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†Laboratorio de Sistemas Dinámicos. FCEIA - UNR. CIFASIS–CONICET.
Riobamba 245 bis - (2000) Rosario, Argentina

bergero@cifasis-conicet.gov.ar kofman@fceia.unr.edu.ar
‡Modeling and Simulation Research Group ETH Zürich, Switzerland

fcellier@inf.ethz.ch

Abstract

In this paper, we introduce a novel parallelization technique for DEVS simulation of con-
tinuous and hybrid systems. Here, like in most parallel discrete event simulation method-
ologies, the models are first split into several sub–models that are concurrently simulated on
different processors.

In order to avoid the cost of the global synchronization of all processes, the simulation
time of each sub–model is locally synchronized in a real–time fashion with a scaled version of
physical time, which implicitly synchronizes all sub–models. The new methodology, coined
Scaled Real–Time Synchronization (SRTS), does not ensure a perfect synchronization in its
implementation. However, under certain conditions, the synchronization error introduced
only provokes bounded numerical errors in the simulation results. SRTS uses the same
physical time–scaling parameter during the entire simulation. We also developed an adaptive
version of the methodology (Adaptive-SRTS) where this parameter automatically evolves
during the simulation according to the workload.

We implemented the SRTS and Adaptive-SRTS techniques in PowerDEVS , a DEVS
simulation tool, under the Real Time Operating System (RTOS) RTAI (RealTime Appli-
cation Interface). We also tested its performance in the simulation of three large models,
obtaining in all cases a considerable speedup.

1 Introduction

Computer simulation has become a crucial tool for studying, developing, and evaluating math-
ematical models of systems of different domains (physics, economics, biology, etc.).

Continuous systems are usually represented by sets of differential equations. Since most
differential equations lack analytical solutions, they must be discretized to simulate the contin-
uous systems they represent. To this end, most numerical integration methods approximate the
differential equations by discretizing the time variable transforming them into sets of difference
equations9.
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Some recently developed numerical methods, however, are based on state discretization.
These methods, called QSS (after Quantized State Systems)9 transform the originally continuous
systems into discrete event systems that can be represented by the Discrete Event System
Specification (DEVS) formalism42.

The usage of QSS algorithms then allows the DEVS formalism to represent and to simulate
continuous and hybrid systems.

DEVS models can be easily simulated, but when the models are large, the computational
requirements become critical and parallelization techniques must be employed.

Parallel Discrete Event Simulation (PDES) is a technique that can be used for the simulation
of large DEVS models in multi–core or cluster environments. In PDES, the model is first split
into several subsystems called physical processes. Then, the processes are simulated concurrently
on different logical processors (LP).

Compared to simulating a large model in a sequential manner, PDES reduces the compu-
tational cost but it introduces a new problem related to the need of synchronization between
processes. Synchronization between different LPs is required since each process needs to know
the results of other processes in order to correctly simulate its own subsystem.

If the LPs are not correctly synchronized, the simulation may receive events out of order
(with time–stamps lower than the actual simulation time), which can lead to an incorrect result.
This is called a causality constraint.

There are many approaches to overcome this problem. One of the first was the one pro-
posed by Chandy, Misra, and Bryant (CMB algorithm)7,10,27. CMB implements a conservative
synchronization where none of the LPs advances its simulation time until it is safe.

A different approach is that proposed by Jefferson18, where an optimistic synchronization
mechanism is introduced relaxing the causality constraint. The LPs are allowed to advance
their simulation time as fast as they can, and proper actions are taken when inconsistencies are
detected.

Finally, a technique called NOTIME34 explores the effects of not synchronizing the processes
at all.

In this article, we present a novel PDES technique, specialized for DEVS approximations of
continuous and hybrid system, called Scaled Real–Time Synchronization (SRTS). The basic idea
is to synchronize each LP’s simulation time with a scaled version of the physical time or wall–
clock time. As all LPs are synchronized with the physical time, they are indirectly synchronized
against each other.

As our approach is intended for continuous and hybrid systems, events represent continuous
trajectories. Thus, synchronization errors provoke numerical errors. Provided that the errors are
bounded, they do not invalidate the final results, hence we can relax the causality constraints.

While in SRTS the user must provide the real–time scaling factor as a simulation param-
eter, we also developed an ASRTS algorithm where the scaling factor is adjusted dynamically
depending on the system workload.

We have implemented SRTS and ASRTS in PowerDEVS 4, a general purpose open source
DEVS simulator. PowerDEVS implements the complete family of QSS methods on which this
work is based. As we need a precise synchronization with physical time in order to achieve
a precise synchronization between the processes, the implementation runs under a real–time
operating system called RTAI13.

The article is organized as follows. Section 2 introduces the main concepts used in the rest
of the paper, and Section 3 describes some related work in the field. Then Sections 4 and 5
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introduce and describe the SRTS and ASRTS algorithms, the main contributions of this article.
Finally Section 6 shows some application examples, and Section 7 concludes the article and
discusses some lines of future work.

2 Background

In this section, we introduce a few basic concepts and ideas that will be used in the article.
We first describe the DEVS formalism and the QSS methods, a family of numerical integra-

tion methods for continuous and hybrid system simulation. Then, we describe the Real–Time
Operating System RTAI and the DEVS simulation tool called PowerDEVS . Finally, we provide
a brief introduction to parallel architectures.

2.1 DEVS

DEVS stands for Discrete EVent System specification, a formalism introduced first by Bernard
P. Zeigler41.

A DEVS model processes an input event trajectory and –according to that trajectory and
its own initial conditions– provokes an output event trajectory.

An atomic DEVS model is defined by the following structure:

M = (X,Y, S, δint, δext, λ, ta)

where:

• X is the set of input event values, i.e., the set of all possible values that an input event
can adopt.

• Y is the set of output event values.

• S is the set of state values.

• δint, δext, λ and ta are functions that define the system dynamics.

Each possible state s (s ∈ S) has an associated Time Advance computed by the Time
Advance Function ta(s) (ta(s) : S → ℜ+

0 ). The Time Advance is a non–negative real number
specifying how long the system remains in a given state in absence of input events.

Thus, if the state adopts the value s1 at time t1, after ta(s1) units of time (i.e., at time
t1 + ta(s1)) the system undergoes an internal transition, changing its state from s1 to s2. The
new state is calculated as s2 = δint(s1). Function δint (δint : S → S) is called Internal Transition
Function.

When the state transitions from s1 to s2, an output event is produced with value y1 = λ(s1).
Function λ (λ : S → Y ) is called Output Function. In this way, the functions ta, δint, and λ
define the autonomous behavior of a DEVS model.

When an input event arrives, the state changes instantaneously. The new state value depends
not only on the input event value but also on the previous state value and the elapsed time since
the last transition. If the system entered state s2 at time t2 and then an input event arrives
at time t2 + e with value x1, the new state is calculated as s3 = δext(s2, e, x1) (note that
ta(s2) > e). In this case, we say that the system performs an external transition. Function δext
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(δext : S × ℜ+
0 ×X → S) is called External Transition Function. No output event is produced

during an external transition.
The formalism presented is also called Classic DEVS to distinguish it from Parallel DEVS 42,

which consists in an extension of the classic DEVS formalism designed to improve the treatment
of simultaneous events.

Atomic DEVS models can be coupled. DEVS theory guarantees that the coupling of atomic
DEVS models defines new DEVS models (i.e., DEVS is closed under coupling), and thus, complex
systems can be represented by DEVS in a hierarchical way42.

Coupling in DEVS is usually represented through the use of input and output ports. With
these ports, the coupling of DEVS models becomes a simple block–diagram construction. Figure
1 shows a coupled DEVS model N that results from coupling models Ma and Mb.

Ma

Mb

N

Figure 1: Coupled DEVS model

According to the closure property, the model N can itself be interpreted as an atomic DEVS
and can be coupled with other atomic or coupled models.

2.2 Quantized State Systems

A continuous time system can be written as a set of ordinary differential equations (ODEs):

ẋ(t) = f(x(t),u(t)) (1)

where x ∈ ℜn is the state vector and u ∈ ℜm is a vector of known input functions.
The mathematical model (1) can be simulated using a numerical integration method. While

conventional integration algorithms are based on time discretization, a new family of numerical
methods was developed based on state quantization9. The new algorithms, called Quantized
State System methods (QSS methods), approximate ODEs like that of Eq.(1) by DEVS models.

Formally, the first–order accurate QSS method approximates Eq.(1) by

ẋ(t) = f(q(t),v(t)) (2)

where each pair of variables qj and xj are related by a hysteretic quantization function.
The presence of a hysteretic quantization function relating qj(t) and xj(t) implies that qj(t)

follows a piecewise constant trajectory that only changes when the difference with xj(t) becomes
equal to a parameter ∆qj, called quantum. The variables qj are called quantized variables. They
can be viewed as piecewise constant approximations of the corresponding state variables xj .
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Similarly, the components of v(t) are piecewise constant approximations of the corresponding
components of u(t).

Since the components qj(t) and vj(t) follow piecewise constant trajectories, it results that
the state derivatives ẋj(t) also follow piecewise constant trajectories. Then, the state variables
xj(t) have piecewise linear evolutions.

Each component of Eq.(2) can be thought of as the coupling of two elementary subsystems,
a static one,

ẋj(t) = fj(q1, · · · , qn, v1, · · · , vm) (3)

and a dynamical one

qj(t) = Qj(xj(·)) = Qj(

∫

ẋj(τ)dτ) (4)

where Qj is the hysteretic quantization function (it is not a function of the instantaneous value
xj(t), but a functional of the trajectory xj(·)).

Since the components vj(t), qj(t), and ẋj(t) are piecewise constant, both subsystems have
piecewise constant input and output trajectories that can be represented by sequences of events.

Then, Subsystems (3) and (4) define a relation between their input and output sequences
of events. Consequently, equivalent DEVS models can be found for these systems, called static
functions and quantized integrators, respectively9.

The piecewise constant input trajectories vj(t) can be also represented by sequences of events,
and source DEVS models that generate them can be easily obtained.

Then, the QSS approximation Eq.(2) can be exactly simulated by a DEVS model consisting
in the coupling of n quantized integrators, n static functions, andm signal sources. The resulting
coupled DEVS model looks identical to the block diagram representation of the original system
of Eq.(1), as Figure 2 shows.

x1f1(·)

xnfn(·)
q1

q1 q1

qn

qn

qn

v(t)

v(t)

HQI

HQIF1

Fn

Figure 2: Coupled DEVS model of a QSS approximation

Based on the idea of QSS, a second–order accurate method was developed replacing the
piecewise constant approximations by piecewise linear ones. The method, called QSS2, can be
implemented using DEVS in the same way as QSS. However, the trajectories are now piecewise
linear instead of piecewise constant. Thus, the events carry two numbers that indicate the initial
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value and the slope of each segment. Also, the static functions and quantized integrators are
modified with respect to those of QSS so that they can take into account the slopes.

Following the idea of QSS2, the third–order accurate QSS3 method20 uses piecewise parabolic
trajectories. The family of QSS methods has been augmented with methods for stiff and
marginally stable systems (Backward QSS and Centered QSS of first order26, and Linearly
Implicit QSS methods of orders 1 and 225).

2.3 RealTime Application Interface (RTAI)

RealTime Application Interface (RTAI) is a RTOS that supports several architectures (i386,
PowerPC, ARM). RTAI is an extension of the Linux kernel to support real–time tasks to run
concurrently with Linux processes. In order to enable real–time simulation, RTAI employs a
method that was first used in RT-Linux2.

The Linux kernel is not by itself a RTOS. It does not provide real–time services, and in
some parts of the kernel, interrupts are disabled as a method of synchronization (to update
internal structures in an atomic way). The periods of time when interrupts are disabled lead to
a scenario where the response time of the system is unknown and time deadlines may therefore
be missed.

To avoid this problem, RTAI inserts an abstraction layer underneath the Linux kernel. In
this way, Linux never disables the real hardware interrupts. The Linux kernel is run on top of
another micro–kernel (RTAI + Adeos 1) as user processes. All hardware interrupts are captured
by this micro-kernel and forwarded to Linux (if Linux has interrupts enabled).

Another problem running real–time tasks under Linux is that the Linux scheduler can take
control of the processor from any running process without restrictions. This is unacceptable in
a real–time system. Thus in RTAI, all real–time tasks are run in the micro–kernel without any
supervision by Linux. Moreover, these processes are not seen by the Linux scheduler.

Real–time tasks are managed by the RTAI scheduler. There are two different kinds of
processes, Linux processes and RTAI processes. RTAI processes cannot make use of Linux
services (such as the File system) and vice versa. To avoid this problem, RTAI offers various
IPC mechanisms (Pipes, Mailboxes, Shared Memory, etc.).

RTAI provides the user with basic services to implement real–time systems:

Deterministic interrupt response time: An interrupt is an external event to the system.
The response time to this event varies from one computer to another, but RTAI guarantees
an upper limit (on each computer), which is necessary to communicate with external
hardware, for example a data acquisition board.

Inter Process Communication (IPC): RTAI supports a number of different methods of
IPC, such as semaphores, pipes, mailboxes, and shared memory. These IPC mechanisms
can be used for the communication between processes running in real time and normal
Linux processes.

High accuracy timers: When developing real–time systems, the time handling accuracy is
very important. RTAI offers clocks and timers with ns (1.0e − 9 s) precision. On i386
architectures, these timers use the processor time stamp, therefore, they are very precise.

1Adeos39,40 is the abstraction layer used in RTAI. Adeos implements the concept of interrupt domain.
http://home.gna.org/adeos/
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Interrupt Handling: RTAI allows the user to capture hardware interrupts and treat them
with custom user handlers. Normal Operating Systems (such as Linux, Windows) hide
hardware interrupts from the user, making the development of communication with exter-
nal hardware more cumbersome (one needs to write a kernel driver).

Multiprocessor support RTAI supports also multiprocessor architectures enabling the user
to run simultaneously different real–time tasks on separate processors.

2.4 PowerDEVS and Real–Time

PowerDEVS 4 is a general purpose tool for DEVS simulation. It consists of two main modules:
The graphic interface that allows the user to describe DEVS models in a block diagram fashion,
and the simulation engine that simulates the models.

In order to simulate a model, PowerDEVS first translates it into a C++ description and
compiles it together with the simulation engine.

In spite of being a general purpose DEVS simulator, PowerDEVS was designed to simulate
continuous and hybrid systems through the use of QSS methods. The standard distribution
comes with a comprehensive library of atomic models for hybrid system simulation based on
these methods. Users can add new atomic models by defining the dynamics of the DEVS model
in C++.

PowerDEVS can be run under RTAI synchronizing the simulation with the physical (wall–
clock) time obtaining an accuracy of the order of 1 µsec4.

2.5 Parallelization platforms

Parallel computing is a form of computation, in which many calculations are simultaneously
carried out on separate processors. Large problems can usually be divided into smaller ones
that can then be solved concurrently.

There are different levels of parallelism: instruction level, data level, task level, etc. They
differ in many aspects, such as shared or distributed memory, single or multiple processors, the
type of communication mechanism they employ, such as message passing, or shared memory,
etc.

We shall focus on task level parallelism, where each logical processor (LP) runs a different
piece of code with different data, i.e., according to Flynn’s taxonomy14 we operate on Multiple
Instructions, Multiple Data stream (MIMD).

In particular, we shall work with a multi–core architecture5 as this offers many desirable
features for our implementation, such as shared and unified memory, local communication (on
chip), and a generic instruction set.

There exist also other architectures, such as the Message Passing Interface (MPI)36 or
General–Purpose computing on Graphics Processing Units (GPGPU)33, but they both have
their drawbacks.

MPI is a message passing protocol. This protocol is particularly well suited for clusters.
GPGPU does not fit our purposes well, since it lacks shared memory, the code executed on

each processors must be the same, synchronization is very expensive, and the instruction set is
not as generic as for a PC.
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3 Related Work

In this section, we review previous work and similar developments.

3.1 Parallel Discrete Event Simulation

Since the beginning of the 1980’s, much research has been performed on algorithms for synchro-
nizing parallel simulation of discrete event systems.

One of the first solutions to the problem was proposed by Chandy, Misra, and Bryant7,10,27.
They suggested a conservative distributed solution, whereby processes communicate only by
message passing without shared memory and with a centralized coordinator.

The synchronization is achieved by enforcing the correct order of all messages, making all
LPs wait until it is safe to produce the next event. By safe we mean that the LP producing the
next event is certain that it will never receive a message with an earlier time–stamp than its
own logical simulation time.

The authors prove formally the correctness of the algorithm and show that no deadlock can
occur by the use of null messages. The memory consumption of the algorithm is constant as it
does not require state saving at all. Chandy and Misra11 also proposed a shceme that avoids
the use of null messages and allows deadlock to happen, and then breaks it.

Its major drawback is that the amount of actual parallel computing done is diminished by the
mechanism to enforce the causality constraint. By including Lookahead and Structure Analysis,
the efficiency of the algorithm can be improved, but the achievable speedup is highly dependent
on the model.

Another solution was proposed by Jefferson18 where he introduces an optimistic synchro-
nization method for parallel simulation, called Time Warp. Each LP carries its own logical time
and advances as if there were no need for synchronization at all.

If an event with a smaller time–stamp than the simulation time is received (a straggler event),
the LP rolls back to a previously saved state where it is safe to receive that event. It also un–
sends (by using anti–messages) all events that were sent out in the rollback period. This involves
saving state values in each LP for possible rollbacks, and thus, the memory requirements are
larger than for other algorithms.

Both the state saving and the anti–message scheme (that could produce a cascade of roll-
backs) are computationally expensive, and therefore, many extensions and additions have been
made to the original algorithm to avoid rollbacks and reduce the number of state savings re-
quired. A complete review of these extensions can be found in the article by Liu21.

A more recent algorithm called NOTIME34 where the simulation is performed without any
synchronization. Using this approach, the different LPs simulate their physical processes as fast
as they can. Straggler events are allowed and accepted as correct. This introduces some error in
the simulation since the logical time in the different LPs will vary from one processor to another.

While this exploits the parallelism optimally well, the technique can produce incorrect results,
yet it may be an acceptable technique in situations where a user is willing to accept less accurate
results for a lower simulation time.

The correctness of the result depends indirectly on how the work load is balanced across
different LPs. If it is unevenly distributed, some LPs will run faster, while the ones with a
heavier workload will run more slowly.

Tang et al.38 studied an optimistic PDES using reverse computations applied to partial
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differential equations problems obtaining linear speedups up to 4 processors. Similar works have
been done applying PDES to simulate physical system such as the article by Bauer3 (based on
Nutaro’s29) concluding that for certain kind of problem optimistic PDES is not suitable if not
accompanied by a dynamic load balancing technique.

Outside DES, work has been done in distributed realtime simulation. Adelantado1 presents
a realtime capable HLA middleware and a formal model for validation. As we will see this is
related to our work as it uses a local wall clock to synchronize different federates. On the other
hand, in the formal model it is assumed that each federate has a periodic execution and a worst
cases execution time, this assumptions do not hold in our work since the execution time is not
know and varies during the simulation.

3.2 Parallel and Realtime DEVS Simulation

Many articles address the problem of simulating DEVS system in parallel using the before men-
tioned approches. Shafagh and Wainer17 present CCD++ a conservative DEVS and Cell-DEVS
simulator and they compare this approach with a optimistic one. Kim et al.19 present a Time-
Warp based methodology for distributed DEVS simulation. A mixed approach is investigated by
Praehofer32 that combines conservative and optimistic strategies that is able to optimally exploit
the lookahead. Liu22 explores a light version of the TimeWarp mechanism for a DEVS (and
Cell-DEVS) simulator on the Cell processor. Here he introduces LTW and MADS as means
to overcome TimeWarp bottlenecks and to hide the complexity of multicore programming from
the general user.

Finally Hong et al.16 proposed an extension to the DEVS formalism, to model Real Time
systems called RealTime-DEVS (RTDEVS). The main idea is to fill time advances with exe-
cutable activities and to specify time bounds required for each activity. They also implemented
an DEVS executive (or DEVS simulator) that synchronizes the wall time with the simulation
time. As we will see (Sec 5.3), this is related to the present work.

3.3 Parallel Simulation of QSS Approximations of Continuous Systems

Some previous results have also been reported concerning the parallelization of simulations of
DEVS models resulting from the application of QSS algorithms to continuous systems.

Nutaro28 investigates the first implementations of the QSS algorithms in a parallel DEVS
simulator. The author studied the use of the Time Warp mechanism and concluded that it is
unsuited for simulating large continuous systems.

By using a (first–order accurate) QSS, he simulated a sod shock tube problem achieving a
speedup that increased to a maximum factor of 3 when using up to 6 processors, but quickly
decreased when using more processors.

Another implementation of QSS on a multi–processor architecture has been investigated23.
This implementation was performed using CUDA (a GPGPU language). Unfortunately as was
already mentioned earlier in this article, graphical processing units (GPU) offer a limited in-
struction set, and synchronization tasks are very expensive. Moreover, GPUs follow a Single
Instruction, Multiple Data stream (SIMD) under Flynn’s taxonomy14, where all processors ex-
ecute the same code in parallel, and the performance is significantly reduced when the code has
diverging branches.

These issues limit the classes of applications were GPUs can be efficiently used. In the
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example analyzed in the cited reference, a speedup of up to a factor of 7.2 has been reported for
a system with 64 states using 64 processors.

4 Scaled Real-Time Synchronization

In this section, we present the Scaled Real-Time Synchronization (SRTS) technique for PDES
synchronization.

4.1 Basic idea

As mentioned already, several different PDES techniques have been proposed in the literature.
They are based on either conservative, optimistic, or even unsynchronized algorithms.

DEVS models resulting of the application of QSS methods to large continuous systems have
particular features:

1. Each event originates at a quantized integrator and is instantaneously transmitted to other
quantized integrators through the static functions depending on the corresponding state
variable.

2. The events received by quantized integrators change their future evolution, but they do
not provoke instantaneous output events.

3. Different quantized integrators provoke output events at different times.

4. Each event represents a section of a piecewise polynomial function.

On the one hand, the second feature implies that synchronization is usually necessary, and
techniques like NOTIME can rarely be used.

On the other hand, if the synchronization is strict so that it respects the ordering of all
events, there will be very few calculations performed in parallel. The reason is simple. Each
time one integrator provokes an event, the event is transmitted to a few static functions, and
through them to a few quantized integrators.

A conservative algorithm will not allow any other LP to advance the simulation time until
those calculations are complete. Consequently, almost nothing is gained by parallelization.

An optimistic algorithm will allow the simulation time of other LPs to advance, but as soon
as the effect of an event is propagated to them, a rollback mechanism will need to take place.
Rollback in a large continuous system is impractical, as this will consume a large amount of
memory and time, and furthermore, it is difficult to assess in advance, how much time is going
to be used up by the rollback.

To overcome these difficulties, we propose a technique, in which we perform a non–strict
synchronization. Recalling that events represent sections of polynomials, errors in the synchro-
nization imply a bounded numerical error in the trajectories transmitted from one process to
another.

As with other PDES techniques, the overall model is divided in SRTS into sub–models
representing physical processes, and each of these processes is simulated on a different LP.

In order to avoid the inter–process synchronization overhead, instead of synchronizing the
simulation time between all LPs, we synchronize in SRTS the simulation time of each LP with
the physical (wall–clock) time.
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The only communication between different LPs takes place when events are transmitted from
one LP to another. These events are transmitted using RTAI’s mailbox IPC mechanism13.

Each LP synchronizes with the wall–clock in the following way. If the next event in the LP is
scheduled to occur after τ units of simulation time, the LP waits until the wall–clock advances
by τ/r units of physical time. We call r the real–time scaling factor. It is a parameter that must
be chosen according to the speed, at which the system can be simulated.

Once the waiting period is completed, the LP computes the output event and recomputes
the state. When the output event needs to be propagated to sub–models belonging to different
LPs, a time–stamped message containing the event is sent to the corresponding mailboxes.

During the waiting period, each LP checks for messages arriving at its mailboxes. Whenever
a message arrives, the LP processes the event making use of the time–stamp, recomputes the
state, and, if the recomputed next event is scheduled after the current time, it waits again.

Figure 3: Time diagram of the SRTS technique

In Fig. 3 a time diagram is shown where two LPs synchronize using SRTS. Initially both
LPs are waiting. At logical simulation time t1 (scaled wall time t1/r), LP A computes its next
event. This computation takes ∆1 units of wall time. Then LP A waits until t2 is reached (at
t2/r of scaled wall time) when it emits its output event, makes an internal transition, and goes
back to wait. This event is propagated to LP B who computes its external transition processing
the received event (taking ∆2 units of wall time), schedules its next event for t3, and goes back
to wait. This cycle is repeated until the final (logical) time is reached.

Implementing this scheme in an abstract simulator, there can be no straggler events; the
only problem that could arise concerns simultaneous events in different LPs, but they have no
consequences when simulating a QSS approximation.

In a real implementation, however, straggler events can appear, since neither the synchro-
nization nor the communication methods are perfect, and also the computation of each event
consumes some time.

Yet, as we mentioned before, bounded synchronization errors in the context of QSS simulation
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provoke in most cases only bounded numerical errors in the trajectories transmitted between
LPs.

4.2 SRTS Technique

As with other PDES techniques, SRTS requires that the model first be split into as many physical
processes as there are different LPs to be used. In this work, we shall not discuss any method-
ology for efficiently partitioning a model but there are many works addressing this12,37,15,6.

We consider that each LP holds a coupled DEVS sub–model, and those sub–models are
coupled through input and output ports modeling the interactions between the subsystems.

Figure 4 shows the coupling structure of a model M divided into 4 sub–models simulated on
4 different LPs.

LP4LP3

LP2

M1 M2

M3 M4

LP1

M

Figure 4: Coupling structure of SRTS

Simulation startup

A sequential DEVS simulation invokes first an initialization routine that sets the initial state of
the model, the parameters, etc. Then, the simulation starts.

In SRTS, after each sub–model has been initialized, all simulation threads must start at the
same wall–clock time in order to ensure synchronization between different LPs.

To accomplish a simultaneous startup, a barrier is used. All simulation threads are launched
and the i–th thread starts like this:

1. Set the shared memory variable flag[i] = true.

2. Wait until flag[j] = true for all j 6= i.

3. Measure the initial wall–clock time (t0[i]) of the LP.

4. Start the simulation routine.
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The initial wall–clock time is then used to compute the physical time from the beginning of
the simulation, by subtracting it from the measured wall–clock time.

Simulation Algorithm

The SRTS simulation algorithm can be described as follows:

1. Compute the time of next event tn of the sub–model .

2. If tn > tf (final simulation time), then set tn := tf .

3. Wait until the scaled physical time reaches the simulation time (i.e., tp/r = tn) or until a
message arrives.

4. If a message arrives, go to step 10.

5. If tn = tf end of simulation.

6. Advance the simulation time to t := tn.

7. Compute and propagate the output event inside the sub–model (external transition).

8. If the event propagates to other sub–models, send messages to the corresponding LPs.

9. Recompute the state of the model causing the event (internal transition) and return to
step 1.

10. Advance the simulation time t to the value contained in the message time–stamp.

11. Propagate the event inside the sub–model (external transition) and return to step 1.

This algorithm works well provided that every LP sends and receives the messages at the
correct time. To send a message at the correct time, a LP must finish the corresponding
calculations before that time, i.e., it should not be in overrun. We shall discuss this issue next.

Overrun Policy

Overrun situations can be minimized by setting a sufficiently small value for the real–time factor
r. However, we want r to be as big as possible in order to simulate fast.

Also, even choosing a very small value for r, real operating systems have latency, and overrun
situations occur often.

When a LP is in overrun, it continues simulating without checking for input events. The
reason is that input events arriving are in the future with respect to the logical time of the LP
in overrun. Thus, it is better to process arriving messages only after the overrun situation has
finished.
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Message Handling

As mentioned earlier, events sent to sub–models belonging to different LPs are transmitted
through time–stamped messages.

It can happen that a sub–model is in overrun or busy computing state transitions while a
message is sent to it. If it does not finish its job before a new message arrives, we face two
options. We can queue the messages until the LP is able to process them, or we can discard
some of the messages.

While in the context of general DEVS models queueing the messages seems the most rea-
sonable choice, we recall that SRTS is intended to simulate continuous systems where events
represent changes in trajectories.

If at time t the LP finishes its job and realizes that there are two input messages waiting to
be processed, one corresponding to time t1 and the other to time t2 with t1 < t2 < t, there is
nothing to be done with the oldest message. It is already late, and the change in the trajectory it
represented has been ignored. However, it makes sense to process the change in t2 that contains
more recent information about the trajectory.

For this reason, each sub–model in SRTS uses one mailbox for each input port (i.e., one
mailbox per input trajectory), and each mailbox has capacity 1. No matter if the LP was able
to read it or not, each message at the mailbox is overridden by the arrival of a new message.

4.3 SRTS and Numerical Errors in QSS Methods

The use of SRTS implies that messages sent between LPs may be received at incorrect times.
Since LPs do not check for input messages when they are in overrun, they will not receive
messages with time–stamps greater than the logical time. In other words, they never receive
messages from the future. Synchronization errors always imply that messages arrive late.

Let us suppose that we use SRTS with two processors to simulate a QSS approximation of
a high–order system:

ẋ(t) = f(q(t),v(t))

To this end, we split the system as follows:

ẋa(t) = fa(qa(t),qb(t),v(t))

ẋb(t) = fb(qa(t),qb(t),v(t))

where:
x = [xa xb]

T ; q = [qa qb]
T ; f = [fa fb]

T

The delay introduced by the SRTS mechanism implies that qa is received with a delay by the
LP that computes xb, and vice versa. Thus, the QSS approximation takes the form:

ẋa(t) = fa(qa(t),qb(t− τb(t)),v(t))

ẋb(t) = fb(qa(t− τa(t)),qb(t),v(t))

where τa(t) and τb(t) are the communication delays between the LPs (including latency and
overrun effects, and delays affected by the real–time scaling factor).

We shall discuss later some implementation issues that ensure that the delays are bounded.
Depending on some features of the original ODE (input–to–state stability properties8), the
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presence of bounded delays will only provoke a numerical error that will be superposed to the
one introduced by the QSS approximation itself.

Although this analysis can be easily extended to systems with N LPs, we do not intend to
perform a formal study of stability and numerical error bounds related to the usage of SRTS in
this article.

It is, however, worth mentioning that the numerical error introduced by SRTS is minimized
when latency and overrun are minimized.

4.4 Implementation of SRTS on PowerDEVS – RTAI

We implemented the SRTS algorithm in PowerDEVS on a multi–core architecture. We chose
PowerDEVS because it implements the whole family of QSS methods and can run under a
RTOS (RTAI).

The usage of a Real–Time OS is crucial for SRTS since, as explained before, the delay
introduced by the latency must be bounded and minimized.

The PDES version of PowerDEVS generates a simulation executable that performs the
following steps:

• It initializes the PowerDEVS model (see Sec 2.4).

• It starts the RTAI real-time system, initializing the real–time clocks and a main real–time
task.

• For each LP, it creates and sets up as many mailboxes as there are input ports.

• It starts one real–time thread per physical processes. It then forks these threads with the
simulation loop. An index parameter allows each thread to know, which physical processes
it corresponds to.

• It waits for all real–time threads to finish and then exits while un–allocating all mailboxes
and threads.

We have developed a live-cd from where one can try (or install) PowerDEVS –RTAI under
any i386 processor.

Synchronization and CPU allocation

We implemented all synchronization tasks by a busy–waiting strategy, wasting CPU cycles with-
out releasing the processor until the waiting time ends or a new message arrives. Although this
strategy wastes computing power, it offers a more accurate synchronization.

A busy–waiting strategy under RTAI does not allow any other task to use the processor that
is running the thread. In this way, the latency is minimized. However with this strategy, each
processor can only run one thread, which limits the number of processes that can run in parallel.

RTAI also gives the user the ability to select the processor to run a given thread, i.e., we can
allocate one thread per processor.

In consequence, we can divide the model into as many sub–models representing physical
processes as there are processors available. On our hardware, we can allocate up to 12 LPs (as
hyper–threading technology divides each core processor into two virtual processors).
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Latency and overrun

In absence of latency and neglecting the processing time for messages, transitions, and other
calculations, the algorithm described earlier in this section correctly simulates the overall model.

However in a real implementation, we cannot avoid some latency, and sometimes calculations
take longer than the physical time allowed, and the simulation then enters an overrun situation.

For example, if the physical processor needs 1 wall–clock second to simulate 1 second of
logical time, we cannot use a real–time scaling factor greater than 1. If we do that, the thread
will never be able to catch up with the scaled wall–clock time.

While this type of overrun situation can be avoided by using a sufficiently small real–time
scaling factor, one event generated by a quantized integrator in a QSS method usually triggers
many simultaneous events through the static functions. Whereas the first event will be correctly
synchronized, the remaining events will be invariably in overrun.

Latency also introduces some error in the synchronization, which affects the communication
mechanism.

If an event scheduled for t1 is sent out at time t1 +∆t, the other threads will receive it with
a time delay of ∆t. If during that delay period the other threads computed an event, an error
appears that affects the global result.

The hardware platform we use under RTAI exhibits an average latency that ranges from 150
to 500 nsec, with a maximum value around 10 µsec. These values limit the maximum real–time
factor that we may use.

For instance, if we use a real–time factor of 1000, a latency of 10 µsec is translated to 10
msec of maximum simulation time error in events transmitted between different LPs. If that
simulation time error provokes an unacceptable simulation error, then we would be enforced to
use a smaller real–time factor.

5 Adaptive Real-Time Scaling

The main drawback of SRTS is that the real–time scaling factor r must be chosen by the user.
Unless the user performs some previous trial and error experiments, he would be hard–pressed
to know a priori, which value to assign to the real–time scaling factor.

Another problem is that r remains constant during the entire simulation. In many cases, the
simulation workload changes with time, and it makes sense to adapt r according to the actual
workload.

In this section, we introduce an adaptive version of SRTS, called ASRTS, where the real–time
scaling factor is automatically adapted to optimize the efficiency of the simulation.

5.1 Basic idea

Adaptive SRTS attempts to automatically change the real–time scaling factor to minimize the
time that processors spend waiting but without provoking overrun situations. In this way,
ASRTS improves the overall efficiency by lowering the simulation time.

The idea behind ASRTS is rather simple. It is identical to SRTS, except that it periodically
changes the real–time scaling factor.

ASRTS cuts the simulation time into sampling periods of equal duration. During each such
period, each LP measures the total time that it spends waiting. At the end of the period, one
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of the threads collects the accumulated waiting times of all LPs and determines their minimum
(i.e., the waiting time of the process that had the heaviest workload). Using that information,
it computes the ratio between the smallest accumulated waiting time and the length of the
sampling period.

If the minimum waiting ratio w is greater than a prescribed desired waiting ratio w0 (we
use values around 10%), the algorithm is allowed to increase the real–time scaling factor and
simulate faster. Otherwise, the algorithm decreases r.

In this way, ASRTS tries to keep the minimum waiting ratio around the desired waiting ratio
w0.

Changes in the real–time scaling factor are done synchronously, that is, all LPs change their
value of r at the same time (logically and physically) and to the same value, since the scaling
factor affects directly the implicit synchronization among the entire group of LPs.

Once r has been changed, the LPs continue with the simulation using the SRTS algorithm
until the next sampling period has ended.

5.2 Adaptive-SRTS Algorithm

As mentioned above, ASRTS is identical to SRTS but includes periodic checkpoints (with a
sampling period of ∆T ), when the scaling factor r may be changed.

During each sampling, ASRTS gathers statistics about the workload and the time spent
waiting by each LP. When they reach the next checkpoint, the LPs stop simulating and wait
until the new real–time scaling factor has been computed.

This computation is done by a thread coordinator (thread 0), while the remaining threads
wait in a synchronizing barrier that holds them until the new scaling factor has been computed.

At the end of each sampling period, after each LP computed its accumulated waiting time
Twi

, the coordinator computes the new real–time scaling factor as follows:

1. It finds the minimum waiting ratio

w =
mini{Twi

, σ}

∆T

where σ is a value lower but close to 1 to avoid division by zero. In a real implementation
not all the Twi

can be 1 because of overheads.

2. It computes the optimal real–time scaling factor r̂ for the desired waiting ratio w0 as:

r̂ = r
1− w0

1− w
(5)

3. If r̂ < r, it computes the new real–time scaling factor as r := r̂, slowing down the speed
of the simulation.

4. Otherwise if r̂ ≥ r, it computes the new real–time scaling factor as

r := λr + (1− λ)r̂ (6)

which smoothly increases the simulation speed according to the discrete eigenvalue2 λ.

2Note that the Eq. 6 is a difference equation with λ as eingenvalue.
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The ASRTS algorithm has 3 tuning parameters: the sampling period ∆T , the desired waiting
ratio w0, and the discrete eigenvalue λ. We discuss the most suitable values of these parameters
later in this section.

ASRTS makes use of Eq.(5) that computes the real–time scaling factor r̂, for which a waiting
ratio w0 is obtained. This expression is derived below.

Optimal real–time scaling factor

As mentioned above, ASRTS attempts to drive the minimum waiting ratio w to the desired
waiting ratio w0 by adjusting the real–time scaling factor r.

Suppose that during a sampling period ∆T the LP with the maximum workload had a
waiting ratio w while the real–time scaling factor was r. Thus during that period, it spent
computing a total of

Tc = ∆T − w ·∆T = (1−w) ·∆T

units of time, and the simulation time advanced by r ·∆T units of time.
Thus, in order to advance r ·∆T units of simulation time, the LP needed Tc units of physical

time. We can define the workload as follows

W ,
physical time

simulation time
=

Tc

r ·∆T
=

1− w

r

If we assume that the workload changes slowly, we can expect that, in the next sampling period,
it will remain almost unchanged. If we use the appropriate scaling real time factor r̂ in the new
sampling period, we shall obtain the desired waiting ratio w0 and then,

W =
1− w

r
=

1− w0

r̂

from which we obtain Eq.(5).

Parameter selection

In order to properly set the values of the method parameters of ASRTS, we may consider the
following points.

• The sampling period ∆T should be large compared to the physical time required by the
re–synchronization routine and also compared with the time necessary to compute several
events. In this way, the time spent in the synchronization routine is negligible, and every
sampling occurs after several events were computed so that workload statistics make sense.
However, ∆T must be small enough so that the real–time scaling factor is changed several
times during the simulation to be able to react to workload changes in a timely fashion.

In the PowerDEVS implementation, we used ∆T = 100msec. In our platform, the syn-
chronization routine takes from 10 to 100 µsec, and we are interested in simulations that
take at least several seconds (otherwise parallelization might not be necessary). Thus, a
period of ∆T = 100msec is a reasonable choice for most cases.

• The desired waiting ratio w0 should be greater than 0 and less than 1. We want simulations
to run fast, minimizing the waiting time, so a small value of w0 should be chosen. However,
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if w0 is very close to 0, several types of overrun situations can occur that may cause large
numerical errors.

In the PowerDEVS implementation, we normally use w0 = 0.15, which means that the
real–time scaling factor is adjusted such that the LP with the heaviest workload wastes
approximately 15% of the time in a waiting routine.

• The discrete eigenvalue λ ( with 0 < λ < 1) determines how fast the real–time scaling
factor r increases its value to reach the optimal value r̂ according to Eq.(6). When λ is
close to 0 the adaptation is fast. When it is close to 1, the adaptation is slow and smooth.
In presence of fast changes in the workload, a slow adaptation prevents the real–time
scaling factor from assuming very large values that might cause frequent overruns.

For this reason, we normally choose λ = 0.9. With this value, the real–time scaling factor
reaches 80% of its final value after 10 periods (i.e., 1 second in our implementation).

5.3 Relation with other approaches

The present work can be seen as a combination of two previous ideas of the PDES and DEVS
world. First, is related to the RTDEVS executive16 since simulations run synchronized with the
wall clock, in our case a scaled version of the wall clock. However the RTDEVS formalism is not
used for model description and regular DEVS is used instead. In our case the time consuming
activities are in fact the computation of the output events and the busy waits to synchronize
them.

SRTS and ASRTS are also related to the NOTIME technique34 since the causality constraint
can be violated eventually. This violation is minimized by the introduction of busy waits. These
waits act as an artificial load that help balance the workload among LPs, thus implicitly solving
the unbalancing problem of NOTIME.

6 Applications and Examples

In this section, we present some simulation results. We simulated three separate large systems
using QSS methods first in a sequential way and then using SRTS and ASRTS techniques. All
the examples were run using an Intel i7 970 – 6 cores with hyper–threading24. RTAI’s testsuite
reports 416ns average and 18000ns max latencies on this setup.

In all the cases, each simulation was run 10 times and the results did not experience any
noticeable change.

6.1 Power control of an air conditioner population

This example, taken from Perfumo et al.30, is a model to study the dynamics and control of the
power consumption of a population of air conditioners (AC).

We consider here a large population of air conditioners used to control the temperature of
different rooms. The temperature of the i–th room θi(t) follows the equation

dθi(t)

dt
= −

1

Ci · Ri

[θi(t)− θa +Ri · Pi ·mi(t) + wi(t)], (7)
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where Ri and Ci are parameters representing the thermal resistance and capacity of the i–th
room, respectively. Pi is the power of the i–th air conditioner when it is in its on state. θa is
the ambient temperature, and wi(t) is a noise term representing thermal disturbances.

Variable mi(t) is the state of the i–th air conditioner, which takes a value of 1 when the unit
is in its on state, and 0 otherwise. It follows the hysteretic on–off control law:

mi(t
+) =











0 if θi(t) ≤ θr(t)− 0.5 and mi(t) = 1

1 if θi(t) ≥ θr(t) + 0.5 and mi(t) = 0

mi(t) otherwise

(8)

where θr(t) is the reference temperature that is calculated by a global control system.
The power consumption of the entire AC population is computed as:

P (t) =
N
∑

i=1

mi(t) · Pi

and a global control system regulates it, so it follows a desired power profile Pr(t). In order
to accomplish this, a Proportional Integral (PI) control law is used to compute the reference
temperature:

θr(t) = KP · [Pr(t)− P (t)] +KI ·

∫ t

τ=0

[Pr(τ)− P (τ)]dτ

where KP and KI are the parameters of the PI controller.
In this example we chose N = 2400 air conditioner units, and the set of parameters given in

the article30. Thus, we are dealing with a fairly large hybrid system consisting of a set of 2401
differential equations, with 2400 zero–crossing conditions.

We first simulated the system using the QSS3 method with a quantization of ∆Qrel = 10−3

and ∆Qmin = 10−6 in a sequential fashion. Figure 5 plots the average power consumption
P (t)/Pmax.

The final simulation time was tf = 3000 sec, and the sequential simulation consumed 58 sec
of physical time.

We then divided the system into 12 subsystems with 200 air conditioners in each sub–model.
The first sub-model also included the PI controller.

We then used the SRTS technique with different real–time scaling factors. We started with
a scaling factor of r = 200, which consumes tfz/r = 3000/200 = 50 sec of physical time. We
obtained decent results using scaling factors of up to r = 950, which takes tf/r = 3000/950 =
3.16 sec.

For each scaling factor, we compared the simulation results with those of the sequential
simulation and measured the relative RMS error.

Here and in the following examples the RMS error is computed as the:

RMS =
mean(x− x̂)2

mean(x)

where x is the sequential result and x̂ is the parallal result.
Figure 6 plots the measured error in function of the real–time scaling factor.
In this example, using r = 950, SRTS was more than 18 times faster than the sequential

simulation without introducing unacceptably large numerical errors.
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Figure 5: Power consumption in the AC system (sequential simulation result).
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Figure 6: SRTS: Error vs real–time scaling factor – AC example

However for r > 500, we observed that the LPs were most of the time in overrun. Yet in
this case, the overrun situation does not affect the numerical error in major ways.

Then we simulated the system using Adaptive SRTS with parameters ∆T = 100 msec,
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w0 = 0.15, and λ = 0.9. The ASRTS simulation took 6.6 seconds, reaching a maximum real–
time scaling factor of r = 480.

In consequence, ASRTS was almost 9 times faster than the sequential simulation using 12
processors. The real–time scaling factor reached was close to the limit, at which large overruns
are observed.

We repeated the simulation with ASRTS for different values of λ. Figure 7 shows the way,
in which ASRTS adapts the scaling real–time factor during each simulation run.
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Figure 7: ASRTS: Real–time scaling factor adaptation for different values of λ – AC example

We notice that r converges very slowly to the optimal scaling factor for large values of λ
(close to .99). Consequently the simulation is slow. On the other hand, r converges fast for small
values of λ (around 0.8) but needs to reduce its value frequently. A reduction in the real–time
scaling factor indicates that some LP waited less than the desired waiting ratio w0, which is
unsafe as this might indicate overrun.

A value of λ ≈ 0.9 provides a good compromise between fast adaptation and overrun avoid-
ance.

We then repeated the ASRTS simulation while varying the number of processors, splitting
the model into 2, 4, 6, and 8 sub–models. Figure 8 shows the simulation speedup obtained for
these cases.

We can observe a close to linear increase in the simulation speedup with the number of
processors.

6.2 Logical inverter chain

A logical inverter performs a logical operation on a signal. When the signal assumes a high
level, it outputs a low level, and vice-versa.
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Figure 8: ASRTS: Speedup vs number of processors – AC example

Logical inverters are implemented by electrical circuits. They exhibit a non-ideal response,
since the rise and fall time of the signal output is limited by physical characteristics, and the
correct output level is not immediately obtained, i.e., it is delayed.

An inverter chain is a concatenation of several inverters, where the output of each inverter
acts as the input to the next one. Making use of the aforementioned physical limitations, inverter
chains can be used to obtain delayed signals.

We consider here a chain of m inverters according to the model given in Savcenco and
Mattheij35, which is characterized by the following equations:

{

ω̇1(t) = Uop − ω1(t)−Υg (uin(t), ω1(t))
ω̇j(t) = Uop − ωj(t)−Υg (ωj−1(t), ωj(t)) j = 2, 3, ..,m

(9)

where:

g(u, v) = (max(u− Uthres, 0))
2 − (max (u− v − Uthres, 0))

2 (10)

We used the set of parameters given in the article: Υ = 100 (which results in a very stiff
system), Uthres = 1, and Uop = 5.

The initial conditions are, as in the given reference, ωj = 6.247 · 10−3 for odd values of j and
ωj = 5 for even values of j. The input is a periodic trapezoid signal, with parameters Vup = 5V ,
Vlow = 0V , Tdown = 10, Tup = 5, Trise = 5, and Tfall = 2.

In this case, we considered a system of m = 504 inverters, so we have a set of 504 differential
equations with 1008 discontinuity conditions due to the ’max’ functions in Eq.(10).

As in the previous example, we first simulated the system in a sequential fashion using the
stiff LIQSS3 solver. The resulting voltage at the last inverter is shown in Figure 9.
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Figure 9: Voltage on last inverter (sequential simulation result)

We then divided the system into 12 sub-models with 42 inverters each and simulated with
SRTS and different real–time scaling factors. This time we obtained decent results for up to
r ≈ 35.

Figure 10 shows the error in function of the real–time scaling factor used. The RMS error
looks large because it is mainly due to a small time shift in the output voltage wave. As the
wave shows abrupt changes, a small time shift can cause a large RMS error.

We then applied the ASRTS algorithm and, using 12 processors, the simulation was almost
4.5 times faster than the sequential one.

In this example, the workload is not evenly distributed on the system. As the wave travels,
it provokes a high workload at the processor that computes the states that are switching. In
contrast, processors that compute states that do not change show a very low workload.

Consequently in this case, neither SRTS nor ASRTS can exploit parallelization as efficiently
as in the previous example. However, the results are still good.

We then repeated the simulations using ASRTS while varying the number of processors.
Figure 11 shows the speedup obtained in each case.

Once again, the simulation speed increases almost linearly with the number of processors in
use.

6.3 LC Transmission Line

The following system of equations represents a lumped model of a lossless transmission line,
formed by 600 sections of LC circuits with parameters L = C = 1:
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Figure 10: SRTS: Error vs real–time scaling factor – Inverter chain example
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Figure 11: ASRTS: Speedup vs number of processors – Inverter chain example

φ̇1(t) = u0(t)− u1(t)

u̇1(t) = φ1(t)− φ2(t)

...

φ̇j(t) = uj−1(t)− uj(t)

u̇j(t) = φj(t)− φj+1(t)

...

˙

(11)
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We consider a sinusoidal input signal:

u0(t) = sin(ωt) (12)

with w0 = 0.13 Hz. We also set zero initial conditions ui = φi = 0, i = 1, . . . , n.
This is a marginally stable system, of order 1200 as there are two state variables per segment.
As in the previous examples, we first simulated the system in a sequential fashion using the

QSS3 solver. Figure 12 shows the resulting voltage at the end of the transmission line u600(t).

-8

-6

-4

-2

 0

 2

 4

 6

 8

 0  200  400  600  800  1000

V
ol

ta
ge

 o
n 

la
st

 s
eg

m
en

t (
V

)

Time (sec)

Voltage

Figure 12: Voltage on last LC segment (sequential simulation result)

Then we divided the system into 12 sub–models with 50 segments each, and simulated it
using SRTS with different values of the real–time scaling factor.

Figure 13 shows the RMS error as a function of the real–time scaling factor.
This time around, we obtained good results for r < 400. For larger values of the real–

time scaling factor, the results soon become numerically unstable. This is not surprising as the
addition of delays in marginally stable systems tends to cause instability.

We then simulated the system using ASRTS. With 12 processors, ASRTS managed to accel-
erate the simulation so it ran more than 5.5 times faster than the sequential simulation.

As in the previous example, the workload is not evenly distributed while the wave travels
from the input to the output, which limits the advantages of parallelization.

We then used ASRTS with a varying number of processors, obtaining again an almost linear
relationship between the number of processors in use and the speedup as shown in Figure 14.

7 Conclusions and Future Work

We introduced SRTS and ASRTS, two new techniques for Parallel Discrete Event Simulation of
continuous and hybrid systems.
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Figure 13: SRTS: RMS error vs real–time scaling factor – LC line example
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Figure 14: ASRTS: Speedup vs number of processors – LC line example

The techniques are based on the idea of synchronizing each LP simulation time with a scaled
version of the physical time. As all LPs are synchronized with the physical time, they are
indirectly synchronized also against each other.
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This indirect synchronization permits running each process independently of the remaining
processes, avoiding the overhead imposed by inter–process synchronization and coordination.

We implemented these new techniques in PowerDEVS using the real–time operating system
RTAI. The RTOS was needed to ensure a precise synchronization, to properly perform the CPU
allocation, and for avoiding that the OS (Linux) takes control of the processor while the thread
is running.

We tested these new techniques with three application examples and studied their perfor-
mance and limitations.

Using 12 processors, we found a major improvement on the simulation speed. In the examples
analyzed, ASRTS simulated from 4.5 to 9 times faster than the sequential simulation. The non–
adaptive SRTS simulated even slightly faster but requires knowing the right real–time scaling
factor to use.

We have also analyzed the additional numerical error introduced by the techniques. We
found that, provided that the real–time scaling factor r remains small enough to avoid frequent
overruns, the error remains bounded. Moreover, ASRTS adjusts r in order to avoid overruns so
the error introduced is kept small.

This work opens up several lines of research to be considered in the future. A few of them
are listed below:

• In the present work, we manually split the model trying to obtain a well–balanced division.
It is interesting to investigate an automatic way to split the model and also to study
techniques to dynamically re–balance the workload among the available processors.

We are currently working on an extension to the DEVS formalism, called Vectorial DEVS,
that will simplify this task.

• A fall–back mechanism for overrun situations is also a desirable feature. By implementing
a rollback mechanism when a large overrun is found, we could bound the errors introduced.

To this end, we could use the Adative-SRTS checkpoints as rollback stages. In this way,
we would only need to save the state of the system at the last checkpoint consuming a
bounded and constant amount of memory. Also, we can know exactly how much time we
waste at each rollback: ∆T .

• We have developed the implementation on a multi–core system running a RTOS. A very
important issue is to study how these algorithms scale with a greater number of processors
or in a cluster environment. To this end, several problems have to be solved first, such
as the clock synchronization among different nodes or CPUs, the communication between
nodes (in the current multi–core approach it is implemented using shared memory), and
the CPU allocation.

• We will work on a formal analysis of how the delays in the communication affect the
numerical results, following the approach outlined in Section 4.3. The idea is to represent
the effects of the delays as bounded perturbations and to analyze the perturbed systems
to ensure numerical stability and error boundedness.

• We can also investigate new heuristics for the ASRTS. So far, we have only included the
time spent waiting as a measurement of how the simulation is doing but including overrun
statistics or delay data might result in an improved performance.
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• Although we developed these new techniques for discrete event simulation of continuous
systems, it may be interesting to study their usage also with other numerical integration
methods for continuous and hybrid systems (particularly with multi–rate algorithms).
Also, it is worth considering the study of SRTS and ASRTS in more general applications
of discrete event simulation.

The complete code of the SRTS and ASRTS implementation in PowerDEVS can be found
and downloaded from the realtime branch of the SVN31.
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