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ABSTRACT

A new formalism for fault modeling and simulation in
discrete event systems is introduced. This formalism, called
FDEVS and based on the DEVS formalism developed by
Zeigler, allows to handle typical classes of fault hypotheses
(like behavioral, structural, and delay faults) via the classical
technique of fault injection. It also embodies the necessary
features to automatically generate and propagate fault
hypotheses in the system. It is shown that atomic FDEVS
models can be coupled in a modular and hierarchical way, in
order to represent complex systems. It is also shown that
coupled FDEVS models can be easily simulated in a digital
computer. Some examples are presented, in order to illustrate
the features of the methodology.

INTRODUCTION

Model-based diagnosis of discrete event systems requires
well-defined faulty models and the use of fault simulation
techniques to study faulty behaviors.

Since numerous years, fault simulation has constituted a
basic tool of CAD−systems for digital circuits (Larsson
1999; Giambiasi et al. 1991; Santucci et al. 1993;
Abramovici et al. 1990). In opposition, fault simulation is
not widely used in the domain of discrete event systems,
whereas analysis of faulty behavior of discrete event systems
could take profit from the established knowledge of digital
domain. Fault simulation could be used for definition of
observation points, validation of test sequences, research of
equivalent faults, and identification of fault signature, for
instance. Such kind of applications makes fault simulation a
very useful aid in designing control or diagnosis systems. In

this article, FDEVS is presented, a new general formalism
for fault modeling and simulation in discrete event systems,
which constitutes a methodology of theoretical interest, as
well as a supporting base for the design of any practical
software tool.

FDEVS allows the specification and the simulation of faulty
discrete event models. It is an extension of the DEVS
formalism (Zeigler 1984, 1989, 2000).  FDEVS is conceived
in order to capture the classical classes of fault hypothesis
(behavioral faults, structural faults, etc) (Giambiasi and Sigal
1982) and to allow the simulation of transient, intermittent
and permanent faults, and also of delay faults (Perret and
Giambiasi 1998; Giambiasi et al. 1996) using a fault
injection technique.

Behavioral faults modify the transition functions and /or the
output function of a DEVS model. Delay faults modify the
lifetime of the states bringing, for example, the
transformation of a steady state into a transient state.

Structural faults can be simulated in coupled models. These
faults modify the coupling relationships existing among
components. This kind of fault hypothesis corresponds, in
fact, to dynamic structure DEVS models.

Under these assumptions, in order to represent a faulty
behavior of a discrete event system, a classical DEVS model
can be specified. But doing so, a DEVS model has to be built
for each fault hypothesis. The FDEVS formalism proposed
in this paper, providing a framework adapted to this kind of
problems, allows describing in a unique model all the faulty
behaviors to be simulated. In addition, it permits a clear
specification of these faulty behaviors and a formal
definition of fault occurrences.



An FDEVS model is defined by a classical DEVS structure
equipped with the following additional features:
− A set of faults, which contains the entire possible fault

hypothesis and a non-fault element (representing the
absence of faults). This set is part of the domain of
definition of the transition, output and time advance
functions. This means that these functions might be
modified by the presence of faults. The set of faults
constitutes also part of the image of the transition
functions. It implies that the model can also handle the
evolution of the faults.

− A fault transition function, which represents the effects
of the injection of faults in the model.

− A set of input fault events whose occurrence triggers the
fault transition function. Under the classical fault
injection hypothesis, this set is the same as the set of
above-mentioned faults, and the fault transition function
is just an identity function. However, FDEVS can deal
with more general cases where the fault that appears
might depend on the state of the system.

Atomic FDEVS models can be coupled in a modular and
hierarchical way to represent complex systems. A coupled
FDEVS model, defined in a similar way as a classical
coupled DEVS, allows structural fault simulation with the
addition of a set of faults that can modify the coupling
structure.

Abstract simulators of atomic and coupled FDEVS models
are also presented to explain the operational semantics of the
FDEVS formalism.

THE FDEVS FORMALISM

Consider a system whose healthy or normal behavior can be
represented by the following DEVS structure, with the usual
notation (Zeigler 1984, 2000):

nnextnintnnnnn taYSXM ,,,,,, λδδ −−=

 Based on that formalism, the following structure can be
defined, in order to take faults into account:

FXtaYSXM ffaultextintf ,,,,,,,,, λδδδ=  , where

XXX n
~

U=  is the set of input values, with X
~

 representing

a set of new input values.

SSS n
~

U=  is the set of state values, and S
~

 is the set of

new states that the model could reach due to the presence of
faults.

YYY n
~

U=  is the set of output values, and Y
~

 represents the

set of the new values that the output can take when there is a
fault in the system.

}{' φUFF =  is the set of faults, with 'F  representing the set

of all possible faulty hypothesis, and the element φ  standing

for the absence of faults. Notice that a single element of 'F

can represent a single fault hypothesis or a multiple fault
hypothesis.

Xf  is the set of event values that represents the sudden
appearance (or disappearance) of faults. These events are
managed outside the model in order to allow the possibility
of inject faults. With this definition, it is possible to model
transient or permanent faults.

FSFSint ×→×:δ is the internal transition function, which

has the restriction )),((),( φδφδ ss intnint −= .

FSXFSext ×→×ℜ×× +
0:δ  is the external transition

function, satisfying )),((),,,( φδφδ sxes extnext −= if nXx ∈ .

The presence of the set F in the right hand of the internal and
external transition function allows to deal with systems
whose faulty hypothesis evolution has been included in the
model (automatic fault generation).

FSXFS ffault ×→×ℜ×× +
0:δ  is the fault transition

function.
YFS →×:λ  is the output function, which verifies the

restriction )(),( ss nλφλ = .
+ℜ→× 0: FSta is the lifetime function (or time advance

function), which has the restriction )(),( stasta n=φ .

The operative semantics of the FDEVS is similar to the
DEVS. The difference is that any time a fault event occurs
(an event in Xf), a transition takes place, which is calculated
by the fault transition function. As in the case of external
events, this event will not produce any output.

Example: Consider a processor able to perform certain jobs:
{ }njobjobjob ,...,, 21 . In absence of faults, each job can be

done taking a time )( ip jobt . When the processor finishes a

job, it produces an output )( ijoby . While the processor is

doing a job, it ignores any job arriving. Under these
considerations, the DEVS model of the healthy behavior of
the system is the following:

nnnextnnnnPn taYSXM ,,,,,, int, λδδ= , where

{ }nn jobjobjobX ,...,, 21=

{ } { } +ℜ×= 021 ,...,, φUnn jobjobjobS

{ })(),...,(),( 21 nn jobyjobyjobyY =

),(),( ∞=− φσδ jobintn



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−

=
=−

otherwiseejob

jobifxtx
xejob

p
extn

),(

))(,(
),,,(

σ

φ
σδ

)(),( jobyjobn =σλ
σσ =),( jobtan

Consider now two different fault hypotheses:
-With the first fault hypothesis, the processor no longer
ignores input events while it is busy. In the corresponding



faulty behavior, when the processor receives a job, it
discards the job being processed and starts with the new one.
-With the second fault hypothesis, the processor works at the
half of its normal velocity.
Both faults can be simultaneously present (multiple fault
hypothesis). The injection of the first one will be modeled by
an event called BFon , while the other will be modeled by
the event SFon . The events BFoff  and SFoff will be used

to deactivate the mentioned faults. Then, the FDEVS model
representing the complete behavior is the following:

 FXtaYSXM ffaultextP ,,,,,,,,, int λδδδ= , where

nXX =  (There are not out of range input events).

nSS = , nYY = , { }SFoffBFoffSFonBFonX f ,,,=

{ }φ,,, BFSFSFBFF =
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The example shows that a relative complex fault behavior
including temporal and behavioral fault hypothesis can be
formally represented by an FDEVS structure.

COUPLED FDEVS MODELS

In absence of structural faults, the coupling of FDEVS
models can be done in the same way that in classic DEVS.
Under this consideration, the faulty and healthy models will
have the same structure representing the coupling. The only
difference will be that in the healthy model, the input and
output sets are subsets of the corresponding sets in the faulty
model because the faulty model deals with extended input
and output values. Dealing with extended input and output
sets implies the extension of the translation functions.

Thus, given a system whose healthy behavior can be
described by a coupled DEVS structure:

SelectZIMDYXN dinddnnnn },{},{},{,,, ,=

its faulty behavior in absence of structural faults can be
represented by the structure:

SelectZIMDYXN didd },{},{},{,,, ,=

where the input and output sets are defined in the same way
as for atomic FDEVS. The models dnM  and dM  are the

healthy and associated faulty subsystems respectively.

The presence of structural faults implies some change in the
original coupling of the system. A structural fault can modify
the way in which two models are connected, for example, it
can produce the appearance or disappearance of a connection
between two models

Thus, with the presence of structural faults, the coupling
structure N becomes:

ffaultfdifddsf XFSelectZIMDYXN ,,,},{},{},{,,, ,,, δ=

where:

F  is the set of structural faults, including an element φ that
represents the absence of structural faults.

FXF ffault →×:δ  is the fault transition function.

For each pair (d, f), sfNDd U∈ , Ff ∈ , the influencer set

sffd NDI ∪⊂,  is the set of components that influence over

the component d when the fault f is present. The restriction

dd II =φ,  must be satisfied.

For each triple (i, d, f) where sfNDd ∪∈ , Ff ∈  and

fdIi ,∈ , the function fdiZ ,,  is the translation function.

,:,, dfdi XFXZ →×  if i = Nsf.

,:,, YFYZ ifdi →×  if d = Nsf.

,:,, difdi XFYZ →× if d ≠ Nsf  and  i ≠ Nsf.

The restriction )(),( ,,, uZfuZ didi =φ  must be always

satisfied.

Example: Consider a queue, whose behavior is modeled by
the following DEVS structure:

taYSXM extQ ,,,,,, int λδδ= , where

{ } { } { }"""",...,, 21 readyJreadyjobjobjobX n UU ==

{ } { } { }∞××= + ;0, busyfreeJS φU

JY =
),"",(),,( ∞=• busyqpstjobqint σδ
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No behavioral fault hypothesis is done for the queue. The
FDEVS model will coincide with the DEVS model since the
sets related to faults are not defined. Consider now that this
queue is connected to the processor whose FDEVS model
(the structure MP) was given above. The jobs coming out of
the queue arrive to the processor and when the processor
finishes a job, the output is translated to the queue as a
“ready” message.

In absence of structural faults, the structure of the coupling is
the following:

SelectZIMDYXN didd },{},{},{,,, ,= , where:

{ }njobjobjobX ,...,, 21=
{ })(),...,(),( 21 njobyjobyjobyY =
{ }QPD ,=

The structures M d  were defined before.
{ }QI P = , { }NPI Q ,= , { }PI N =

"")(, readyyZ QP =

The other translation functions are just identity functions and
the function Select can be any function.

Consider now that the connections between the queue and
the processor can be broken. The events QPd and QPc
respectively disconnect and reconnect the output of the
queue to the input of the processor. The events PQd and PQc
do the same with the connection from de processor to de
queue. Then, the associated model to represent this structural
faulty behavior is the following:

ffaultsffdifddsf XFSelectZIMDYXN ,,,},{},{},{,,, ,,, δ=

{ }φ,,, QPPQPQQPF =
{ }cdcdf PQPQQPQPX ,,,=
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
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xf
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),(

φ

φ

φ

δ

The influencer sets which are modified by the faults are:
{ }== QPPQPQPP II ,, , { }NII QPPQQPQQ == ,, .

The other sets and functions will not present any
modification.

The same faulty behavior could have been defined
modifying the translation function instead of the influencer
sets (saying for example that the result of some translation
function in the presence of some fault is “no event”).

CLOSURE UNDER COUPLING OF FDEVS MODELS

The property of closure under coupling allows the
hierarchical composition of models. In order to prove that
the FDEVS formalism is closed under coupling, the atomic
FDEVS model defined by a coupled structure will be
constructed.

The coupled structure:

NfNNfaultfdifddNN XFSelectZIMDYXN ,,,},{},{},{,,, ,,, δ=

of the subsystems:

ddfdddfaultdextddddd FXtaYSXM ,,,,,,,,, int λδδδ=

defines an FDEVS model:

FXtaYSXM ffaultext ,,,,,,,,, int λδδδ= where:

NXX = , NYY = ,

Nd
Dd

FFF ××=
∈

)( , 
Nfdf

Dd
f XXX ××=

∈
)(

d
Dd

QS
∈
×=  with )},{( ddd esQ =  where dd Ss ∈  and ed is

the elapsed time from the last transition of subsystem Md to
the last transition of system N )0( ≥de . (It is said that N has

a transition when some submodel has a transition).

The fault transition function is )','(),,,( fsxefs ffault =δ

where:
),...,(....,

Nfdff xxx = , where only for component d=k is

φ≠
dfx

),...),((..., dd ess =
),...,(..., Nd fff =

),...)','((...,' dd ess =
)',....,'(...,' Nd fff =

being, 

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=

≠+
=

kdifs

kdifees
es

k

dd
dd )0,'(

),(
)','(

and ),,,()','(
kfkkkkfaultkk xefsfs δ=  if Nk ≠

or ),(' NNfNfaultN fxf δ= if k=N.



and then 
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The external transition function is )','(),,,( fsxefsext =δ
where:

),,,(),(,/ **
, dddddextdddfd xeefsfsxINd +=≠∧∈∀ δφ with

)(,, xZx
NfdNd =

and then,
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The lifetime function is }|{),( Ddminfsta d ∈= σ , where

ddddd efsta −= ),(σ  (time remaining to the next event in

submodel Md).
The internal transition function is )','(),( fsfsint =δ where:

Let )},(|{),( fstaDddfsIMM d =∧∈= σ be the set of

imminents  (candidates for next transition).
Let )),((* fsIMMSelectd =  ( *dM  is the model whose

internal transition function will be executed).
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Finally, the output function is:
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IdiffsZ
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ABSTRACT SIMULATOR FOR FDEVS MODELS

A hierarchical structure of simulation will be proposed,
following the idea of the DEVS simulator of (Zeigler et al.
2000). This schema of simulation is not the most efficient
because it produces an important traffic of messages between
the processors associated to each submodel. However it is
very simple and it can be carried to a more efficient “flat
code”.

The FDEVS simulator will be composed by simulators
associated to each atomic model and coordinators associated
to each coupled structure. A root coordinator manages the
global time advance and sends the input events and the fault
events to all the simulators and coordinators in the system.

FDevs-simulator
variables:

parent //parent coordinator
tl //time of last event
tn //time of next internal event

FDEVS //associated model with total state
  (s, e) and fault state f.

y //current output value of the model
when receive i-message  (i, t)  at time t

tl = t - e
tn = tl + ta(s,f)

when receive *-message (*, t) at time t
y = λ(s,f)
send y-message (y, t) to parent coordinator
(s,f) = δint (s,f)
tl = t
tn = tl + ta(s,f)

when receive x-message (x, t) at time t with input value x
e = t - tl
(s,f) = δext (s,f,e,x)
tl = t
tn = tl + ta(s,f)

when receive φ-message (xf, t) at time t with value xf
e = t - tl
(s,f) = δfault (s,f,e,xf)
tl = t
tn = tl + ta(s,f)

end FDevs-Simulator

FDevs-coordinator
variables:

FDEVN //the associated network
    with fault state f

parent // parent coordinator
tn // time of next internal event
event-list // list of elements (d, tnd)
d* // selected imminent child

when receive i-message  (i, t)   at  time t
for-each d in D do

send i-message (i, t) to child d
tn = min { tnd | d ∈ D}

when receive *-message  (*, t)  at  time t
d* = Select{d/ tnd = min {tnj | j ∈ D}}
send *-message (*, t)  to d*
tn = min {tnd | d ∈ D}

when receive x-message (x, t)
receivers = {r | r ∈ D, N ∈ Ir, f, ZN, r, f (x) ≠ Φ}
for-each r in receivers

send x-messages (xr, t) with xr= ZN,r,f(x) to r
tn = min {tnd | d ∈ D}

when receive y-message (yd*, t) from d*
if  d* ∈ IN, f & Zd*, N, f (yd*) ≠ Φ then

send y-message (yN, t)  with
 yN = Zd*,N, f (yd*) to parent

receivers = {r | r ∈ D, d* ∈ Ir. f , Zd*,r, f (yd*) ≠ Φ}
for-each r in receivers

send x-messages (xr, t) with xr =Zd*,r, f (yd*) to r
when receive φ-message  (xf, t)

f = δfault (f,xf)
end FDevs-coordinator

FDevs-root-coordinator
variables:
t //current simulation time



child //direct subordinate
input-event-list //list of input events (xi, txi) sorted by txi

fault-event-list //list of fault events (ok, xfk, tfk) sorted by tfk

t = t0

i=1
k=1
send initialization message (i, t) to subordinate
t =min {tnchild , txi , tfk }
loop

if t =tnchild then
send *-message (*, t) to child

elseif t = txi then
send x-message (xi, t) to child
i=i+1

elseif t = tfk then
send φ-message (xfk, t) to object ok

k=k+1
t =min {tnchild , txi , tfk }

until end of simulation
end FDevs-root-coordinator

CONCLUSIONS

The main contribution of the paper is FDEVS, a very general
DEVS-based formalism for fault modeling and simulation in
discrete event systems, allowing different kinds of fault
hypothesis and automatic fault generation. It has been shown
that FDEVS permits the representation of faulty behavior in
large, complex systems, via the hierarchical composition of
faulty models of their low-level components or subsystems.
An associated hierarchical, abstract simulation structure has
also been proposed in this article.

In some application fields, a particularization of FDEVS
featuring predefined tools close to the particular problems of
the domain could be more useful, because improving the
easy of manipulation by end-users. In many applications,
users are only interested in fault simulation and not in fault
generation; in some other cases, only few classes of faults
are of interest. In order to simplify the work of end-users,
current research is oriented to the definition of FDEVS-
subformalisms, via the proposition of specific functions and
tools to simplify the description of faulty behaviors. In
particular, current work on these points focuses on:
− obtaining different formalisms, sub-sets of FDEVS,

oriented to classical classes of fault simulation problems
(simulation of stuck-at-fault, for instance)

− developing a problem-oriented library of application
tools

− developing a procedure for flattening user descriptions
in order to accelerate simulations through the use of a
one-level discrete-event technique.
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