Pa , i ) ∩

V (Pb , j ) = ∅ for i , n or j , 1, we denote Pc = Pa ◦ Pb =
{pc

1
, . . . ,pcm } to the set path of all possible composed path

pci = p
a
j ◦ p

b
k .
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Then, an augmenting set path can be found calling function

ASP (F ,E \ EM , ∅) defined below.

1: function ASP (V ,Ex , V̂ )

2: V̂ ← V̂ ∪V ▷ Set of visited vertices

3: Ṽ ← R (V ,Ex ) \ R (V ,Ex ) ∩ V̂ ▷ Set of non–visited

reachable vertices

4: if Ṽ = ∅ then
5: return ∅ ▷ Cannot reach unmatched unknowns

6: else if Ṽ ⊈ VM then ▷ Found unmatched unknonws

7: Find a set path P of length 1 from V to Ṽ \ (Ṽ ∩ VM )
through Ex

8: return P ▷ Set path ending in unmatched unknowns

9: else
10: (Ṽ 1, . . . , Ṽm ) ← S (Ṽ ,V ) ▷ Split Ṽ into set vertex

subsets

11: for k = 1, . . . ,m do
12: P̃k ← ASP (Ṽk ,E \ Ex , V̂ ) ▷ Search through

alternating paths

13: if P̃k , ∅ then ▷ Found unmatched unknowns

14: Find a set path P̂ of length 1 from V to V (P̃k , 1)
through Ex

15: return P = P̂ ◦ P̃k ▷ Set path ending in

unmatched unknowns

16: end if
17: end for
18: return ∅
19: end if
20: end function
This algorithm returns an augmenting set path, unless the system

is of higher index (or structurally singular). In such case, it returns

∅. It can be noticed that the operations involved do not depend on

the size of the arrays.

4.3 SB-Graphs Collapsing
Once the matching process on the SB graph is completed, a SB

directed graph is constructed collapsing the matched set–vertices

and directing the non matched edges between collapsed vertices

according to the type of vertices (equations or unknowns) they

connected in the original bipartite graph. Each vertex of the directed

graph is represented by a matched edge of the bipartite graph

f ui j = { f i ,u j } ∈ EM . Then, each directed edge is represented

by an ordered pair of vertices, i.e., an ordered pair of edges of the

bipartite graph e
i jkl
d = ( f ui j , f ukl ) = ({ f i ,u j }, { f k ,ul }).

The algorithm for constructing a directed graph Gd (Vd , Ed )
from a bipartite graph G (V, E) and a matching EM is sketched

below.

1: for all Ek = E[F i ,U j
] ∈ E do

2: if EM ∩ Ek , ∅ then
3: FU i j ← EM ∩ Ek ▷ The new vertex–set is the set of

matched edges

4: Vd ←Vd ∪ {FU
i }

5: end if
6: end for
7: for all FU i j ∈ Vd do
8: for all FU kl ∈ Vd do

9: E
i jkl
d ← {({ f i ,u j }, { f k ,ul })} with { f i ,u j } ∈ FU i j

,

{ f k ,ul } ∈ FU kl
, and { f i ,ul } ∈ ĒM ▷ Directed set–edge

10: if Ei jkld , ∅ then

11: Ed ← Ed ∪ {E
i jkl
d }

12: end if
13: end for
14: end for

4.4 SCC Algorithm for SB-Graphs
The problem of dividing the directed SB Graph into strongly con-

nected components (SCC) is treated next. The procedure developed

tries to finds sets of strongly connected components instead of

finding them individually as Tarjan’s algorithm does.

Before presenting the algorithm, we introduce some definitions.

We consider a directed graph Gd (Vd , Ed ) that defines a regular

directed graph Gd = (Ed ,Vd ) according to Prop.1. Then,

• A set-SCC of Gd is a set of Tuples of vertices SC =

{V 1, . . . ,V n } of the form V i = (vi
1
, . . . ,vim ) where

⋃
i v

i
j ⊆

V k
d ∈ Vd and where

⋃
j v

i
j is a SCC of Gd . This is, the ver-

tices of the i–th Tuple of SC belong to the same set–vertex

and the vertices of the j–th component of each Tuple form a

SCC in the equivalent regular graph.

With this definition, an SB-Graph extension of Tarjan’s SCC

algorithm that finds a tuple of set–SCCsVs is sketched below

1: index ← 0

2: Vs ← ∅ ▷ Initial tuple of set-SCC

3: Vind ← ∅ ▷ Set of indexed vertices

4: for all V ∈ Vd do
5: while V ⊈ Vind do ▷ There are non indexed vertices in V
6: Ṽ ← V \V ∩Vind ▷ Non indexed vertices in V

7:
˜Vs ← ∅ ▷ Auxiliary tuple of set-SCC

8: while ˜Vs = ϕ do
9: auxindex ← index
10: Ṽind ← Vind ▷ Auxiliary set of indexed vertices

11: Vt ←Tuple(Ṽ ) ▷ Add order to Ṽ
12: S ← ∅ ▷ Empty stack

13: ( ˜Vs , V̂ ) ← SSCC(Vt ) ▷ Find a tuple of set-SCC

from Vt
14: if ˜Vs = Φ then ▷ Fail. Ṽ was too large

15: Ṽ ← set (V̂ ) ▷ Try a smaller subset given by V̂
16: index ← auxindex
17: else ▷ Success

18: Vind ← Ṽind ▷ Update indexed set

19: Vs ←Vs ◦ ˜Vs ▷ Add ˜Vs to the tuple of

set–SCC

20: end if
21: end while
22: end while
23: end for
The algorithm above attempts to find tuples of set-SCC starting

from each set-vertex. When it is not possible, it uses smaller subsets

until all the vertices of the set–vertex are part of set-SCCs. The

tuples of set-SCCs starting from a tuple of vertices V are found

using a function SSCC() described below that, when fails, returns
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also a smaller tuple of vertices V̂ that could be used for the next

iteration.

1: function SSCC(V )

2: V .index ← index
3: Ṽind ← Ṽind ∪V ▷ New indexed set

4: V .lowlink ← index
5: index ← index + 1

6: S .push(V )
7: V .onstack ← true
8: U ← ∅ ▷ Local tuple of set-SCC

9: {E1, . . . ,En } = splitedдes (Ed ,V ) ▷ split set edges into

paths

10: for i = 1 : n do
11: W ← Succ (V ,Ei ) ▷ Immediate successors ofV through

Ei
12: (WN I ,WST ,WNS ) ← splitvertices (W ) ▷ Split

successors into non indexed verticesWN I , vertices on stack

WST and remaining vertices (indexed but not on stack)

13: ifWN I , ∅ then ▷ Not indexed set

14: (
˜U ,Ŵ ) ← SSCC(WN I )

15: if ˜U = Φ then
16: return (Φ, V̂ = pre (Ŵ , ,Ei )) ▷ Fail, next time

try V̂ = pre (Ŵ ,Ei ), such that Succ (V̂ ,Ei ) = Ŵ .

17: else
18: U ← U ◦ ˜U ▷ Add ˜U to the tuple of set–SCCs

19: V .lowlink ← min(V .lowlink,WN I .lowlink )
20: end if
21: end if
22: ifWST , ∅ then ▷ There are succesors in stack

(possible cycle)

23: TakeWS ∈ S withWS ∩WST , ∅ ▷ Tuple on stack

24: ifWST ,WS then ▷ The tuple on stack is different.

25: Ŵ ←WST ∩WS ▷ Common components of

both tuples

26: return (Φ, V̂ = pre (Ŵ ,Ei )) ▷ Fail, next time

try V̂ .

27: else
28: V .lowlink ← min(V .lowlink,WST .index ) ▷

Cycle found

29: end if
30: end if
31: end for
32: if V .lowlink = V .index then ▷ Root set vertex

33: SC ← ∅ ▷ Create new set SCC

34: repeat
35: W = S .pop
36: W .onstack = f alse
37: SC ← SC ∪ {W } ▷ AddW to current set SCC

38: untilW = V
39: return (U ◦ {SC},V )

40: else
41: return (∅,V ) ▷ Not a root set vertex

42: end if
43: end function
The SSCC procedure above first splits the set–edges departing

from V into set–edges defining paths of length 1 (this is, set of

edges that connect non repeated vertices of two set vertices). Then,

for each split set edge Ei , the algorithm splits the successors from

V into the set of non indexed vertices (WN I ), the set of vertices on

stack (WST ) and the remaining vertices (that are indexed but not

on stack, and are then to be ignored as in Tarjan’s algorithm). After

that, a DFS is performed through the non indexed successors.

Whenever a cycle is detected (i.e., there are indexed successors

on stack) the algorithm checks that it involves the whole tuple in

the right order. If it does not, it cannot establish for certain that

it corresponds to a set of SCC and it returns ∅ indicating that the

whole set cannot be treated. In addition, it returns a smaller tuple

from which a set of cycles may be found.

When this algorithm is used with set-vertices containing single

vertices and set–edges containing single edges, it is identical to

Tarjan’s. When using larger set–vertices, it can sometimes find sets

of SCC. If it fails, it tries with smaller subsets until it reduces back

to regular Tarjan’s.

A particular property of the algorithm above is that each set–SCC

detected cannot have edges between its regular SCC. The reason

is that if an edge between two regular SCC exists inside a set SCC,

the DFS will follow it and it will find a potential cycle that fails.

4.5 Sorted Equation Generation
The extended Tarjan algorithm produces a tuple of set SCCVs with

a reverse topological sorting. Recalling that a directed edge from a

vertex a to vertex b indicates that the equations in vertex b must

be computed first, the equations must be placed in the order they

appear inVs as in the regular case.

The only difference with the regular case is that each set–SCC

goes inside a for-loop equation traversing the corresponding arrays.

Taking into account that the set–SCCs found do not contain edges

between their components, the order in which those arrays are

traversed is irrelevant.

5 IMPLEMENTATION
This section briefly discusses some details regarding the implemen-

tation in ModelicaCC of the algorithms described in the previous

section.

The implementation was completely developed in C++ based

on different available open source libraries. In particular, the Boost

Graph Library [28] is used to represent the graph structure, ex-

ploiting its capability to embed properties in vertices and edges

to represent the corresponding F , U , and E sets. Also, the GiNaC

library [2] is used to symbolically solve each model equation for

the matched unknown. Other components of the Boost library are

employed such as Spirit for parsing, Variant and Optional for the

abstract syntax tree and the ICL for managing integer intervals.

5.1 SB-Graph Representation
Each set vertex is represented by a structure called Multi-

Dimensional Interval (MDI). This structure is consists in a colection

of hyperrectangles which has efficiently implemented several set

operations including intersection, difference and boolean opera-

tions on set relations (⊆).

Set-edges are represented by a structure called Index Pair repre-

senting sets of one–to–one connections between components of
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two set–vertices. Each Index Pair is characterized by a function

M (i ) that denotes the existence of a vertex of the form { fi ,uM (i ) }.

5.2 MaximumMatching Algorithm
The implementation of the maximum matching algorithm for SB-

Graphs follows the algorithm described in Section 4.2. In addition,

it implements an initialization heuristic that looks for vertices of

degree one (i.e., that can only be matched with their immediate

neighbors) and propose an initial matching for the entire vertex

sets containing those vertices. This heuristics avoids that, in some

cases, the algorithm unnecessary uses small sets in some stages.

5.3 SCC Algorithm
The implementation of the extended Tarjan’s algorithm closely

follows the procedure described in Section 4.4. In addition, when it

finds a failure condition due to the existence of connections between

the different cycles that may form a set–SCC, it first check if all

those connections have the same direction and, it that case, it does

not discard the cycles. That way, not only disconnected sets of SCC

can be found and more general cases can be treated without falling

back to smaller subsets.

5.4 Sorted Equation Generation
The code generation is almost identical to that of ModelicaCC using

regular graphs. The only difference is that it adds for-loop headers

around the sets of equations and the corresponding indexes to the

unknowns involved inside them.

As in the regular ModelicaCC, the sets of equations associated

to a SCC are first sent to GiNaC in order to solve them symbolically.

If this fails, the code for solving the equations based on Newton

iteration is automatically generated.

6 RESULTS
We introduce next two examples that illustrate the advantages of

the proposed approach. There, we measured the execution time

of the set-based and scalar causalization algorithms implemented

in ModelicaCC. We could not isolate the causalization stage in

OpenModelica in order to measure its performance. However, we

did measure the total time until C code generation, which was very

similar to that of scalar ModelicaCC plus the code generation of

the Stand-Alone QSS solver, so we deduce that the causalization

stage of OpenModelica takes a similar time to that of the scalar

algorithm in ModelicaCC.

6.1 Example 1
The first example corresponds to the RLC network depicted in

Figure 1.

Figure 1: RLC Network

The flattened Modelica model with N = 500 is listed below. It

can be easily checked that it produces a set of 500 independent

algebraic loops between variables IR1[i], IR2[i], and Ua[i].

model rlc_loop
constant Integer N = 500;
parameter Real R1=1,R2=1,L=1,C1=1,C2=1,Vs=1,R=1;
Real IR2[N], IL[N], UC1[N], Ua[N], IR1[N], UC2[N];
Real VR, IR;

equation
L*der(IL[1]) = Vs - Ua[1];
C2*der(UC2[N]) = IR2[N] - IR;
for i in 1:N loop

IR1[i] = (Ua[i] - UC1[i])/R1;
IR2[i] = (Ua[i] - UC2[i])/R2;
IL[i] = IR1[i] + IR2[i];
C1*der(UC1[i]) = IR1[i];

end for;
for i in 1:N-1 loop

C2*der(UC2[i]) = IR2[i] - IL[i+1];
L*der(IL[i+1]) = UC2[i]-Ua[i+1];

end for;
VR = R*IR;
UC2[N] = VR;

end rlc_loop;

This set of equations is succesfully sorted by the set–based algo-

rithms implemented in ModelicaCC. Table 1 reports the execution

times of the novel algorithms against the standard ones as the

number of RLC sections N is increased.

N Scalar Set–Based

10 0.05 0.16

100 0.17 0.15

1000 2.7 0.14

2000 6.29 0.15

5000 45.86 0.15

10000 96.27 0.15

20000 840 0.15

50000 6027 0.15

100000 16324 0.14

1000000 – 0.15

Table 1: Execution time (sec.) in the first example against
model size for scalar and set–based algorithms

A simple analysis of these results shows that the scalar com-

pilation of this model has an approximate complexity of O (N 2).
This is due to the fact that there are N algebraic loops that must be

matched and sorted by Tarjan’s algorithm. The maximum match-

ing algorithm based on Edmonds-Karp [10], has O (N 2) complexity

explaining the poor overall performance. On the contrary, the com-

plexity of the set–based algorithm is O (1). In addition, the scalar

approach produces a set of 6 × N scalar equations that, for a large

value of N , will eventually fail in the code generation stage or dur-

ing the compilation of the resulting C++ code. Meanwhile, as we

can see the code produced by the set–based algorithm does not

depend on N :
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for i in 1:1 loop
IR1[i] = ((((R2*IL[i])+UC2[i])+(UC1[i]*(-1)))*(((R ⌋

2+R1)^(-1))));↪→

end for;
for i in 1:1 loop

IR2[i] = ((((UC2[i]+((R1*IL[i])*(-1)))+(UC1[i]*(-1 ⌋
)))*(((R2+R1)^(-1))))*(-1));↪→

end for;
for i in 1:1 loop

Ua[i] = ((((R1*UC2[i])+((R2*R1)*IL[i]))+(R2*UC1[i] ⌋
))*(((R2+R1)^(-1))));↪→

end for;
der(IL[1]) = (((L^(-1)))*(Vs+(Ua[1]*(-1))));
for i in 500:500 loop
Ua[i] = (((((R1*R2)*IL[i])+(UC1[i]*R2))+(R1*UC2[i])) ⌋

*(((R1+R2)^(-1))));↪→

end for;
for i in 500:500 loop

IR1[i] = ((((R1+R2)^(-1)))*(((R2*IL[i])+(UC1[i]*(- ⌋
1)))+UC2[i]));↪→

end for;
for i in 500:500 loop

IR2[i] = (((UC1[i]+(R1*IL[i]))+(UC2[i]*(-1)))*(((R ⌋
1+R2)^(-1))));↪→

end for;
VR = UC2[500];
IR = (((R^(-1)))*VR);
der(UC2[500]) =

((((C2^(-1)))*(IR+(IR2[500]*(-1))))*(-1));↪→

for i in 2:499 loop
IR2[i] = (((UC1[i]+(UC2[i]*(-1)))+(R1*IL[i]))*(((R ⌋

1+R2)^(-1))));↪→

end for;
for i in 2:499 loop

Ua[i] = (((((R1*IL[i])*R2)+(R1*UC2[i]))+(UC1[i]*R2 ⌋
))*(((R1+R2)^(-1))));↪→

end for;
for i in 2:499 loop

IR1[i] = ((((UC1[i]+((IL[i]*R2)*(-1)))+(UC2[i]*(-1 ⌋
)))*(((R1+R2)^(-1))))*(-1));↪→

end for;
for i in 1:500 loop

der(UC1[i]) = (((C1^(-1)))*IR1[i]);
end for;
for i in 1:499 loop

der(UC2[i]) =

(((C2^(-1)))*(IR2[i]+(IL[i+1]*(-1))));↪→

end for;
for i in 1:499 loop

der(IL[i+1]) =

((((L^(-1)))*(Ua[i+1]+(UC2[i]*(-1))))*(-1));↪→

end for;

6.2 Example 2
The second example is a model describing the temperature dynam-

ics of an electrically heated rod, formulated as a 2D extension of the

example described in Section 6.14 of [9]. The domain here is split

into N radial sections byM longitudinal sections and it results in a

system of N ×M DAEs, withM independent nonlinear algebraic

loops between the variables representing the border temperature

and its time derivative.

For reasons of space, only a part of this model is listed below
2
.

model ELECTRICALLY_HEATED_ROD_MULTIDIM
constant Integer N = 5, M = 5;
Real T[N,M], T0[M], TL[M], dTdrR[M];
...

equation
der(T[1,1])=omega*((T[2,1]-2*T[1,1]+T0[1])/delR+ ⌋

(T[2,1]-T0[1])/(r*2*delR)+(T[1,2]-2*T[1,1]+T ⌋
room)/delX+p_elec/deltav);

↪→

↪→

....
for i in 2:N-1,j in 2:M-1 loop

der(T[i,j])=omega*((T[i+1,j]-2*T[i,j]+T[i-1,j])/ ⌋
delR+(T[i+1,j]-T[i-1,j])/(r*2*delR)+(T[i,j+1 ⌋
]-2*T[i,j]+T[i,j-1])/delX+p_elec/deltav);

↪→

↪→

end for;
for j in 1:M loop

T0[j]=4/3*T[1,j]-T[2,j];
dTdrR[j]=-k1*(TL[j]^4-Troom^4)-k2*(TL[j]-Troom);
dTdrR[j]=(-3*TL[j]-4*T[N,j]-T[N-1,j])/(2*delR);

end for;
end ELECTRICALLY_HEATED_ROD_MULTIDIM;

This set of equations is successfully sorted by the set–based

algorithms implemented in ModelicaCC. This time, GiNaC cannot

find the analytical solution so the code for the Newton iteration

is automatically produced. Table 2 reports the execution time of

the causalization algorithms as the number of sections N ,M is

increased.

N = M Scalar Set–Based

10 0.109 0.148

100 8.46 0.157

200 33.7 0.167

500 206 0.171

1000 789 0.157

2000 – 0.174

Table 2: Execution time (sec.) in the second example against
model size for scalar and set–based algorithms

A simple analysis of these results shows that the scalar compila-

tion of this model has an approximate complexity ofO (N ×M+M2).
This is due to the fact that there are N ×M equations andM alge-

braic loops that must be matched and sorted by Tarjan’s algorithm.

The scalar compilation does not work for values of N ×M > 2×10
6
.

On the contrary, the complexity of the set–based algorithm is again

2
the full model can be downloaded from https://github.com/CIFASIS/modelicacc/

blob/experimental_multidim_intentional_causalization/test/ causal-

ize/ELECTRICALLY_HEATED_ROD_MULTIDIM.mo

https://github.com/CIFASIS/modelicacc/blob/experimental_multidim_intentional_causalization/test/causalize/ELECTRICALLY_HEATED_ROD_MULTIDIM.mo
https://github.com/CIFASIS/modelicacc/blob/experimental_multidim_intentional_causalization/test/causalize/ELECTRICALLY_HEATED_ROD_MULTIDIM.mo
https://github.com/CIFASIS/modelicacc/blob/experimental_multidim_intentional_causalization/test/causalize/ELECTRICALLY_HEATED_ROD_MULTIDIM.mo
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O (1). As in the previous example, the code produced by the set–

based algorithm does not depend on N orM .

7 CONCLUSIONS AND FUTURE RESEARCH
We introduced novel algorithms that extend maximum matching

and Tarjan’s SSC for the causalization of large sets of DAEs. These

algorithms are based on a novel concept of Set–Based Graphs and al-
low to complete the causalization stage of Modelica models without

expanding arrays or unrolling for-loop equations. That way, they

achieve compilation times that are independent on the size of the

arrays involved. The new algorithms were implemented in Modeli-

caCC and tested in different examples that showed the efficiency

of the proposed solution.

This work opens several lines of research for the future. Besides

the necessary generalizations and improvements (including better

heuristics for some steps), we are currently working on the index–

reduction problem by extending Pantelides algorithm [24] under

similar principles. The flattening stage of the compilation process

can also be extended in a similar way following what was done in

[3]. The use of Set–Based Graphs can also be exploited for other

related problems involving structure information on large DAE

systems, such as Jacobian and incidence matrices computation.

Regarding the algorithms developed, it would be important to

provide formal proofs of their correctness.

Also, a very important work for the future is to implement the

algorithms in a more robust way in more robust Modelica compilers

(OpenModelica in particular).

The source code of the set–based causalization can be

downloaded from https://github.com/CIFASIS/modelicacc/

tree/experimental_multidim_intentional_causalization.
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