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Abstract

This article extends the notions of probabilistic ultimate bounds (PUB) and probabilistic invariant sets (PIS) to nonlinear
continuous-time systems providing tools for their characterization and for the usage of these concepts in control design.
Two design strategies are proposed that allow finding a nonlinear control law that ensures that the closed loop system
is probabilistically ultimate bounded to a desired region. These strategies are based on Lyapunov and stochastic feedback
linearization, respectively.

1 Introduction

The concepts of ultimate bounds and invariant sets play
a key role in control systems theory, since they replace
the idea of stability of equilibrium points in the presence
of non-vanishing disturbances [9]. Associated with these
concepts, several problems and applications appear in
the context of control theory [2], among which we can
mention the characterization of these sets [4,12,8], the
design of robust control to obtain ultimate bounds [6,14],
and the use of these sets to detect and isolate faults in
[20,23,3].

A traditional approach to determine ultimate bounds
and invariant sets is based on the use of Lyapunov func-
tions [9,4], where the sets are estimated by a level sur-
face of a Lyapunov function on which the derivative can
be guaranteed to be negative (due to the disturbance, it
can not be guaranteed that it is negative in the interior
of the set delimited by the said surface). Another ap-
proach uses the modal decomposition of a linear system
to make a componentwise estimate of both an ultimate
bounds and invariant sets [12,8]. Both approaches can
also be used to design controls that guarantee desired
ultimate bounds.

A problem with the concepts of ultimate bound and in-
variant sets is that, in the presence of unbounded per-
turbations (such as Gaussian white noise), these sets

no longer exist because with some probability the state
can reach arbitrarily large values. To overcome this diffi-
culty, these concepts were extended in [15] defining those
of Probabilistic Ultimate Bound (PUB) and Probabilis-
tic Invariant Set (PIS). These definitions were originally
conceived for discrete-time systems, but were then ex-
tended to continuous-time systems in [16].

A PUB is a set towardswhich the trajectories of the state
converge and remain (as in the deterministic case), but
the permanence occurs with a certain probability (de-
termined by a parameter p < 1). That is, for sufficiently
large times, the probability that the state is in the set is
at least p. Similarly, if a trajectory starts inside a proba-
bilistic invariant set, at any future time there is a prob-
ability of at least p that the state will be inside that set.

Besides defining the sets, characterization formulas were
derived in [15,16] which were then used for control design
in [16,1] and for fault detection purposes in [21]. How-
ever, all the aforementioned definitions, formulas and
applications were limited so far to linear time invariant
systems.

In this paper we extend the concepts of PUB and PIS
to nonlinear cases, providing tools for their characteri-
zation using two approaches. The first one is based on
a Lyapunov analysis and it exploits results related to
Noise to State Stability (NSS) [7,18,19]. The NSS prop-
erty guarantees that a region can be found such that
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the probability that the state leaves such region can be
made arbitrarily small which in turn implies that PUB
and PIS sets can be found for any probability p (i.e.,
NSS is stronger than the existence of PUB and PIS).
The second approach uses results from linear Stochas-
tic Differential Equations (SDEs) in order to estimate a
PUB in a system where the nonlinearities are limited to
the noise input term.

Then, based on these set characterization approaches,
two different robust control design strategies are devel-
oped that allow, under certain conditions, to guarantee
that the closed-loop system has a desired probabilistic
ultimate bound. The first one follows a Lyapunov con-
trol design inspired on ideas similar to those of [6] for de-
terministic ultimate bounds, and the second approach is
based on stochastic feedback linearization [17] and com-
bines some results on linear control design developed in
[16] with results on deterministic ultimate bounds for
feedback linearizable systems [13].

The remainder of the paper is organized as follows: Sec-
tion 2 introduces the concepts and previous results for
linear SDEs on which our work is based. Then, Section 3
presents results regarding the characterization of PUB
and PIS sets for classes of nonlinear systems. Section 4
develops two different approaches for robust control de-
sign, and finally, Section 5 illustrates the results with
numerical examples.

2 Preliminaries

In this section we summarise the main results on PUB
sets and PISs for linear systems presented in [16] and we
mention some related work .

Notation 1 For a vector x, we use xi to denote its i-th
component, and for a matrix Σ, we use [Σ]i,j to denote
its (i, j)-th entry. The symbol � denotes elementwise in-
equality between two vectors, i.e., for α, β ∈ R

n, α � β if
and only if αi ≤ βi, for all i = 1, . . . , n. For matrices M
and N , M ≥ N (M > N) means that the matrix M −N
is positive semidefinite (positive definite), and we useM∗

to denote the conjugate transpose of the matrix M .

2.1 Definitions of PUB and PIS

We consider a continuous-time LTI system given by the
following stochastic differential equation

dx(t) = Ax(t)dt +Hdw(t), (1)

with A ∈ R
n×n, H ∈ R

n×k, x(t) ∈ R
n and the distur-

bance vector w(t) ∈ R
k being a Wiener process with

incremental covariance cov[dw(t)] = E[dw(t)dwT (t)] =
Ik×kdt. Note that the latter does not imply loss of gener-
ality, since the effects of a disturbance with incremental

covariance Σwdt can be equivalently modeled by replac-

ing H with H̃ , HΣ
1/2
w .

We also assume that the nominal system is asymptoti-
cally stable (i.e., A is a Hurwitz matrix).

Definition 1 (Probabilistic Ultimate Bounds)
Let 0 < p ≤ 1 and S ⊂ R

n be a compact set. We say that
S is a PUB with probability p for system (1) if, for every
initial state x(t0) = x0 ∈ R

n, there exists T = T (x0) ∈ R

such that the probability 1 Pr[x(t) ∈ S] ≥ p for each
t ≥ t0 + T .

For the definition of probabilistic invariant set, we first
introduce the product of a scalar γ ≥ 0 and a set S as
γS , {γx : x ∈ S}. Notice that when 0 ≤ γ ≤ 1, and
provided that S is a star–shaped set with respect to the
origin, 2 it follows that γS ⊆ S.

Definition 2 (γ-Probabilistic Invariant Sets) Let
0 < p ≤ 1, 0 < γ < 1 and let S ⊂ R

n be a star–shaped
compact set with respect to the origin. We say that S
is a γ–PIS with probability p for system (1) if for any
x(t0) ∈ γS the probability Pr[x(t) ∈ S] ≥ p for each
t > t0.

The characterization of PUB and PIS for the linear sys-
tem (1) was stated in [16], in particular the formula ob-
tained for the characterization of PUBs depends on the
elements of the main diagonal of the state covariance
matrix Σx that is obtained from solving

AΣx +ΣxA
T = −HHT . (2)

Based on this characterization, a linear control design
strategywas proposed to guarantee that a certain closed-
loop system has a desired PUB with a given probability
p. The design strategy was based on the notions of co-
variance assignment (see details in [16]).

2.2 Other Related Works

The closest concept to PUB and PIS is that of NSS
[7,18,19], but it does not provide tools to characterize
sets with a given probability p < 1. Similarly, the con-
cept of practical stability applied to SDEs [5] is con-
nected to our work, but again the probability is always
p → 1.

1 In this work, the expression Pr[x(t) ∈ S ⊂ R
n] denotes

the probability that the solution x(t), at time t, is within
the set S ⊂ R

n. Thus, Pr[·] is the probability measure on R
n

induced by the stochastic process {w(τ )|t0 ≤ τ ≤ t}, via the
solution, at time t, of the stochastic differential equation (1),
with initial condition x(t0).
2 A set S ⊂ Rn is star shaped, or a star domain, with respect
to the origin if x ∈ S ⇒ γx ∈ S for all 0 ≤ γ ≤ 1
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The notions of barrier certificates [22] are also related,
but they not consider the possibility that the state leaves
and returns to the considered set.

3 PUB in nonlinear SDEs

In this section we develop two approaches to characterize
PUB for nonlinear SDEs. The first one is more general
and relies on the use of a Lyapunov function. The second
one is restricted to systems that are linear in the state
and nonlinear in the perturbation, which can be the re-
sult of performing stochastic feedback linearization.

3.1 Nonlinear SDE

We consider a system of the form

dx(t) = f(x)dt+ h(x)dw(t) (3)

where f : Rn → R
n is a smooth vector field, h : Rn →

R
n×k is a smooth matrix field, and the disturbance

w(t) is a Wiener process with incremental covariance
cov[dw(t)] = Ik×kdt.

The definitions of PUB and PIS given for linear systems
in Section 2.1 are readily applicable to the general non-
linear system given above. Below, we propose two alter-
native approaches to characterize PUB sets.

3.2 Lyapunov-Based Characterization of PUB

The characterization developed below uses the following
operator:

Definition 3 (SDE Generator) Let V : Rn → R be
positive definite and twice continuously differentiable.
Then, the generator of the SDE (3) acting on function
V is the map L [V ] : Rn → R defined by

L[V ](x) ,
∂V

∂x
f(x) +

1

2
tr

(

hT (x)
∂2V

∂x2
h(x)

)

. (4)

The following theorem provides a characterisation of
PUB sets for the system of Eq. (3):

Theorem 4 (PUB characterisation) Let 0 < p < 1
and V : Rn → R be positive definite and twice contin-
uously differentiable and radially unbounded. Let α ∈
K∞

3 be convex and let β > 0 such that, for every x ∈ R
n,

L[V ](x) ≤ −α(V (x)) + β. (5)

3 A scalar continuous function α(r), defined for all r ≥ 0
is said to belong to class K∞ if it is strictly increasing with
α(0) = 0 and α(r) → ∞ as r → ∞.

Then, for any ε > 0, the set

S =

{

x ∈ R
n : V (x) ≤ α−1(β) + ε

1− p

}

is a PUB with probability p for the system of Eq. (3).

PROOF. S is a PUB with probability p provided that
for sufficiently large values of t

Pr

[

V (x(t)) ≥ α−1(β) + ε

1− p

]

≤ 1− p

In order to verify this inequality, we will first show that
there exists t1 ≥ t0 such that for t ≥ t1

E[V (x(t))] ≤ α−1(β) + ε (6)

and then we will use Markov’s inequality to conclude the
proof.

Using the Ito rule (see [10, Th. 61]) on Eq. (3) for
V (x(t)), we obtain

dV (x(t)) = L[V ](x)dt +
∂V

∂x
h(x)dw(t)

then,

V (x(t)) =V (x(t0)) +

∫ t

t0

L[V ](x(s))ds+

+

∫ t

t0

∂V

∂x
(x(s))h(x(s))dw(s).

According to Dynkin’s formula ([10, p. 152, Eq.(6.14)])
and using Eq. (5), it results

E[V (x(t))] = E[V (x(t0))] + E

[
∫ t

t0

L[V ](x(s))ds

]

≤ E[V (x(t0))] + E

[

−
∫ t

t0

α(V (x(s)))ds +

∫ t

t0

β ds

]

= E[V (x(t0))]−
∫ t

t0

E[α(V (x(s)))]ds +

∫ t

t0

β ds.

In the last equation we used the fact that the ex-
pected value and integration can be exchanged for a non-
negative process (result derived from Fubini’s Theorem,
see details in [10] ). Since α is convex, from Jensen’s
inequality, it results that

E[V (x(t))] ≤ E[V (x(t0))] +

∫ t

t0

(−α(E[V (x(s))]) + β)ds.

(7)
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In order to prove Eq.(6) we will proceed by contradic-
tion. Suppose that E[V (x(t))] > α−1(β) + ε, for all
t ≥ t0. Then, since α is a continuous and strictly increas-
ing function, there exists ε̃ > 0 such thatα(α−1(β)+ε) =
β + ε̃ , and then α(E[V (x(t))]) ≥ β + ε̃ for all t ≥ t0.

According to inequality (7), it results that, for all t ≥ t1,

E[V (x(t))] ≤ E[V (x(t0))] +

∫ t

t0

(−(β + ε̃) + β)ds

= E[V (x(t0))]− ε̃(t− t0), ∀ t ≥ t0.

The right hand side of this inequality , for t large enough,
becomes smaller than α−1(β) + ε, contradicting Eq.(6)
and showing that the conditionE[V (x(t))] ≤ α−1(β)+ε
is eventually achieved. Therefore, there exists t1 > t0 for
which E[V (x(t1))] ≤ α−1(β) + ε.

It remains to show that, Eq.(6) holds for all t ≥ t1. We
shall proceed again by contradiction supposing that for
certain ε1 > 0, there exists some t3 > t1 for which
E[V (x(t3))] ≥ α−1(β) + ε + ε1. Let t2 be the last exit
time from E[V (x(t))] ≤ α−1(β) + ε, i.e.,

t2 = sup{t < t3 : E[V (x(t))] ≤ α−1(β) + ε}

Then, in the period (t2, t3) we have E[V (x(t))] ≥
α−1(β)+ε, and using Eq. (7) and a reasoning analogous
to the previous one, it results

E[V (x(t))] ≤ E[V (x(t2))] +

∫ t

t2

(−α(E[V (x(s))]) + β)ds

≤ E[V (x(t2))]− ε̃(t− t2)

contradicting the assumption that E[V (x(t3))] ≥
α−1(β) + ε+ ε1.

We conclude that E[V (x(t))] ≤ α−1(β)+ε for all t ≥ t1.
Using Markov’s inequality, we get

Pr

[

V (x) ≥ α−1(β) + ε

1− p

]

≤ E[V (x)]

α−1(β) + ε

1− p

≤ 1− p

Then,

Pr[x(t) ∈ S] = Pr

[

V (x) ≤ α−1(β) + ε

1− p

]

≥ p

completing the proof.

Theorem 4 allows one to compute a PUB set S for a
given probability p. Notice that it could be also used

to compute a probability p given a set S containing the
origin.

Corollary 5 (PIS Characterization) Let 0 < p < 1,
take 0 < γ < 1 − p and let V : R

n → R be a twice
continuously differentiable positive definite function for
which

V

(

x

γ

)

≥ V (x)

γ
, ∀x ∈ R

n (8)

Let α ∈ K∞ be a convex function and let β > 0 be such
that Eq.(5) is verified for every x ∈ R

n. Then, for any
ε > 0, the set

S =

{

x ∈ R
n : V (x) ≤ α−1(β) + ε

1− p
,

V0

1− p

}

(9)

is a γ–PIS with probability p for the system of Eq. (3).

PROOF. Notice first that Eq.(8) implies that V (x) is
radially unbounded and star shaped. Let us suppose that
x(t0) = x0 ∈ γS. Then, from Eqs.(8) and (9),

V0

1− p
≥ V

(

x0

γ

)

≥ V (x0)

γ
≥ V (x0)

1− p
=⇒ V (x0) ≤ V0

From Eq. (7), with E[V (x0)] ≤ V0, using the fact that α
is strictly increasing and V0 > α−1(β) (or equivalently
α(V0) > β) and following a reasoning analogous to the
proof of the previous theorem, it results E[V (x(t))] ≤ V0

for all t ≥ t0. Then, using Markov’s inequality,

Pr

[

V (x) ≥ V0

1− p

]

≤ E[V (x(t))]

V0

1− p

≤ 1− p

Then, the proof concludes by noting that

Pr[x(t) ∈ S] = 1− Pr[x(t) /∈ S] ≥ p

3.3 Linearly Bounded Characterization of PUBs

A particular case of Eq. (3) is given by the following
nonlinear SDE.

dx(t) = Axdt + h(x)dw(t) (10)

where we assume that the matrix A ∈ R
n×n is Hurwitz

and the function h is bounded as follows

h(x)hT (x) ≤ HHT , for all x ∈ R
n, (11)

with H ∈ R
n×k.
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The PUB characterization for the nonlinear system (10)
is based on bounding its state covariance by that of the
linear system (1) as stated by the following lemma.

Lemma 6 (State Covariance Bound) For the sys-
tem (10), under the assumption (11),

lim
t→∞

E[x(t)] = 0, (12)

lim
t→∞

Σx(t) ≤ Σ, (13)

where Σ is the unique positive definite solution of

AΣ + ΣAT = −HHT . (14)

PROOF. For a given initial state x0 at t = 0, we have

x(t) = eAtx0 +

∫ t

0

eA(t−s)h (x(s)) dw(s).

Let
M(t, s) = eA(t−s)h (x(s)) ,

so that

x(t) = eAtx0 +

∫ t

0

M(t, s)dw(s).

Using [24, p. 60, Eq. (5.17)] and the fact that w is a
Wiener process (zero mean), we have

[E[x(t)]]i =
[

eAtx0

]

i
+

k
∑

l=1

E

[
∫ t

0

[M(t, s)]i,l d [w(s)]l

]

=
[

eAtx0

]

i
.

Hence
E[x(t)] = eAtx0,

and (12) follows.

On the other hand, using [24, Eq. (5.10) and (6.9)], and
the fact that x0 is deterministic, it results that

Σx(t) =

∫ t

0

E
[

M(t, s)MT (t, s)
]

ds

=

∫ t

0

eA(t−s)E

[

h (x(s)) hT (x(s))
(

eA(t−s)
)T

]

ds

≤
∫ t

0

eA(t−s)HHT
(

eA(t−s)
)T

ds , Σ(t).

This last inequality arises from property: h(x)hT (x) ≤
HHT ⇒ Φh(x)hT (x)ΦT ≤ ΦHHTΦT , for any matrix
Φ.

Note, also, that Σ(t) is the covariance matrix of x̄(t)
defined by

dx̄ = Ax̄dt+Hdw̄, (15)

where w̄ is a Wiener process with identity covariance
matrix.

The proof concludes by observing that the covariance of
x̄(t) in Eq. (15) with t → ∞ can be computed from the
Lyapunov equation (14).

Based on the previous lemma, the following result char-
acterizes a PUB for the system (10).

Theorem 7 Let 0 < p < 1, and p̃ ∈ R
n with 0 < p̃i,

i = 1, . . . , n, satisfying

n
∑

i=1

p̃i = 1− p. (16)

Then, the set S = {x : |xi| < bi + ε, i = 1, . . . , n}, with
ε > 0 and

bi =

√

[Σ]i,i
p̃i

, i = 1, . . . , n, (17)

andΣ being the solution of (14), is a PUBwith probability
p for (10) under the assumption (11).

PROOF. ¿From Chebyshev’s inequality [11, Th. 5.11],
it follows that

Pr
[

|[x(t)− E[x(t)]]i| ≥ bi +
ε

2

]

≤
[Σx(t)]i,i
(

bi +
ε
2

)2 .

Then, from (13), there exists Tε,i ∈ R such that, for all
t > Tε,i,

Pr
[

|[x(t) − E[x(t)]]i| > bi +
ε

2

]

≤
[Σ]i,i
b2i

= p̃i (18)

Also, from (12), there exists T̃ε,i ∈ R such that, for all

t > T̃ε,i

|E[x(t)]i| <
ε

2
. (19)

Then, from (18) and (19), for all t > max
{

Tε,i, T̃ε,i

}

,

Pr [|[x(t)]i| > bi + ε] = Pr
[

|[x(t)]i| −
ε

2
> bi +

ε

2

]

≤ Pr
[

|[x(t)]i| − |[E[x(t)]]i| > bi +
ε

2

]

≤ Pr
[

|[x(t)]i − [E[x(t)]]i| > bi +
ε

2

]

≤ p̃i. (20)
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Then, for all t > Tε , max
{

Tε,i, T̃ε,i : i = 1, · · · , n
}

,

we have,

Pr [x(t) /∈ S] ≤
n
∑

i=1

Pr [|[x(t)]i| > bi + ε]

≤
n
∑

i=1

p̃i = 1− p,

o equivalently,
Pr [x(t) ∈ S] ≥ p.

and the result follows.

4 Control Design with Guaranteed PUB

In this section, we propose two alternative approaches
for designing a nonlinear control law such that a closed
loop system has a desired ultimate bound.

4.1 Problem Formulation

We consider a nonlinear stochastic system of the form

dx(t) = f(x)dt+ g(x)u(t)dt+ h(x)dw(t) (21)

where f : R
n → R

n is a smooth vector field, g :
R

n → R
n×m and h : Rn → R

n×k are smooth matrix
fields, u ∈ R

m is the control input, and the disturbance
w(t) is a Wiener process with incremental covariance
cov[dw(t)] = Ik×kdt. The initial state is x(0) = x0 ∈ R

n.

Then, given a certain set S and a probability 0 < p < 1,
the goal is to find a control law u(t) = κ(x) such that S
is a PUB for Eq. (21).

4.2 Lyapunov Based Design

The following theorem utilizes the PUB characterization
result of Theorem 4 to obtain a nonlinear control law
for system (21). It relies on the existence of a stabilizing
control law u(t) = κ1(x(t)) and a Lyapunov function
V (x) for the unperturbed nonlinear system ẋ = f(x) +
g(x)u(t).

Theorem 8 Consider the system (21) and let V : Rn →
R be a twice continuously differentiable positive definite
function that verifies

∂V

∂x
[f(x) + g(x)κ1(x)] ≤ −α(V (x)). (22)

where κ1 : R
n → R

m and α is a class K∞ function.
Assume that, for a given c > 0 and 0 < p < 1, the
condition

∂V

∂x
g(x) = 0 (23)

implies that 4

α(c(1 − p)) >

∣

∣

∣

∣

1

2
tr

(

hT (x)
∂2V

∂x2
(x)h(x)

)∣

∣

∣

∣

. (24)

Then, there exists a constant ρ > 0 such that the set S =
{x ∈ R

n : V (x) ≤ c} is a PUB of (21) with probability p
under the control law

u(t) = κ(x(t)) , κ1(x(t)) + κ2(x(t)) (25)

with

κ2(x) =































−gT (x)∂V∂x
T
(x)r(x)

∥

∥

∂V
∂x g(x)

∥

∥

2 if
∥

∥

∂V
∂x g(x)

∥

∥ > ρ,

−gT (x)∂V∂x
T
(x)r(x)

ρ2
if
∥

∥

∂V
∂x g(x)

∥

∥ ≤ ρ.

(26)

PROOF. Define

r(x) ,
1

2
tr

(

hT (x)
∂2V

∂x2
(x)h(x)

)

and let ε > 0 be arbitrarily small such that

|r(x)| < α(c(1 − p)− ε) , β ∀x :
∂V

∂x
g(x) = 0. (27)

Note that such an ε exists due to the continuity of α and
the inequality (24) subject to the condition (23). Then,
we can take ρ > 0 such that

∥

∥

∥

∥

∂V

∂x
g(x)

∥

∥

∥

∥

≤ ρ ⇒ |r(x)| ≤ β. (28)

Note that the existence of ρ is guaranteed by Eq. (27)
and the continuity of all involved functions.

Then, using the control law of Eq. (25) and computing
L for V , it results

L [V ] (x) =
∂V

∂x
[f(x) + g(x)κ1(x) + g(x)κ2(x)] + r(x).

Taking into account Eq. (22), we obtain

L [V ] (x) ≤ −α(V (x)) +
∂V

∂x
g(x)κ2(x) + r(x)

4 This conditions tells that in the regions where the input
function g(x) is orthogonal to the level sets of V (x), the
disturbance action must be bounded. The reason for this
restriction is that the control action through the product
g(x) · u cannot drive the state inside the level sets of V (x).
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and using (26) for

∥

∥

∥

∥

∂V

∂x
g(x)

∥

∥

∥

∥

> ρ, it results

L [V ] (x) ≤− α(V (x)) −
∥

∥

∥

∥

∂V

∂x
g(x)

∥

∥

∥

∥

2
r(x)

∥

∥

∂V
∂x g(x)

∥

∥

2 + r(x)

= −α(V (x)) ≤ −α(V (x)) + β.

On the other hand, if

∥

∥

∥

∥

∂V

∂x
g(x)

∥

∥

∥

∥

≤ ρ, it results

L [V ] (x) ≤ −α(V (x)) −
∥

∥

∥

∥

∂V

∂x
g(x)

∥

∥

∥

∥

2
r(x)

ρ2
+ r(x)

≤ −α(V (x)) +

[

1−
∥

∥

∂V
∂x g(x)

∥

∥

2

ρ2

]

r(x)

≤ −α(V (x)) + |r(x)| ≤ −α(V (x)) + β,

where we have used the condition (28) in the last in-
equality.

Thus, we obtain, for all x ∈ R
n,

L [V ] (x) ≤ −α(V (x)) + β.

Note that α−1(β) = c(1− p)− ε implies that

c =
α−1(β) + ε

1− p
,

and then Theorem 4 guarantees that

S = {x ∈ R
n : V (x) ≤ c}

is a PUB with probability p of the system (21) with the
feedback law of Eq.(25), concluding the proof.

4.3 Stochastic Feedback Linearization

The alternative design strategy uses stochastic feed-
back linearization [17], i.e., using a controller κ(x) and
a change of coordinates that converts the system of
Eq. (21) into a closed-loop linear system with a nonlin-
ear perturbation of the form (10). This strategy can be
applied provided that the system is Stochastic Feedback
Linearizable:

Definition 9 [Stochastic Feedback Linearizable System]
The system (21) is exact stochastic feedback linearizable
when there exist a twice continuously differentiable dif-
feomorphism φ : Rn → R

n, a vector field α : Rn → R
m

and a matrix field β : R
n → R

m×m, with β(x) non-
singular for all x ∈ R

n, such that, if

u(t) = α(x(t)) + β(x(t))v(t)

then the change of variables z = φ(x) transforms the
system (21) into the form

dz = A0zdt+Bvdt+ hz(z)dw(t), (29)

with z(0) = z0 , φ (x0). Also, A0 = diag (A1, · · · , Am)
and B = diag (B1, · · · , Bm), with Ai ∈ R

di×di and Bi ∈
R

di , i = 1, · · · ,m, given by

Ai =





















0 1 0 . . . 0

0 0 1 . . . 0
...
...
...
. . .

...

0 0 0 . . . 1

0 0 0 . . . 0





















and Bi =





















0

0
...

0

1





















,

where di, i = 1, · · · ,m, are the controllability indices of
A0 satisfying

∑m
i=1 di = n.

The following auxiliary results are necessary before in-
troducing the control design strategy.

Proposition 10 Assume that the system of Eq. (21) is
stochastic feedback linearizable and it verifies the match-
ing condition h(x) = g(x)γ(x). Then, the matrix field
hz(z) in Eq. (29) verifies the matching condition hz(z) =

Bgz(z) where gz(z) , [β(φ−1(z))]−1γ(φ−1(z)).

PROOF. Differentiating both sides of z = φ(x), ap-
plying the Ito rule, and using Eqs. (21) and (29), it can
be derived that

B =

[

∂φ

∂x
(g(x)β(x))

]

, hz(z) =
∂φ

∂x
h(x)

with x = φ−1(z). Then, using the matching condition
and the last two equations, it results that

hz(z) =
∂φ

∂x
h(x) =

∂φ

∂x
g(x)γ(x) =

= B[β(x)]−1γ(x) = Bgz(z)

concluding the proof.

Lemma 11 Consider system (29). Let b ∈ Rn verifying
b ≻ 0. Then, there exists a vector p̃ ∈ R

n with p̃i > 0,
i = 1, . . . , n satisfying (16), such that

Σp̃,b = diag (Σ1, · · · ,Σm) (30)
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is a positive definite block diagonal Xiao matrix 5 , with

Σi = X
(

p̃jb
2
j : j = σi − di + 1, . . . , σi

)

, (31)

for i = 1, · · · ,m, and where di are the controllability

indices of A0 and σi =
∑i

j=1 dj.

PROOF. According to [16, Lemma 22, p. 7] , given

bj ≻ 0 and pj ∈ (0, 1), a vector p̃j subject to
∑dj

i=1 p̃
j
i =

1−pj can be found such that X (yj) > 0 with yji =
[bj

i
]2

η(p̃j

i
)2

and where η(p̃ji ) is a strictly monotonically decreasing
function with image in [a,∞) for some constant a ≥ 0.

Then, defining η(p̃ji ) = 1
√

p̃j

i

(which is strictly mono-

tonically decreasing) we can choose pj ∈ (0, 1) for
j = 1, · · · ,m such that

∑m
j=1(1 − pj) = 1 − p. We can

then consider bj = [bσj−dj+1, · · · , bσj
]T and we find m

vectors p̃j such that X (yj) is positive definite for all j.

Then, taking p̃ = [p̃1
T
, · · · , p̃mT ]T , it results that

∑n
i=1 p̃i = 1 − p and the fact that X (yj) > 0 for

j = 1, · · · ,m implies that the resulting block diagonal
matrix Σp̃,b is positive definite, completing the proof.

The design goal is to find a feedback law v(t) = Kz(t)
for (29), or equivalently

u(t) = α(x) + β(x)Kφ(x) , κ(x(t)) (32)

in (21), such that the closed-loop system has a desired
PUB set Sx. The following theorem establishes the ex-
istence and provides the expression for this control law.

Theorem 12 (Control Design) Consider the feed-
back linearizable system (21) where h(x) = g(x)γ(x)

and gz(z) , [β(φ−1(z))]−1γ(φ−1(z)) is bounded by
gz(z)gz(z)

T ≤ GGT for some constant matrix G ∈
R

m×k. Suppose that a compact set Sx ⊂ R
n with 0 ∈

int (Sx) and a scalar p ∈ (0, 1) are given. Then,

(1) For any ε > 0, a vector b ∈ R
n, b ≻ 0, can be

found such that the set Sz = {z ∈ R
n : |zi| < bi + ε}

verifies φ−1 (Sz) ⊂ Sx.
(2) A vector p̃ ∈ R

n with p̃ ≻ 0 satisfying (16) can be
found such that Σp̃,b > 0 in Eqs.(30)–(31).

(3) The control law

u(x) = κ(x) , α(x) + β(x)Kp̃,bφ(x), (33)

5 see definition 20 in [16].

with

Kp̃,b = −B†Ψ

(

I − 1

2
BB†

)

Σ−1
p̃,b (34)

where Ψ , A0Σp̃,b + Σp̃,bA
T
0 + BGGTBT , makes

Sx a PUB with probability p for system (21).

PROOF. Item 1 is a direct consequence ofφ being a dif-
feomorphism and Sx being compact and containing the
origin in its interior. Item 2 is established by Lemma 11.

For the last point, using the control law (33) and the
transformation z = φ(x), taking also into account
Proposition 10, the system (21) becomes

dz = (A0 +BKp̃,b)zdt+Bgz(z)dw(t)

= (A0 +BKp̃,b)zdt+ hz(z)dw(t), (35)

¿From [16, Lemma 21, p. 6] , the use of the matrix gain
Kp̃,b defined in Eq. (34) implies that A = A0 +BKp̃,b is
Hurwitz and that the solution Σ of the Lyapunov equa-
tion

(A0+BKp̃,b)Σ+Σ(A0+BKp̃,b)
T +BGGTBT = 0 (36)

is given by Σp̃,b, verifying Eqs. (30)–(31). In particular,

[Σ]i,i = p̃ib
2
i .

Note also that the condition gz(z)gz(z)
T ≤ GGT im-

plies that hz(z)hz(z)
T ≤ HHT with H , BG. Then,

Theorem 7 ensures that the set Sz is a PUB for system
(35) and the fact that φ−1 (Sz) ⊂ Sx implies that Sx is
a PUB for the closed-loop system (21), (33), concluding
the proof.

Theorem 12 provides an expression for the control law
that ensures that the nonlinear system (21) has a desired
PUB Sx. The following algorithm summarizes the design
procedure.

Algorithm 1 (Nonlinear Design Procedure)

(1) Find the change of coordinates z = φ(x), jointly
with the feedback functions α(x) and β(x), that
brings the system (21) into (29).

(2) Take a small ε > 0 and a vector b ≻ 0, such
that the set Sz = {z ∈ R

n : |zi| < bi + ε} verifies
φ−1 (Sz) ⊂ Sx.

(3) Choose m probabilities pj ∈ (0, 1) such that 6
∑m

j=1(1− pj) = 1− p.

6 A reasonable choice would be pj = 1− (1− p)dj/n, which
assigns an exit probability proportional to the dimension of
each controllability subspace.
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(4) For each j in 1, . . . ,m, use Algorithm for PUB de-

sign [16, p. 8] to find dj constants p̃ji verifying
∑dj

i=1 p̃
j
i = 1 − pj such that the Xiao matrix with

diagonal entries [Σj ]i,i = b2σj−dj+ip̃
j
i is positive def-

inite.
(5) Form the block diagonal covariance matrix Σp̃,b =

diag(Σ1, . . . ,Σm).
(6) Compute the control law κ(x) using Eqs.(33)–(34).

5 Design Examples

This section provides examples for both design strate-
gies.

5.1 Lyapunov Based Design

We consider a system described by

dx =

[

−x1 − x1x2

x1x2 − x2

]

dt+

[

1

0

]

udt+

[

x1 0.5

0 0

]

dw, (37)

where w(t) is a 2-dimensional Wiener process with iden-
tity covariance matrix.

The nominal system can be stabilized using a feedback
law κ1(x) = x1x2 − x2

2, under which the Lyapunov can-
didate V (x) = 1

2 (x
2
1 + x2

2) with α(V ) = 2V verifies the
inequality (22) in Theorem 8, since

∂V

∂x
[f(x) + g(x)κ1(x)] = −x2

1 − x2
2 ≤ −α(V (x)).

We want the set S =
{

x ∈ R
2 : V (x) ≤ c

}

, with c = 1,
to be a PUB of this system with probability p = 0.9.

In orden to verify condition (24) we calculate

∂V

∂x
g(x) = x1

and

r(x) =
1

2
tr

(

hT (x)
∂2V

∂x2
(x)h(x)

)

=
x2
1 + 0.25

2
,

and then, for ∂V
∂x g(x) = x1 = 0 it results that r(x) =

0.125 < α(c(1− p)) = 0.2.

Note that taking ρ <
√
0.15, there exists ε > 0 such that

β , α(c(1− p)− ε) satisfies Eq. (28), and it results that

the control law u(t) = K(x) = κ1(x) + κ2(x) with

κ2(x) =























−x1(x
2
1 + 0.25)

2x2
1

if |x1| > ρ,

−x1(x
2
1 + 0.25)

2ρ2
if |x1| ≤ ρ.

ensures that the closed-loop system has the desired PUB
with probability p = 0.9.

To verify the results, we perform simulations of the
closed-loop system with the control law calculated con-
sidering ρ = 0.3872 (just less than

√
0.15) from different

initial conditions. Figure 1 shows two of the trajectories
obtained in the state space together with the desired
PUB. On the other hand, in Figure 2 the graph of the
first component of one of the trajectories of the simu-
lated system is shown, from where can be seen that the
trajectory leaves the PUB, S =

{

x ∈ R
2 : x2

1 + x2
2 ≤ 2

}

,

during several instants of time (notice that |x1| >
√
2 ⇒

(x1, x2) /∈ S).

-10 -8 -6 -4 -2 0 2 4 6 8

x1

-6

-4

-2

0

2

4

6

8

x
2

Fig. 1. Probabilistic Ultimate Bound region and closed-loop
trajectories.

The fact that the trajectories are allowed to leave the
set S constitute the main difference between PUBs and
other probabilistic approaches such as that of stochastic
barrier certificates [22].

As an additional verification, we performed 1, 000 dif-
ferent simulations of the system and for each value of t
of the form tk = 0.001k with k between 0 and 20, 000
we calculated the exit ratio. This value is calculated as
the number of sample-times where x(tk) lies outside the
PUB divided by the total number of simulations (1, 000).
The results are shown in Figure 3.

In this case we can see that from t ≈ 2.5 the computed
exit rate is less than the escape probability of the PUB,
which can be calculated as pesc = 1−p = 0.1. Moreover,
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Fig. 2. First component of state versus time.
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Fig. 3. Exit ratio.

starting at t ≈ 5 the exit rate always remains lower than
0.022, showing that the control design was somewhat
conservative.

There are several reasons why the design can be conser-
vative. One of the most important reasons is that the
characterisation of the ultimate bound provided by The-
orem 4 is based on Markov’s inequality, which only takes
into account the expected value of the process V (x(t))
without using information about variance or higher or-
der moments.

5.2 Stochastic Feedback Linearization

Consider a nonlinear stochastic system whose dynamics
are given by

dx =













x2

1 + x2
1

2x1x
2
2

(1 + x2
1)

2













dt+









0

1









udt+









0

a









dw

with w(t) a Wiener process with identity covariance and

a =
√
0.001.

We want the set Sx = {x : |x| � bx}, with bx =
[

0.01 0.1
]T

, to be a PUB of this system with probability

p = 0.9.

The map

z = φ(x) = [x1
x2

1 + x2
1

]T ,

jointly with the feedback functions

α(x) =
x2

1 + x2
1

and β(x) = 1 + x2
1

transform the nonlinear system to a linear system of the

form (29), where A0 =

[

0 1

0 0

]

, B =
[

0 1
]T

, hz(z) =

[

0
a

1 + z21

]T

= Bgz(z), with gz(z) =
a

1+z2

1

, completing

step 1 of the design procedure.

In step 2, b can chosen in many ways. A possible selection

is b =
[

0.01 0.09
]T

.

Now, since m = 1, from step 6 it results p1 = p = 0.9.
Then, from step 4, we obtain the escape probabilities
p̃1 = p̃2 = 0.05, from which the following assignable
covariance matrix results (step 5):

Σp̃,b =

[

p̃1b
2
1 0

0 p̃2b
2
2

]

= 10−3

[

0.005 0

0 0.405

]

.

Then, in the last step the controller gain is computed as

Kp̃,b =
[

−81 −1.2346
]

and (33) gives the final control

law as:

κ(x) =
(x2 − 81x1)(1 + x2

1)− 1.2346x2

(1 + x2
2)

2

Figure 1 shows the region Sx defined in the state space
and simulation results for the trajectory of the closed-
loop system starting from a certain initial condition,
corroborating that the region Sx is a PUB. This sim-
ulation result also shows that the design is conserva-
tive since it is not observed that the trajectory escapes
from that region with a frequency commesurate with
pesc = 1 − p = 0.1 = 10%. The cause of the latter con-
servatism can be attributed in part to the fact that the
ultimate bound set is obtained from the Chebyshev’s in-
equality, which is conservative since it only takes into
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account the expected value and the covariance of the
process.

Fig. 4. Probabilistic Ultimate Bound region and closed-loop
trajectory.

6 Conclusions

We have extended the notions of probabilistic ultimate
bound and probabilistic invariant set to the nonlinear
continuous-time domain, providing formulas for their
calculation. Then, in order to guarantee a desired prob-
abilistic ultimate bound having a given probability p,
two different control design strategies were proposed.
One based on the use of Lyapunov functions and the
other taking into account stochastic feedback lineariza-
tion. Both designs are somewhat conservative, mainly
due to the fact that the ultimate bounds are obtained
using conservative inequalities. Future work will extend
these tools to nonlinear discrete-time systems.
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[18] David Mateos-Núñez and Jorge Cortés. Stability of stochastic
differential equations with additive persistent noise. In
American Control Conference (ACC), 2013, pages 5427–
5432. IEEE, 2013.
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