
Mixed–Mode State–Time Discretization in ODE Numerical Integration.

Franco Di Pietroa,b∗, Joaqúın Fernándeza∗, Gustavo Migonia,b∗, Ernesto Kofmana,b∗

a CIFASIS-CONICET, Argentina
b FCEIA-UNR, Argentina

Abstract

This article introduces the joint usage of Quantized State System (QSS) methods and classic numerical

integration algorithms in the simulation of continuous time systems described by systems of Ordinary Dif-

ferential Equations (ODEs). The proposed mixed–mode scheme consists of splitting an ODE, using QSS

algorithms where they perform better than classic algorithms (i.e., in presence of frequent discontinuities

or stiffness under certain particular sparse structures) and using classic algorithms where they are a better

choice.

Besides describing the methodology –where the key issue is the interface between both algorithms– the

article studies some properties of the resulting scheme including convergence and numerical stability.

In addition, the performance of the proposed mixed–mode algorithm is analyzed in the simulation of two

large systems with heterogeneous dynamics, showing an important reduction of the simulation times –more

than one order of magnitude– compared to the most efficient QSS and classic approaches.

1. Introduction

The presence of stiffness and discontinuities are two major issues in the numerical integration of ODEs. In

the first case, the simultaneous presence of slow and fast dynamics enforces the usage of implicit numerical

solvers as explicit algorithms become numerically unstable except for very small values of the step size

[1, 2]. Implicit numerical solvers implement iterative algorithms that can be computationally expensive, in

particular when systems are large. Regarding the second issue, the numerical approximations are not valid

in presence of discontinuities on the right hand side of an ODE, and, in consequence, the solvers must be

equipped with zero crossing detection and event handling routines that increase their computational costs

[2].

Motivated by these problems, a new family of numerical algorithms for ODEs was developed in recent

years. These algorithms, called Quantized State Systems (QSS) methods [3, 2], replace the time discretiza-

∗Corresponding authors
Email addresses: dipietro@cifasis-conicet.gov.ar (Franco Di Pietroa,b), kofman@cifasis-conicet.gov.ar

(Ernesto Kofmana,b)

Preprint submitted to Journal of Computational and Applied Mathematics January 10, 2020

tion of classic ODE solvers by the quantization of the state variables obtaining an asynchronous discrete

event approximation that verifies strong stability and error bound properties. Due to its intrinsic discrete

event nature, QSS methods are very efficient in the presence of discontinuities [4] since their occurrence is

straightforwardly treated. In addition, there are backward QSS (BQSS) and linearly implicit QSS (LIQSS)

methods [5, 6] that can efficiently integrate some particular classes of stiff systems. A noticeably property

of these algorithms is that, in spite of their backward formulation, BQSS and LIQSS algorithms are explicit

in practice.

The condition for LIQSS algorithms to efficiently integrate a stiff system is that the stiffness is due to

the presence of large entries on at only one side of the main diagonal of the Jacobian matrix. Although this

restriction was recently relaxed [7] and there are several practical stiff problems in which LIQSS are efficient,

in most cases these algorithms are clearly outperformed by classic methods. One example of this occurs in

the simulation of parabolic equations (the heat equation, for instance) discretized with the Method of Lines

(MOL), where a stiff system of ODEs is obtained but there are no large entries in the Jacobian matrix.

In general, QSS algorithms are more efficient than classic methods in presence of frequent discontinuities

and in the simulation of large systems that exhibit inhomogeneous activity, i.e., when only few variables

have significant changes during a given interval of time. This is explained by the fact that QSS methods

only perform calculations in the state variables that experience significant changes. On the contrary, in

systems with homogeneous activity and without frequent discontinuities classic ODE solvers are usually

more efficient [8].

There are systems that combine subsystems where QSS algorithms perform better than classic ODE

solvers with other subsystems in which classic solvers are the best choice. Motivated by these cases, and

following the idea of multi–rate and mixed–mode or multi–method algorithms [9, 2, 10, 11, 12, 13], this work

proposes a novel and general approach to use QSS to integrate some subsystems and classic solvers for the

remaining subsystems.

Besides proposing a general methodology for combining QSS and classic solvers, this work also studies

the convergence and stability properties of the resulting approximation and describes a particular implemen-

tation that combines LIQSS2 with CVODE solver. In addition, two simulation examples are presented, the

first one corresponding to a model that represents the heating around a switching mode power electronic con-

verter and the second one corresponding to a one dimensional advection–diffusion–reaction problem where

the diffusion coefficient changes with the space.

The paper is organized as follows: Section 2 introduces the previous concepts and definitions used along

the rest of the work. Then, Section 3 describes the new algorithm, studies its convergence and stability, and

describes the implementation in a simulation tool. Finally, Section 4 presents the simulation results and

Section 5 concludes the article.

2

2. Background

This section provides an introduction to QSS algorithms and their implementation.

2.1. Quantized State System Methods

QSS methods replace the time discretization of classic numerical integration algorithms by the quanti-

zation of the state variables.

Given a time invariant ODE in its State Equation System (SES) representation:

ẋ = f(x(t), t) (1)

where x(t) ∈ Rn is the state vector, the first order Quantized State System (QSS1) method [3] solves an

approximate ODE called Quantized State System:

ẋ = f(q(t), t) (2)

Here, q(t) is the quantized state vector. Each component of the quantized state qi(t) follows a piecewise

constant trajectory that only changes when its difference with the corresponding state xi(t) reaches the

quantum ∆Qi. Denoting t1, t2, . . . , tk, . . . the times at which the piecewise constant trajectory qi(t) changes

, the quantized state trajectory is related to the corresponding state trajectory xi(t) as follows:

qi(t) =

qi(tk) if |xi(t)− qi(tk)| < ∆Qi

xi(t) otherwise

for tk < t ≤ tk+1, where tk+1 is the first time after tk at which |xi(t) − qi(tk)| = ∆Qi. In addition, we

consider that initially q(t0) = x(t0). This defines an hysteretic quantization function generating trajectories

like those depicted in Figure 1.

Since the quantized state trajectories qi(t) are piecewise constant, then, provided that the system is

autonomous (or that f(·, t) is piecewise constant with t), the state derivatives ẋi(t) also follow piecewise con-

stant trajectories and, consequently, the states xi(t) follow piecewise linear trajectories. In non autonomous

systems Eq.(2) can be rewritten as

ẋ(t) = f(q(t), t) = f̃(q(t),u(t))

for some input trajectories u(t) that are approximated by piecewise constant trajectories v(t) such that the

difference vi(t) − ui(t) remains bounded by certain quantity (given by the input quantization). That way,

the QSS1 approximation actually integrates the system

ẋ(t) = f̃(q(t),v(t))

3

Figure 1: QSS1 hysteretic quantization function.

Due to the particular form of the trajectories, the numerical solution of Eq. (2) is straightforward and

can be easily translated into a simple simulation algorithm, that for the case of autonomous system can be

described as follows1:

Algorithm 1: QSS1.

1 //inputs: ti (initial time), tf (final time), x0 (initial state), ∆Q (quantum vector)

2 //algorithm variables:

3 //t is the current simulation time

4 //x is the continuous state vector computed by the algorithm (this is the approximate solution

and thus the output of the algorithm)

5 //q is the quantized state vector

6 //ẋ is the state derivatives vector

7 //tηj is the time of the next change of quantized state qj

8 //tqj is the time of the last change of quantized state qj

9 //txj is the time of the last change of continuous state xj

10 //Initialization

11 t = ti //initial time ti

12 x = x0 //initial state

13 q = x //initial quantized state

14 for each j ∈ [1, n]

15 ẋj = fj(q, t) // compute j-th initial state derivative

1In presence of a piecewise constant input trajectories the algorithm first checks if the next change is due to a quantized

state or to an input change. In the second case, it proceeds like in line 29 of the algorithm but updating on the states depending

on that input.

4

16 tηj = t + ∆Qj/|ẋj | // compute the time of the next change in the j-th quantized state

17 txj = t // time of the last change in the j-th continuous state

18 tqj = t // time of the last change in the j-th quantized state

19 end for

20 //simulation cycle

21 while(t < tf) // simulate until final time tf

22 t = min(tηj) // adavance simulation time.

23 i = argmin(tηj) // the i-th quantized state changes first

24 e = t− txi // elapsed time since last xi update. (tx is an array containing the last update

time of each state.)

25 xi = xi + ẋi · e // update i-th state value

26 qi = xi // update i-th quantized state

27 tqi = t // time of the last change in the i-th quantized state

28 tηi = t + ∆Qi/|ẋi| // compute the time of then next change in the i-th quantized state

29 for each j ∈ [1, n] such_that ẋj depends_on qi

30 e = t− txj // elapsed time since last xj update

31 xj = xj + ẋj · e // update j-th state value

32 if j 6= i then txj = t // last xj update

33 ẋj = fj(q, t) // recompute j-th state derivative

34 tηj = min(τ > t) subject_to |qj − xj(τ)| = ∆Qj // recompute the time of the next change in the

j-th quantized state

35 end for

36 txi = t // last xi update

37 end while

The simulation algorithm works as follows. It looks which is the quantized state qi that changes first

and advances the simulation time until that event. Then, it advances the state value xi (using the fact that

ẋi is constant in the period) and computes the new quantized state qi = xi. This new value for qi will

change some state derivatives ẋj = fj(q, t) provided that qi explicitly appears in the expression of fj . Then,

the algorithm recomputes the corresponding states xj and the next time of change for the corresponding

quantized states qj .

The time of the next change tηj is computed as the first time after t at which the difference between the

piecewise constant trajectory qj(t) and the piecewise linear trajectory xj(t) = xj + ẋj · (t − txj) becomes

equal to the quantum ∆Qj . This is,

|xj + ẋj · (tηj − txj)− qj | = ∆Qj

5

The solution to this is equation is given by

tηj =



txj +
qj + ∆Qj − xj

ẋj
if ẋj > 0

txj +
qj −∆Qj − xj

|ẋj |
if ẋj < 0

∞ otherwise

In order to illustrate better the algorithm, we consider the following second order system

ẋ1 = 2− x1

ẋ2 = 2 · x1 − x2

and its QSS1 approximation

ẋ1 = 2− q1

ẋ2 = 2 · q1 − q2

with initial states x1(0) = x2(0) = 0 and quantum ∆Q1 = ∆Q2 = 1. Then, the algorithm works as follows:

� At t = 0 it computes the quantized states q1 = x1 = 0, q2 = x2 = 0, the state derivatives ẋ1 = 2−q1 =

2, ẋ2 = 2 · q1 − q2 = 0, the time of the next changes tη1 = ∆Q1/|ẋ1| = 1/2, tη2 = ∆Q2/|ẋ2| = ∞. It

also sets the time of the last state updates tx1 = tx2 = 0.

� The next step is then performed in t = tη1 = 1/2, computing the states x1 = 1, x2 = 0, the quantized

state q1 = 1, the state derivatives ẋ1 = 2− q1 = 1, ẋ2 = 2 · q1 − q2 = 2, the time of the next changes

tη1 = t+ ∆Q1/|ẋ1| = t+ 1 = 3/2, tη2 = t+ 1/|ẋ2| = t+ 1/2 = 1. It also sets the time of the last state

updates tx1 = tx2 = t = 1/2.

� The next step is then performed in t = tη2 = 1, computing the state x2 = 1, the quantized state q2 = 1,

the state derivative ẋ2 = 2 ·q1−q2 = 1, the time of the next change in q2 t
η
2 = t+∆Q2/|ẋ2| = t+1 = 2.

It also sets the time of the last state update for x2 as tx2 = t = 1.

Notice that this step does not involve calculations in the first state, as ẋ1 does not depend on x2.

� The next step is then performed in t = tη1 = 3/2, computing the states x1 = 2, x2 = x2 + ẋ2 · e =

1 + 1/2 = 3/2, the quantized state q1 = 2, the state derivatives ẋ1 = 2− q1 = 0, ẋ2 = 2 · q1 − q2 = 3,

the time of the next changes tη1 = t+ ∆Q1/|ẋ1| =∞, tη2 = t+ (1/2)/|ẋ2| = t+ 1/6 = 5/3. It also sets

the time of the last state updates tx1 = tx2 = t = 3/2.

� The next step is then performed in t = tη2 = 5/3, computing the state x2 = 2, the quantized state

q2 = 2, the state derivative ẋ2 = 2 · q1− q2 = 2, the time of the next change in q2, tη2 = t+ ∆Q2/|ẋ2| =
t+ 1/2 = 13/6. It also sets the time of the last state update for x2 as tx2 = t = 5/3.

6

� The next step is then performed in t = tη2 = 13/6, computing the state x2 = 3, the quantized state

q2 = 3, the state derivative ẋ2 = 2 · q1− q2 = 1, the time of the next change in q2, tη2 = t+ ∆Q2/|ẋ2| =
t+ 1 = 19/6. It also sets the time of the last state update for x2 as tx2 = t = 13/6.

� The last step is then performed in t = tη2 = 19/6, computing the state x2 = 4, the quantized state

q2 = 4, the state derivative ẋ2 = 2·q1−q2 = 0, the time of the next change in q2, tη2 = t+∆Q2/|ẋ2| =∞,

and the simulation finishes as tη1 = tη2 =∞.

This algorithm is clearly more involved than simple classic algorithms: it requires using more memory

to store the state and quantized state vectors, as well as the last and next time arrays, In addition, it

requires the knowledge of the system incidence matrix in order to determine which state derivative should

be computed after each quantized state changes.

However, these disadvantages are sometimes compensated by the fact that the algorithm only computes

when and where changes occur. In addition, it has important advantages in presence of discontinuities and

it performs an intrinsic control of the global error.

The fact that the difference between the states xi and the corresponding quantized states qi is bounded

by the quantum ∆Qi allows to rewrite Eq.(2) as

ẋ = f(x(t) + ∆x(t), t) (3)

where ∆x(t) , q(t) − x(t) is a perturbation term bounded by the quantum. In consequence, the use of

QSS1 is equivalent to the addition of a bounded perturbation to the original system and several properties

regarding convergence, stability, and global error bounds can be easily derived [3, 2] for linear and non-linear

systems. One of those properties establishes that the use of QSS in stable linear time invariant systems of

the form ẋ(t) = Ax(t) + Bu(t) produces a global error that can be bounded by the formula

|x(t)− xa(t)| ≤ |V| · |Re{Λ}−1 ·Λ| · |V−1| ·∆Q

where x and xa are the QSS and the analytical solutions, and Λ = V−1AV is the Jordan decomposition of

matrix A. That way, there is a linear dependence between the quantum and the global error bound.

For these reasons, the quantum plays an equivalent role to that of the tolerance in variable step size

algorithms. Here, the step size is usually controlled in order to accomplish with a relative error tolerance

and this can be also achieved in QSS algorithm by using a quantum that changes with the signal amplitude:

∆Qi = max(∆Qreli |xi|,∆Qabsi), such that ∆Qreli is the relative quantum (relative tolerance) and ∆Qabsi is

the absolute quantum (absolute tolerance).

Regarding the occurrence of discontinuities, the fact that the quantized states follow piecewise constant

trajectories allows the straightforward detection of zero crossings2. Moreover, when a discontinuity occurs,

2In QSS simulation tools, discontinuities are detected using the quantized states qi. Alternatively, the states xi can be

7

it will provoke the same effect than a change in a quantized state so the simulation does not need to be

restarted like in classic algorithms. In conclusion, the detection and handling of a discontinuity does not take

more computational effort than that of a single step. Thus, the QSS1 method is very efficient to simulate

discontinuous systems [4].

In spite of these advantages, QSS1 only performs a first order approximation. This is, the number of

steps performed is inversely proportional to the quantum which is proportional to the global error bound.

In consequence, the computational costs grow linearly with the required accuracy. This limitation was

improved with the definition of the second and third-order accurate QSS methods called QSS2 [14] and

QSS3 [15], respectively.

QSS2 and QSS3 have the same definition of QSS1 except that the components of q(t) are calculated

to follow piecewise linear and piecewise parabolic trajectories, respectively. In consequence, in QSS2 the

number of steps grows with the square root of the accuracy while in QSS3 it grows with the cubic root.

QSS2 and QSS3 share the same advantages and properties of QSS1, i.e., they satisfy stability and error

bound properties and they are very efficient to simulate discontinuous systems.

In spite of these advantages, QSS1, QSS2 and QSS3 methods are inefficient to simulate stiff systems. In

presence of simultaneous slow and fast dynamics, these methods introduce spurious high frequency oscilla-

tions that produce a large number of steps with their consequent computational cost [2]. To overcome this

problem, the family of QSS methods was extended with a set of algorithms called Backward QSS (BQSS)

[5] and Linearly Implicit QSS (LIQSS) [6, 7] that are appropriate to simulate some particular classes of stiff

systems. While BQSS algorithm is only first order accurate, there LIQSS methods of orders 1 to 3 (LIQSS1,

LIQSS2, and LIQSS3) combining the principles of QSS methods with those of classic linearly implicit solvers.

The main idea behind LIQSS methods is inspired by classic implicit methods that evaluate the state

derivatives at future instants of time. In classic methods, these evaluations require some type of iterations

in order to solve the resulting implicit equations. However, taking into account that QSS methods know the

future value of the quantized state (it is qi(t) ±∆Qi), the implementation of LIQSS algorithms is explicit

and does not require iterations.

LIQSS methods share with QSS methods the definition of Eq. (2), but the quantized states are computed

in a more involved way, taking into account the sign of the state derivatives. Besides allowing the efficient

integration of several classes of stiff systems, LIQSS methods share the main advantages of QSS1 regarding

discontinuity handling, stability and error bounds.

These advantages regarding efficient stiffness and discontinuity handling allow LIQSS methods to obtain

results around one order of magnitude faster than the best classic ODE solvers in some application domains,

used. In that case, the zero crossing detection could be more accurate but in presence of non-linear threshold conditions that

detection can be more involved.

8

including power electronics [16] and advection–reaction equations [17].

A limitation of LIQSS methods is that they compute the quantized states based on local calculations.

For this reason, they can only avoid the appearance of spurious oscillations in a state xi(t) if they are the

consequence of changes in its own quantized state qi(t). Thus, LIQSS algorithms are only efficient when

the stiffness is due to the presence of large entries in the main diagonal of the Jacobian matrix (or at only

one side of it). Although this restriction was recently relaxed avoiding oscillations between pairs of states

[7], the solution is not general and some cases –like the MOL discretization of diffusion equations– are not

efficiently treated.

Taking also into account the presence of input signals in non-autonomous systems, the different QSS

algorithms can be simulated by the following generic algorithm:

Algorithm 2: (LI)QSS(N).

1 //inputs: ti (initial time), tf (final time), x0 (initial state), ∆Q (quantum vector), vk (a

known succession of input polynomials that change at times tvk).

2 //outputs: x,q (current vectors of polynomials representing continuous and quantized state

trajectories).

3 //other variables: t (current simulation time), tn (time of the next quantized state change), i

(next quantized state that changes), k (current input polynomial section).

4

5 t = ti

6 k = 0

7 (x,q, tn, i)=QSS_init(x0,vk, t,∆Q)

8 while (t < tf) //simulation cycle

9 t=min(tn, tvk)

10 if tn ≤ tvk then //quantized state change

11 (x, q, tn, i)=QSS_step(x,q,vk, t,∆Q, i)

12 else //input change

13 k=k+1

14 (x, q, tn, i)=QSS_input(x,q,vk, t,∆Q)

15 end if

16 end while

17

18 //functions used

19 QSS_init(x0,v, t,∆Q)

20 q = constpoly(x0, t) //initial quantized state polynomial (constant)

21 for each j ∈ [1, n]

22 xj = Statepoly(x0,j , fj ,q,v, t) //initial polynomial of order N for the j-th state

23 tηj = nTime(xj , qj ,∆Qj) //compute time of next change in qj according to the QSS method used

24 end for

25 tn = min(tηj)

26 i = argmin(tηj)

9

27 return x, q, tn, i

28

29 QSS_step(x,q,v, t,∆Q, i)

30 xi = advpoly(xi, t) //advance state polynomial to current time

31 qj = Quantized(xi,∆Qi, t) // compute new quantized state polynomial according to the QSS

method used

32 tηi = nTime(xi, qi,∆Qi) //time of next change in qi

33 for each j ∈ [1, n] such that ẋj depends_on qi

34 xjaux = polyval(xj , t) //evaluate state polynomial at current time

35 xj = Statepoly(xjaux, fj ,q,v, t) //compute new state polynomial for the j-th state

36 tηj = nTime(xj , qj ,∆Qj) //recompute time of next change in qj

37 end for

38 tn = min(tηj)

39 i = argmin(tηj)

40 return x, q, tn, i

41

42 QSS_input(x,q,v, t,∆Q)

43 for each j ∈ [1, n] such that ẋj depends_on v

44 xjaux = polyval(xj,t) //evaluate state polynomial at current time

45 xj = Statepoly(xjaux, fj ,q,v, t) //compute new state polynomial for the j-th state

46 tηj = nTime(xj , qj ,∆Qj) //recompute time of next change in qj

47 end for

48 tn = min(tηj)

49 i = argmin(tηj)

50 return x, q, tn, i

In Algorithm 2, function Statepoly calculates a polynomial for the state xj(t) using its current value and

its time derivatives (computed from function fj an their time derivatives). Similarly, function Quantized

computes the quantized state polynomial according to the QSS method used while function nTime calculates

the time for the next change in a quantized state. The way of computing these functions for the different

methods can be easily deduced from the definition of the different QSS algorithms [7].

2.2. Stand–Alone QSS Solver

While several Discrete Event System Specification (DEVS) simulation tools have implementations of

different QSS algorithms [18, 19, 8], the most efficient and complete QSS tool is the Stand–Alone QSS solver

[20].

The models in this solver are described in a sub-set of the Modelica language [21], and the tool automat-

ically translates it into a C language piece of code containing the set of ODEs with the corresponding zero

crossing functions and event handlers for discontinuous cases. The tool also extracts structure information

(incidence matrices) and produces the code for the symbolic evaluation of the Jacobian matrix. The C code

10

produced is then linked to the different QSS algorithms (QSS and LIQSS of order one to three) or to classic

ODE solvers like DOPRI, DASSL, CVODE and IDA.

The fact that it provides all the structure information and the symbolic evaluation of the Jacobian

matrices implies that the results obtained by this tool using classic ODE solvers are noticeably faster than

the results obtained by other interfaces. In addition, the fact that it uses the same piece of code for the

ODEs in the different algorithms (QSS and classic ODE integrators) allows fair performance comparisons

among them.

3. Quantization-based mixed–mode integration

This section introduces the proposed methodology, studies its main properties and describes a particular

implementation in the Stand–Alone QSS solver.

3.1. Proposed scheme

Given the ODE of Eq.(1), and following the idea of multi–rate and mixed–mode schemes, we first split

it as the the coupling of two subsystems,

ẋ1(t) = f1(x1(t),x2(t), t) (4a)

ẋ2(t) = f2(x1(t),x2(t), t) (4b)

such that x(t) = [x1(t),x2(t)]T , and f(·) = [f1(·), f2(·)]T .

Then, we propose to integrate x1(t) using a QSS method and x2(t) using some classic algorithm (same

order of the QSS method) with variable step size hk = tk+1 − tk, that is,

ẋ1(t) = f1(q1(t), x̂2(t), t) (5a)

x2(tk+1) = F2(q1(tk), q̇1(tk), . . . ,x2(tk), tk, hk) (5b)

where Eq. (5b) represents the case of a single-step explicit method. In a more general case, x2(tk+1) could

be the result of

F̃2(q1(tk), q̇1(tk), . . . ,q1(tk+1), q̇1(tk+1), . . . ,x2(tk+1),x2(tk),x2(tk−1), . . . , tk, hk) = 0 (6)

which can also represent a multi-step implicit method.

The interface between both algorithms is performed by sampling the quantized states q1(t) and its

derivatives (up to the order of the quantized state) at the time steps tk of the classic algorithm and by

the construction of a polynomial (of the order of the quantized state) providing values for x2(t) between

successive steps, i.e., for tk < t < tk+1:

11

x̂2(t) = x2(tk) + f2(q1(tk),x2(tk), tk) · (t− tk) + ¨̂x2(tk) · (t− tk)2

2!
+ . . . (7)

for t ∈ [tk, tk+1). This polynomial has the same order than the quantized state of the corresponding QSS

algorithm (i.e., 0 for QSS1 and LIQSS1, 1 for QSS2 and LIQSS2, etc.).

In Eq.(7) ¨̂x2(tk) represents a coefficient conveniently defined for obtaining a third order scheme. The

remaining terms of the polynomial (expressed by . . .) are for higher order schemes, which cannot be cur-

rently implemented in practice since QSS algorithms of order higher than 3 were never used (in fact, most

applications where QSS methods are useful, as those with frequent discontinuities, do not require the use of

higher order algorithms as the step size will be limited by the time between events).

Although we are not limiting the definition of the scheme, we leave open the problem of the construction

of the polynomial of Eq.(7) for any order greater or equal than 3. In any case, we shall prove later that the

scheme converges irrespective of the way this polynomial is constructed.

3.2. Step size control at the classic solver side

The basic idea of the mixed–mode approach is very simple. In addition, any QSS algorithm can integrate

the system of Eq.(5a) taking into account the changes in x̂2(t) at times tk (these changes are regarded as

discontinuities that are straightforwardly treated by QSS). However, the formulation does not take into ac-

count, so far, the effect of the asynchronous changes in the quantized variables q1(t) during the computation

of x2(tk+1) by the classic solver. In order to solve this problem, we propose to modify the usual step–size

control strategy.

A standard step–size control algorithm would experience the following situation. Suppose a given variable

qi computed using the QSS method explicitly appears on the right side of Eq. (5b). Then, a change in qi

produces a change in the states derivatives computed using the classic method. If those changes of qi do not

take place on the instants that correspond to those established by the step size control, they will produce

an additional integration error.

A simple solution to this issue would be to perform a step using the classic method whenever a change

in qi takes place (similarly to discontinuity detection). However, this solution would be very inefficient as it

might enforce the classic method to perform a large number of unnecessary steps.

A far more efficient alternative, that we propose next, consists on estimating the additional error that

the changes on qi introduce to the numerical integration of x̂2(t). Then, we use this error estimation in

order establish an additional limit to the step–size in order to accomplish the error tolerance.

3.2.1. Additional numerical error in the classic method

We deduce next a simple formula for estimating the additional numerical error provoked by ignoring

changes in a quantized state qi(t) between the steps performed by the classic solver. In order to simplify

12

the analysis, we consider a linear approximation to Eq.(4b) given by:

ẋ2(t) = A22 · x2(t) +A2i
· xi(t) + u2(t) (8)

where xi(t) is some component of x1(t) and u2(t) is the remaining term of the linearization. We also consider

the following two approximations of Eq.(8):

ẋ2(t) = A22 · x2(t) +A2i · qi(t) + u2(t) (9a)

˙̃x2(t) = A22 · x̃2(t) +A2i
· q̃i(t) + u2(t) (9b)

where qi(t) is the quantized state trajectory computed by the QSS method (corresponding to the state xi(t))

while q̃i(t) is the quantized state trajectory observed by the classic algorithm (taking into account that it

only receives the sampled values at times tk).

The difference between q(t) and q̃i(t) can be observed in Figure 2. The goal of the following analysis

is then to find a maximum value for the step size h that guarantees that the difference between qi(t) and

q̃i(t) is such that the difference between x2(t) and x̃2(t) –the solutions of Eqs.(9)– does not exceed the error

tolerance.

Figure 2: Computed and observed quantized state trajectory.

Defining then the error e(t) , x̃2(t)− x2(t) and subtracting Eq.(9a) from (9b), we obtain

ė(t) = A22 · e(t) +A2i
· (q̃i(t)− qi(t))

13

This expression can be analytically solved, obtaining

e(t) = eA22·(t−tk) · e(tk) +

∫ t

tk

eA22·(t−τ) ·A2i · (q̃i(τ)− qi(τ))dτ

We shall suppose too that, after a change in qi(t), the step size h of the classic solver is limited by some

constant h̄max such that there are no significant variations of the solution between successive integration

steps. This is equivalent to consider A22 · (t− tk) to be small, which implies that eA22·(t−tk) is close to the

identity matrix. In addition, as we are computing the error introduced during a step, we consider that it is

initially zero, i.e., e(tk) = 0.

Then, the expression for the error can be approximated as

e(t) ≈
∫ t

tk

A2i · (q̃i(τ)− qi(τ))dτ = A2i ·
(∫ t

tk

q̃i(τ)dτ −
∫ t

tk

qi(τ)dτ

)
(10)

That way, the error introduced by ignoring the changes in q(t) between successive steps of the classic

method is proportional to the difference between the integrals of qi(t) and q̃i(t). This information can be

easily used to limit the step size such that e(t) lies within the prescribed tolerance.

3.2.2. Step size control in second order accurate algorithms

If we consider, in particular, that both qi(t) and q̃i(t) follow piecewise linear trajectories (i.e., both

algorithms are second order accurate schemes) as in Fig.2, then the previous analysis can be used to obtain

an explicit formula for the maximum step size.

Let tj ∈ (tk, tk+1) be an instant of change in qi and consider a time t with tk < tj < t < tk+1. Then,

∫ t

tk

qi(τ)dτ =

∫ tj

tk

qi(τ)dτ +

∫ t

tj

qi(τ)dτ = Qi(tj) + qi(tj) · (t− tj) + q̇i(tj) ·
(t− tj)2

2
(11)

where Qi(tj) ,
∫ tj
tk
qi(τ)dτ . Also,

∫ t

tk

q̃i(τ)dτ =
qi(tk) + qi(t)

2
· (t− tk) =

qi(tk) + qi(tj) + q̇i(tj) · (t− tj)
2

· (t− tk) (12)

Then replacing (11) and (12) in (10), we obtain:

e(t) ≈ A2i
·

qi(tk) + qi(tj) + q̇i(tj) · (t− tj)
2

· (t− tk)−Qi(tj)− qi(tj) · (t− tj)− q̇i(tj) ·
(t− tj)2

2


≈ A2i ·

qi(tk)− qi(tj) + q̇i(tj) · (tj − tk)

2
· (t− tj) +

qi(tk) + qi(tj)

2
· (tj − tk)−Qi(tj)


≈ A2i

[∆1(tj , tk) · (t− tj) + ∆2(tj , tk)] (13)

where

∆1(tj , tk) ,
qi(tk)− qi(tj) + q̇i(tj) · (tj − tk)

2
, ∆2(tj , tk) ,

qi(tk) + qi(tj)

2
· (tj − tk)−Qi(tj)

14

Then, the error at the end of the step tk+1 = tk + hk can be computed as

e(tk+1) ≈ A2i [∆1(tj , tk) · (hk + tk − tj) + ∆2(tj , tk)] (14)

whose l–th component can be computed as

el(tk+1) ≈ A2l,i
[∆1(tj , tk) · (hk + tk − tj) + ∆2(tj , tk)]

This value must be bounded, according to the tolerance settings, by certain quantity, i.e. |el(tk+1)| ≤ emax,l,

from which we obtain

|el(tk+1)| ≈ |A2l,i
[∆1(tj , tk) · (hk + tk − tj) + ∆2(tj , tk)] | ≤ emax,l

that must be accomplished for all l. This condition can be rewritten as

|∆1(tj , tk) · (hk + tk − tj) + ∆2(tj , tk)| ≤ ri

where

ri , min
l

emax,l

|A2l,i
|

and finally, the step size hk can be bounded as hk < min(h̄max, hmax) where

hmax ,


ri −∆2(tj , tk)

∆1(tj , tk)
+ tj − tk if ∆1 > 0

− ri −∆2(tj , tk)

∆1(tj , tk)
+ tj − tk otherwise

(15)

and h̄max is a parameter that ensures that eA2,2h is close to the identity matrix so that Eq.(10) holds.

While this analysis was performed for second order accurate schemes, it can be easily extended to other

orders.

3.3. Implementation of Mixed–Mode Algorithms

The implementation of the proposed mixed–mode scheme only requires to coordinate a QSS and a

classic solver, communicating between them the interface states (i.e., the components of x1(t) that are used

to compute ẋ2(t) and the components of x2(t) that are used to compute ẋ1(t) in Eqs.(4a)–(4b)). The

interface states must be also extrapolated to the current step times of both solvers.

The algorithm implementing the interface between both solvers is summarized below:

Algorithm 3: Mixed–Mode

1 //inputs: ti (initial time), tf (final time), [x10, x20] (partitioned initial state vector),

∆Q (quantum vector), h̄max (maximum step size), hi (initial step size).

2 //variables:

15

3 //x1 is the vector of polynomials of continuous states computed by the QSS algorithm

4 //q1 is the vector of polynomials of quantized states computed by the QSS algorithm

5 //x2 is the vector of states computed by the CLASSIC method

6 //x̂2 is the vector of polynomials of interface states computed by the CLASSIC method defined

by Eq.(7)

7 //tk: is the classic method last step time

8 //q̂1 is a copy of the interface quantized state polynomials at time tk

9 //CLASSIC.tn is the classic method next step time

10 //QSS.tn is the QSS next step time.

11

12 t = ti //initial simulation time

13 x2 = x20 //initial values for CLASSIC states

14 x̂2 = constpoly(interface(x20)) //initial polynomials for interface CLASSIC states

15 (x1,q1,QSS.tn,i) = QSS_init(x10,x̂2,t,∆Q) //initialize QSS algorithm

16 q̂1 = interface(q1) //initial polynomial for interface QSS states

17 h = hi //initial classic step size

18 CLASSIC.tn = ti // the first step at the classic solver is at t = ti

19 tk = ti

20 while(t < tf) // simulate until final time tf

21 t = min(QSS.tn,CLASSIC.tn) //advance simulation time

22 if (QSS.tn ≤ CLASSIC.tn) //QSS step

23 x̂2 = advpoly(x̂2,t) //advance state polynomials to current time

24 m = i //the step is in the m--th state

25 (x1,q1,QSS.tn,i) = QSS_step(x1,q1,x̂2,t,∆Q,m) //QSS step

26 if m-th state is in interface //the state that changed is in the interface

27 hmax = compute_max_step_size(q1,q̂1) //according to Eq.(15)

28 if (h > min(hmax, h̄max))

29 h = min(hmax, h̄max)

30 CLASSIC.tn = tk + h

31 end if

32 end if

33 else //CLASSIC step

34 q̂1 = advpoly(interface(q1),t) //advance interface quantized state polynomials to current

time

35 (x2,h) = CLASSIC_step(q̂1,x2,t,h,h̄max)

36 CLASSIC.tn=t+h

37 x̂2 = genpoly(interface(x2),t) //build interface state polynomials according to Eq.(7)

38 (x1,QSS.tn,i) = QSS_input(x1,q1,x̂2,t,∆Q) //input change in QSS

39 tk = t

40 end if

41 end while

Algorithm 3, besides the functions from the generic QSS procedure (Algorithm 2), uses the following

16

functions:

� CLASSIC step: It implements Eqs.(5b) or (6) (according to the classic method used). For that goal,

it considers the presence of the input polynomial q̂1 in the right hand side function. In addition,

this function recomputes the next step size h (which can be then changed during QSS steps using the

additional step size control).

� interface(x): It returns the subset of states that belongs to the interface. This is an optimization

that avoids interpolating state variables that are computed by one method and are not used by the

other algorithm.

A version of this algorithm was implemented in the Stand–Alone QSS Solver, combining LIQSS2 with

the classic CVODE solver [22].

For that goal, the Stand–Alone QSS Solver was extended so that it produces a partitioned code for the

given model containing the ODEs, zero crossing functions and event handlers that are used by each solver.

In addition, the tool automatically computes the structure information regarding the interface between both

solvers, so that the mixed–mode algorithm is able to know which states computed at one side are used to

compute state derivatives (or zero crossing functions) at the other side.

From a user perspective, the implementation offers two choices for partitioning the model. The first

option is the manual selection of the set of state variables that are computed by the CVODE solver. The

second choice is an automatic partitioning method that uses LIQSS2 for all the state variables that are part

of a zero crossing function and those that are affected by an event handler (i.e., the variables that are part

of the discontinuous behavior) while it uses CVODE for the remaining variables. We say that a variable xi

is affected by an event handler when the occurrence of the event can change the value of the Lth derivative

of xi where L is a user defined parameter of the automatic partitioning algorithm.

More precisely, the Stand–Alone QSS Solver integrates systems of the form

ẋ(t) = f(x(t),d(t), t)

where d(t) is a vector of discrete variables that only change under the occurrence of certain events triggered

by some zero crossing functions of the form ZCi(x(t),d(t), t) = 0. The changes of d(t) are dictated by the

corresponding event handlers d(t+) = Hi(x(t),d(t), t) where d(t+) expresses the value after the event.

Then, a state xi is affected by a discontinuity provided that some component of d explicitly appears in

the expression of fi(x(t),d(t), t).

The solver also has tools that automatically compute the incidence matrices from states to derivatives,

from states to zero crossing functions, from event handlers to state derivatives and from event handlers to

zero crossing functions. Making use of these incidence matrices, it is straightforward to find the sets of states

affected by discontinuities. Then, looking to the variables that are affected by already affected variables,

17

the set of variables affected in their second derivatives can be also obtained (and recursively for higher order

derivatives)

In practice, the parameter L should be chosen greater or equal than the order of the classic method

in use. Otherwise, the discontinuities, correctly treated at the QSS side, may produce sudden derivative

changes in the classic method which will reduce the step size affecting the performance of the overall scheme.

3.4. Convergence of the mixed–mode scheme

The following theorem establishes sufficient conditions for the convergence of the solutions of the mixed–

mode scheme to the analytical solution when the quantum of the QSS algorithm and the step size of the

classic algorithm go simultaneously to zero.

Theorem 1 (Convergence of the Mixed–Mode Scheme). Consider the system of Eq.(4) where f(x, t) =

[f1(·), f2(·)]T is locally Lipschitz in x on a compact set D ⊂ Rn. Let xa(t) be a solution of Eq.(1) from an

initial condition xa(t0) such that xa(t) remains in the strict interior of D during the interval [t0, tf].

Let x(t) = [x1(t),x2(t)]T be the solution of the mixed mode scheme of Eqs.(5)–(7) from the same initial

condition x(t0) = xa(t0), where the QSS algorithm uses quanta ∆Qi < ∆Qmax and the classic algorithm is

at least first order accurate and uses a bounded step size 0 < hk < hmax, and where

x2(t) , x2(tk) +
x2(tk+1)− x2(tk)

hk
· (t− tk) tk ≤ t < tk+1 (16)

Assume also that the coefficients of the extrapolation polynomial of Eq.(7) are bounded in D × [t0, tf].

Then,

lim
∆Qmax,hmax→0

x(t) = xa(t) (17)

for all t ∈ [t0, tf].

The proof of this theorem can be found in Appendix A.

3.5. Stability of coupling QSS and classic methods

We analyze next the stability of the mixed–mode scheme for a linear time invariant system of the form

ẋ(t) = A · x(t) +B · u(t)

Given that the presence of the input term B ·u(t) will not affect the stability conditions, we remove that

term and split the system as before ẋ1(t)

ẋ2(t)

 =

A11 A12

A21 A22

x1(t)

x2(t)


We shall consider that a QSS method is used to compute x1 and that Backward Euler’s algorithm is

used to calculate x2. The analysis can be then easily extended to consider other classic algorithms.

18

The use of a QSS algorithm in x1 implies that it is computed as the solution of

ẋ1(t) = A11 · q1(t) +A12 · x2(tk) = A11 · x1(t) +A12 · x2(tk) +A11 ·∆x1(t)

for t ∈ [tk, tk+1), where ∆x1(t) = q1(t)− x1(t).

The solution of the QSS approximation can be then computed for t = tk+1 as

x1(tk+1) = eA11·h · x1(tk) +

∫ tk+1

tk

eA11·(t−τ) ·A12 · x2(tk)dτ +

∫ tk+1

tk

eA11·(t−τ) ·A11 ·∆x1(t)dτ︸ ︷︷ ︸
∆(tk)

= eA11·h · x1(tk) +A−1
11 · eA11·h ·A12 · x2(tk) + ∆(tk)

(18)

Then, the usage of Backward Euler’s on the second subsystem yields

x2(tk+1) = x2(tk) + h ·A21 · x1(tk) + h ·A22 · x2(tk+1)

that can be written as

x2(tk+1) = (I − h ·A22)−1 · h ·A21 · x1(tk) + (I − h ·A22)−1 · x2(tk) (19)

Then, placing together Eqs. (18) and (19), we finally obtain

x(tk+1) = F · x(tk) +G ·∆(tk) (20)

where

F ,

 eA11·h A−1
11 · eA11·h ·A12

(I − h ·A22)−1 · h ·A21 (I − h ·A22)−1

 G ,

I
0

 (21)

Notice that ‖∆x1‖ is bounded by the maximum quantum used ∆Qmax. Then, the term ∆(t) defined

in Eq.(18) is also bounded by a quantity that is independent on the state x. That way, provided that all

the eigenvalues of matrix F in Eq.(21) lie inside the unit circle, the numerical approximation has ultimately

bounded solutions (i.e., it is practically stable) for any value of h and ∆Qmax.

Since matrix F only depends on h, the stability of the resulting scheme may depend on the step size used

by the classic method, but it is independent on the maximum quantum ∆Qmax used by the QSS algorithm.

4. Examples and Results

This section introduces two examples in which the proposed mixed–mode scheme shows noticeable ad-

vantages over classic and quantized state solvers. In both examples the reported results were obtained using

the different algorithms (LIQSS, DASSL, CVODE, and the mixed–mode LIQSS2 CVODE) implemented in

the Stand–Alone QSS Solver 3. The different experiments were run on the same computer (an Intel Core i7

3The Stand–Alone QSS Solver is an open source project, available at https://github.com/CIFASIS/qss-solver. The models

used in this article are part of the distribution and the results shown we obtained using git commit [9937e35].

19

CPU running a Linux Ubuntu 16.04 OS) and all the algorithms were used with the same error tolerances

(tolrel = 1 · 10−3 and tolabs = 1 · 10−6 for classic solvers, and ∆Qrel = 1 · 10−3 and ∆Qabs = 1 · 10−6 for

QSS based solvers).

4.1. DC-DC converter with heat sink

The first example consists in a model of a buck converter (a widely used switched mode power electronic

device) that takes into account both, the switched circuit and the thermal dynamics at the aluminum heat

sink. The circuit is depicted in Fig.3, and it works alternating the switch position between on and off states

at high frequency.

+
−Vi

S
iS

L
iL io

load

+

−

VoD

iD

C

−

+

uC

iC

Figure 3: Buck DC-DC converter circuit.

The heat sink, in turn, is described by a heat equation

∂u

∂t
= σ ·

∂2u

∂x2
;x ∈ [0, l] ; t ∈ [0,∞)

where l = 25mm is the heat sink length and σ is the diffusion coefficient given by

σ =
λ

ρ · c

where λ = 209.3 J m−1 sec−1K−1 is the aluminum thermal conductivity, ρ = 2698.4 kgm−3 its density and

c = 900.0 J kg−1K−1 its specific heat capacity.

The model considers the power losses during each change in the switch position, represented by power

pulses as shown in Figure 4, that are transferred to the heat sink.

After discretizing the heat equation using the Methods of Lines with N sections, the set of equations

20

0

Psw

0 ton Ts − toff Ts Ts + ton 2Ts − toff 2Ts

P
ow

er

Time

Figure 4: Power pulses in the switch.

describing the full model is the following one:

iD =
iL ·Rs − U
Rs +Rd

i̇L =
− iD ·Rd − uC

L

u̇C =
iL − uC

R

C

P =

Psw if t ∈ [Ts · j − toff , Ts · j + ton] where j = 0, 1, . . .

0 otherwise

u̇1 = σ · (P ·Rt − 2 · u1 + u2) · N
2

l2

u̇N = σ · (298− 2 · uN + uN−1) · N
2

l2

u̇i = σ · (ui−1 − 2 · ui + ui+1) · N
2

l2
for i = 2, N − 1

(22)

The circuit was modeled using the following set of parameters: U = 24V (input voltage), C = 10mF

(capacitor), L = 10mH (inductor), R = 10 Ω (load resistance), f = 10 kHz (switching frequency), DC =

0.35 (duty cycle, i.e., the fraction of time that the switch is in on state), Roff = 105 Ω (off-state resistance),

Ron = 10−5 Ω (on-state resistance), Rt = 7.5KW−1 (heat sink thermal resistance), ton = 1.2µsec and

toff = 5.5µsec.

In order to analyze the performance of the proposed mixed–mode algorithm, we simulated this system

using two different classic solvers (DASSL and CVODE), a QSS method (LIQSS2) and the mixed–mode

LIQSS2 CVODE algorithm. This novel algorithm was used exploiting the automatic partitioning strategy

21

with the L parameter set to 7, that uses LIQSS2 for the circuit and the first 7 thermal stages, and CVODE

for the remaining of the system. In all cases we considered initial conditions iL(t = 0) = 0, uC(t = 0) = 0

and ui(t = 0) = 298.

We first considered a MOL discretization of the heat equation using 100 sections and simulated until a

final time tf = 60 obtaining the results reported in Table 1.

Integration CPU Error

Method [msec]

DASSL 3.51 · 106 5.24 · 10−4

CVODE 1.70 · 107 4.48 · 10−3

LIQSS2 11 131 6.82 · 10−4

LIQSS2 CVODE 10 966 2.04 · 10−4

Table 1: Solver performance comparison for the buck DC-DC converter with heat sink.

The errors reported are the mean of the errors in all state variables. In each state variable the error was

computed as:

ey =

√√√√√∑5000
k=1 (yactk − yrefk

)2∑5000
k=1 y

2
refk

on 5000 sample points where the reference trajectory was obtained using LIQSS2 with tolerance settings of

∆Qrel = 10−7 and ∆Qabs = 10−9.

The results, showing a clear advantage of LIQSS2 and LIQSS2 CVODE over classic solvers, can be easily

explained. The presence of frequent discontinuities in the power electronic converter enforces the classic

solvers to perform very small steps on the whole system while LIQSS2 and LIQSS2 CVODE only perform

those smalls steps in the variables involving discontinuities (i.e., those of the power electronic converter). In

consequence, LIQSS2 and LIQSS2 CVODE are several orders of magnitude faster.

It is worth mentioning that most LIQSS2 simulation steps are performed at the power electronic converter

variables, while the integration of the 100 variables representing the MOL discretization requires very few

steps using either LIQSS2 or CVODE. Since LIQSS2 and LIQSS CVODE use the same algorithm for the

discontinuous parts (LIQSS2), the total computational cost is very similar and the fact that CVODE is

faster than LIQSS2 in the remaining of the system does not change much the overall result.

We then compared both LIQSS2 and LIQSS2 CVODE algorithms as the number of sections N increases.

The results are depicted in Figure 5.

This time, as the number of sections N grows, the mixed mode solver outperforms the pure LIQSS2

algorithm, and, for N = 1000, it is about 18 times faster. This can be explained by the fact that, as

N increases, the MOL discretization becomes more stiff [2], with a type of stiffness that LIQSS2 cannot

22

Figure 5: Comparison LIQSS2 vs LIQSS CVODE as system size grows.

efficiently integrate and its performance is impoverished with the appearance of spurious oscillations. The

mixed–mode LIQSS2 CVODE algorithm, however, uses CVODE to integrate the MOL approximation and

this algorithm can efficiently integrate this part of the system.

Finally, Table 2 shows the number of individual state changes performed by the mixed–mode algorithm

for different values of the error tolerance. As it can be seen, these experimental results verify that the order

of convergence is, as expected, close to 2 (except for the lower accuracy settings, where the step size is more

frequently limited by the occurrence of discontinuities than by the error tolerance). The order of convergence

is computed as:

co =
log(tol2/tol1)

log(steps1/steps2)

between successive experiments.

4.2. 1D Advection-Diffusion-Reaction (ADR) problem

The following set of ODEs corresponds to the spatial discretization of a 1D ADR problem:

dui
dt

= −a · ui − ui−1

∆x
+ di ·

ui+1 − 2 · ui + ui−1

∆x2
+ r · (u2

i − u3
i)

for i = 1, . . . , N − 1 and

duN
dt

= −a · uN − uN−1

∆x
+ dN ·

2 · uN−1 − 2 · uN
∆x2

+ r · (u2
N − u3

N)

23

Relative Absolute Simulation Simulation Convergence

Tolerance Tolerance steps Error Order

1 · 10−2 1 · 10−5 23 627 256 3.90 · 10−3 –

1 · 10−3 1 · 10−6 399 03 067 2.04 · 10−4 4.36

1 · 10−4 1 · 10−7 109 535 734 4.45 · 10−5 2.30

1 · 10−5 1 · 10−8 324 167 990 1.43 · 10−5 2.11

1 · 10−6 1 · 10−9 998 532 903 7.22 · 10−7 2.05

Table 2: Simulation results using LIQSS2 CVODE with different error tolerances.

where N is the number of grid points, ∆x = 10
N , and we consider parameters a = 1, r = 1000, and

di =

1 · 10−6 if i ∈ [1, N/2− 1]

10 otherwise

(23)

We also consider initial conditions ui(0) = 0 for i = 1, . . . , N and a boundary condition u0(t) = 1.

MOL discretizations of ADR equations can be efficiently integrated by LIQSS methods provided that the

diffusion coefficient di is small compared to the advection coefficient a [17]. Otherwise, BDF approximations

like CVODE offer better results. In this case, the diffusion coefficient changes with the space in Eq.(23), so

that we can expect that LIQSS2 is better at the first stages and CVODE is better in the last stages, and

the mixed–mode algorithm can offer the best alternative.

In order to corroborate this, the system was first simulated for N = 1000 until a final time tf = 10 using

classic methods, as well as LIQSS2 and LIQSS2 CVODE. For the Mixed–Mode algorithm we used LIQSS2

in the first N/2 state variables (those with low diffusion coefficient) and CVODE in the remaining states.

We measured the errors using the same strategy as in the previous example but computing this time the

reference values with DASSL and tolerances tolrel = 1 · 10−7 and tolabs = 1 · 10−10. The performance of the

different algorithms is reported in Table 3.

Integration Time Error

Method [msec]

DASSL 3 143 1.44 · 10−3

CVODE 220 2.86 · 10−4

LIQSS2 2 023 8.33 · 10−4

LIQSS2 CVODE 40 5.76 · 10−4

Table 3: Comparison of simulation results for the ADR system with N = 1000

24

As expected, the mixed–mode algorithm provides the best results. This time LIQSS2 CVODE is more

that 5 times faster than CVODE , more than 50 times faster than LIQSS2 and more than 75 times faster

than DASSL. The poor performance of LIQSS2 alone is due to the same reason of the previous example

(the appearance of spurious oscillations in the diffusion–dominated equation). In addition, the noticeable

advantages of CVODE against DASSL can be explained by the fact that the former uses a sparse Jacobian

and the system is large.

We also compared the performance of the different algorithms as the size of the problem (N) increases,

reporting the results in Fig.6.

Figure 6: Simulation results of the ADR system varying parameter N .

The figure shows that the mixed–mode algorithm is the best choice for all values of N . As N increases the

advantage of LIQSS2 CVODE also increases and it becomes 11 times faster than CVODE for N = 10000.

5. Conclusions

This article introduced mixed–mode numerical integration algorithms that combine classic ODE inte-

gration methods with QSS methods and studied their convergence and numerical stability properties. The

implementation of one algorithm of this type that combines LIQSS2 with CVODE was also described. Simu-

lation results comparing the performance of this implementation with that of different ODE solvers exhibited

noticeable advantages of the proposed mixed–mode scheme, reducing the CPU times in more than one order

of magnitude.

25

The examples analyzed demonstrated that the novel approach is useful in presence of systems with

heterogeneous dynamics, in which some subsystems are better suited for QSS methods while the remaining

subsystems can be more efficiently integrated by classic ODE solvers.

Regarding future work, there is so far only one mixed–mode algorithm implementation (LIQSS2 CVODE).

Combinations of different QSS algorithms with different classic solvers may lead to more efficient results

in some problems. It is also important to study the use of these algorithms in different multi–domain

applications where heterogeneous dynamics are usually encountered.

Another important improvement would be a relaxation in the assumption made on Section 3.2 about the

parameter h̄max that limits the step size of the classic algorithm. That parameter was necessary to ensure

the validity of Eq.(10) which allowed to establish a simple expression for the additional numerical error. A

possible way to overcome this limitation would be to use an expression that approximates the exponential

matrix eA2,2·t instead of approximating it by the identity matrix under the assumption that t is small.

Acknowledgements

This work was partially supported by grants ANPCYT PICT-2017-2436 and CONICET PIP 2017

0100485.

6. References

[1] E. Hairer, G. Wanner, Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems., Springer,

Berlin, 1991.

[2] F. Cellier, E. Kofman, Continuous System Simulation, Springer, New York, 2006.

[3] E. Kofman, S. Junco, Quantized State Systems. A DEVS Approach for Continuous System Simulation, Transactions of

SCS 18 (3) (2001) 123–132.

[4] E. Kofman, Discrete Event Simulation of Hybrid Systems, SIAM Journal on Scientific Computing 25 (5) (2004) 1771–1797.

[5] G. Migoni, E. Kofman, F. Cellier, Quantization-Based New Integration Methods for Stiff ODEs., Simulation: Transactions

of the Society for Modeling and Simulation International 88 (4) (2012) 387–407.

[6] G. Migoni, M. Bortolotto, E. Kofman, F. Cellier, Linearly Implicit Quantization-Based Integration Methods for Stiff

Ordinary Differential Equations, Simulation Modelling Practice and Theory 35 (2013) 118–136.

[7] F. Di Pietro, G. Migoni, E. Kofman, Improving linearly implicit quantized state system methods, Simulation: Transactions

of the Society for Modeling and Simulation International 95 (2) (2019) 127–144.

[8] B. P. Zeigler, A. Muzy, E. Kofman, Theory of Modeling and Simulation: Discrete Event & Iterative System Computational

Foundations, Academic Press, 2018.

[9] A. Bartel, M. Günther, A multirate w-method for electrical networks in state–space formulation, Journal of Computational

and Applied Mathematics 147 (2) (2002) 411–425.

[10] V. Savcenco, Construction of a multirate rodas method for stiff odes, Journal of Computational and Applied Mathematics

225 (2) (2009) 323–337.

[11] E. M. Constantinescu, A. Sandu, Extrapolated multirate methods for differential equations with multiple time scales,

Journal of Scientific Computing 56 (1) (2013) 28–44.

26

[12] B. Thiele, M. Otter, S. E. Mattsson, Modular multi-rate and multi-method real-time simulation, in: Proceedings of the

10th International Modelica Conference, 2014.

[13] F. Casella, A. Ranade, Efficient modelling and simulation of multi-domain smart grids using modelica and multi-rate

integration algorithms, in: IECON 2016-42nd Annual Conference of the IEEE Industrial Electronics Society, IEEE, 2016,

pp. 6285–6291.

[14] E. Kofman, A Second Order Approximation for DEVS Simulation of Continuous Systems, Simulation: Transactions of

the Society for Modeling and Simulation International 78 (2) (2002) 76–89.

[15] E. Kofman, A Third Order Discrete Event Simulation Method for Continuous System Simulation, Latin American Applied

Research 36 (2) (2006) 101–108.

[16] G. Migoni, F. Bergero, E. Kofman, J. Fernández, Quantization-Based Simulation of Switched Mode Power Supplies.,

Simulation: Transactions of the Society for Modeling and Simulation International 91 (4) (2015) 320–336.

[17] F. Bergero, J. Fernández, E. Kofman, M. Portapila, Time Discretization versus State Quantization in the Simulation

of a 1D Advection-Diffusion-Reaction Equation., Simulation: Transactions of the Society for Modeling and Simulation

International 92 (1) (2016) 47–61.

[18] M. C. D’Abreu, G. A. Wainer, M/cd++: modeling continuous systems using modelica and devs, in: Modeling, Analysis,

and Simulation of Computer and Telecommunication Systems, 2005. 13th IEEE International Symposium on, IEEE, 2005,

pp. 229–236.

[19] G. Quesnel, R. Duboz, É. Ramat, M. K. Traoré, Vle: a multimodeling and simulation environment, in: Proceedings of

the 2007 summer computer simulation conference, Society for Computer Simulation International, 2007, pp. 367–374.

[20] J. Fernández, E. Kofman, A Stand-Alone Quantized State System Solver for Continuous System Simulation., Simulation:

Transactions of the Society for Modeling and Simulation International 90 (7) (2014) 782–799.

[21] S. E. Mattsson, H. Elmqvist, M. Otter, Physical system modeling with modelica, Control Engineering Practice 6 (4)

(1998) 501–510.

[22] S. D. Cohen, A. C. Hindmarsh, P. F. Dubois, Cvode, a stiff/nonstiff ode solver in c, Computers in physics 10 (2) (1996)

138–143.

Appendix A. Proof of Theorem 1

Proof. Since f is locally Lipschitz in D, there exists a constant L > 0 such that

‖ f(xc, t)− f(xb, t) ‖< L· ‖ xc − xb ‖ (A.1)

for all xc,xb ∈ D and for all t ∈ [t0, tf]. Here, the symbol ‖x‖ denotes the infinite norm of vector x.

The condition of Eq.(A.1) implies that there exists a constant Fmax > 0 such that

‖ f(x, t) ‖< Fmax (A.2)

for t ∈ [t0, tf] and x ∈ D.

Then, taking into account that the classic method is at least first order accurate, we can write:

x2(tk+1) = x2(tk) + hk · f2(q1(tk),x2(tk), tk) +
h2
k

2
· rh(tk) (A.3)

where

‖ rh(tk) ‖< rmax ∀tk ∈ [t0, tf] (A.4)

27

and where rmax is a constant that bounds the remainder term rh(tk) for any step size hk ≤ hmax, and for

any [q1(tk),x2(tk)]T ∈ D. Notice that rmax may depend on the numerical method used, the expression of

f2, and the maximum step–size bound hmax.

Replacing the term x2(tk+1)− x2(tk) in Eq.(16) with Eq.(A.3), we obtain

x2(t) = x2(tk) + [f2(q1(tk),x2(tk), tk) + hk · rh(tk)](t− tk),

an expression that can be also obtained after integrating both sides of the ODE

ẋ2(t) = f2(q1(tk),x2(tk), tk) + hk · rh(tk) (A.5)

in the interval [tk, t] with tk ≤ t < tk+1. That way, x2(t) defined in Eq.(16) is the solution of the ODE of

Eq.(A.5) from the initial condition x2(t0).

In consequence, the system given by Eq. (5) has identical solution to the one given by

ẋ1(t) = f1(q1(t), x̃2(t), t) (A.6a)

ẋ2(t) = f2(q1(tk),x2(tk), tk) + hk · rh(tk) (A.6b)

at discrete times tk. Using this fact, we shall prove that x(t) = [x1(t),x2(t)]T → xa(t).

Defining

∆1,1(t) , q1(t)− x1(t), ∆1,2(t) , x̃2(t)− x2(t)

∆2,1(t) , q1(tk)− x1(t), ∆2,2(t) , x2(tk)− x2(t)

we rewrite Eq.(A.6) as follows

ẋ1(t) = f1(x1(t) + ∆1,1(t),x2(t) + ∆1,2(t), t) (A.7a)

ẋ2(t) = f2(x1(t) + ∆2,1(t),x2(t) + ∆2,2(t), tk) + hk · rh(tk) (A.7b)

The perturbation term ∆1,1(t) = q1(t)− x1(t) can be bounded as

‖∆1,1(t)‖ ≤ ∆Qmax = c1,1∆Qmax (A.8)

since QSS methods always ensure that the difference between the continuous and the quantized states they

compute are bounded by the quantum (recall that they perform a step whenever the difference reaches the

quantum size).

From Eqs.(7) and (16), we obtain

∆1,2(t) = [f2(q1(tk),x2(tk), tk)− x2(tk+1)− x2(tk)

hk
] · (t− tk)+

+ ¨̃x2(tk) · (t− tk)2

2!
+ . . .

28

Then, using Eq.(A.3), it results

∆1,2(t) = [f2(q1(tk),x2(tk), tk)− f2(q1(tk),x2(tk), tk)− hk
2
· rh(tk)] · (t− tk)+

+ ¨̃x2(tk) · (t− tk)2

2!
+ . . .

= [¨̃x2(tk) · (t− tk)

2!
+ · · · − hk

2
· rh(tk)] · (t− tk)

Then, since the extrapolation polynomial coefficients are bounded in D, and recalling Eq.(A.4) and the fact

that t− tk ≤ hmax ≤ hmax, it results that

‖∆1,2(t)‖ ≤ c1,2 · hmax (A.9)

where c1,2 is an upper bound for ‖¨̃x2(tk) · (t−tk)
2! + · · · − hk

2 · rh(tk)‖. Notice that this bound is valid under

the assumption that f1 and f2 in Eq.(A.7) are evaluated inside D.

Regarding the bound for ∆2,1(t), we know that there exists t∗ ∈ [tk, t] such that, according to the mean

value inequality, it results that

‖x1(t)− x1(tk)‖ ≤ ‖ẋ1(t∗)‖ · (t− tk) ≤ Fmax · hk

and then, recalling that ∆2,1(t) = q1(tk)− x1(t) = q1(tk)− x1(tk) + x1(tk)− x1(t), we obtain

‖∆2,1(t)‖ ≤ ∆Qmax + Fmax · hmax ≤ c2,1 max(∆Qmax, hmax) (A.10)

a bound that is also valid under the assumption that f1 and f2 in Eq.(A.7) are evaluated inside D.

The last perturbation term, ∆2,2(t), can be computed from Eqs.(A.3) and (16) as

∆2,2(t) = x2(t)− x2(tk) =
x2(tk+1)− x2(tk)

hk
(t− tk) =

= [f2(q1(tk),x2(tk), tk) +
hk
2
· rh(tk)] · (t− tk)

and then,

‖∆2,2(t)‖ ≤ (Fmax + hmax · rmax) · hmax = c2,2 · hmax (A.11)

This inequality also assumes that f1 and f2 in Eq.(A.7) are evaluated inside D.

The fact that the analytical solution xa(t) is in the strict interior of D for t ∈ [t0, tf] implies that there

exists a constant d > 0 such that

dist(xa(t), ∂D) > d ∀t ∈ [t0, tf] (A.12)

Take T ∈ (0, tf − t0] so that

T <
d

4 · (Fmax + hmax · rmax)
(A.13)

29

and let ∆Qmax and hmax be small enough such that the right hand side of Eqs.(A.8),(A.9),(A.10), and

(A.11) are all less than d/4.

Let ta be some instant of time at which dist(x(ta), ∂D) > d/2, and let te ∈ (ta, ta+T) be the first instant

of time at which dist(x(te), ∂D) ≤ d/4. Thus, f1 and f2 are both computed inside D in Eq.(A.7) during the

interval [ta, te) and the bounds given for ‖∆i,j(t)‖ by Eqs.(A.8),(A.9),(A.10), and (A.11) are valid in that

interval.

Then, according to the mean value inequality, there exists t∗ ∈ [ta, te] such that

‖x(te)− x(ta)‖ ≤ ‖ẋ(t∗)‖ · (te − ta) ≤ (Fmax + h̄ · rmax) · T <
d

4

Since dist(x(ta), ∂D) > d/2, the last inequality implies that dist(x(te), ∂D) > d/4 contradicting the def-

inition of te and showing that the distance from the state x(t) to the boundary of D is at least d/4 in

[ta, ta + T].

Let ε > 0 and consider some δ > 0 small enough such that ∆Qmax < δ and hmax < δ imply that the

right hand side of the inequalities (A.8),(A.9),(A.10), and (A.11) are all less than d/4.

Assume now that there is some time tb ≥ t0, with tb ≤ tf − T , such that

‖x(t)− xa(t)‖ < min(ε, d/4) (A.14)

for all t ∈ [t0, tb]. We shall prove next that we can find δ > 0 such that the conditions ∆Qmax < δ and

hmax < δ imply that ‖x(t)− xa(t)‖ < ε for all t ∈ [t0, tb + T].

Notice that ‖x(tb) − xa(tb)‖ < d/4 implies that dist(x(tb), ∂D) > d/2, which in turn implies that

dist(x(t), ∂D) > d/4 for all t ∈ [t0, tb+T]. Then, recalling that δ is small enough such that ‖∆i,j(t)‖ < d/4,

it results that functions f1 and f2 in Eq.(A.7) are both computed inside D, which in turn implies the validity

of Eqs.(A.8),(A.9),(A.10), and (A.11).

Recalling that xa(t) = [xa,1(t),xa,2(t)]T is the solution of Eq.(4), and subtracting Eq.(4a) from Eq.(A.7a),

we obtain

ẋ1(t)− ẋa,1(t) = f1(x1(t) + ∆1,1(t),x2(t) + ∆1,2(t), t)− f1(xa,1(t),xa,2(t), t)

or, equivalently,

x1(t)− xa,1(t) =

∫ t

t0

[f1(x1(τ) + ∆1,1(τ),x2(τ) + ∆1,2(τ), τ)− f1(xa,1(τ),xa,2(τ), τ)]dτ

and, using the Lipschitz condition on D,

‖x1(t)− xa,1(t)‖ ≤
∫ t

t0

L · [‖x1(τ) + ∆1,1(τ)− xa,1(τ)‖+ ‖x2(τ) + ∆1,2(τ)− xa,2(τ)‖]dτ

≤
∫ t

t0

2L · ‖x(τ)− xa(τ)‖dτ + L[c1,1∆Qmax + c1,2hmax] · (t− t0)

≤
∫ t

t0

2L · ‖x(τ)− xa(τ)‖dτ + L[c1,1 + c1,2] · δ · (t− t0) (A.15)

30

for all t ∈ [t0, tb + T].

Proceeding in a similar way and subtracting now Eq.(4b) from Eq.(A.7b), we obtain

ẋ2(t)− ẋa,2(t) =f2(x1(t) + ∆2,1(t),x2(t) + ∆2,2(t), t) + hk · rh(tk)

− f2(xa,1(t),xa,2(t), t)

and,

‖x2(t)− xa,2(t)‖ ≤
∫ t

t0

L · [‖x1(τ) + ∆2,1(τ)− xa,1(τ)‖+ ‖x2(τ) + ∆2,2(τ)− xa,2(τ)‖]dτ+

+ hmax · rmax(t− t0)

≤
∫ t

t0

2L · ‖x(τ)− xa(τ)‖dτ + L[c2,1 max(∆Qmax, hmax) + c2,2hmax] · (t− t0)

+ hmax · rmax · (t− t0)

≤
∫ t

t0

2L · ‖x(τ)− xa(τ)‖dτ + [c2,1 + c2,2 + rmax] · δ(t− t0) (A.16)

Then, from Eqs.(A.15) and (A.16), we obtain

‖x(t)− xa(t)‖ ≤
∫ t

t0

4L · ‖x(τ)− xa(τ)‖dτ + L[c1,1 + c1,2 + c2,1 + c2,2 + rmax] · δ(t− t0)

Applying Grönwall–Bellman’s inequality on the last expression, we obtain

‖x(t)− xa(t)‖ ≤ L[c1,1 + c1,2 + c2,1 + c2,2 + rmax] · δ(t− t0) · e4L(t−t0)

That way, taking

δ <
min(ε, d/4)

L[c1,1 + c1,2 + c2,1 + c2,2 + rmax] · (tf − t0) · e4L(tf−t0)

it results that

‖x(t)− xa(t)‖ < min(ε, d/4) ≤ ε (A.17)

for all t ∈ [t0, tb + T].

Since the condition of Eq.(A.14) is verified with tb = t0, and taking into account that it implies Eq.(A.17),

this reasoning can be recursively applied with tb = t0 + T , tb = t0 + 2T , etc.. When t0 +m · T > tf − T we

can take tb = tf − T and apply for the last time the procedure concluding that Eq.(A.17) is verified for all

t ∈ [t0, tf].

That way, given ε > 0 we can find δ > 0 such that ∆Qmax ≤ δ and hmax ≤ δ imply that Eq.(A.17) is

verified. This implies (17) concluding the proof.

31

	Introduction
	Background
	Quantized State System Methods
	Stand–Alone QSS Solver

	Quantization-based mixed–mode integration
	Proposed scheme
	Step size control at the classic solver side
	Additional numerical error in the classic method
	Step size control in second order accurate algorithms

	Implementation of Mixed–Mode Algorithms
	Convergence of the mixed–mode scheme
	Stability of coupling QSS and classic methods

	Examples and Results
	DC-DC converter with heat sink
	1D Advection-Diffusion-Reaction (ADR) problem

	Conclusions
	References
	Proof of Theorem 1

