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In this paper, we develop a systematic method to obtain ultimate bounds for both continuous- and discrete-time perturbed systems.
The method is based on a componentwise analysis of the system in modal coordinates and thus exploits the system geometry as well
as the perturbation structure without requiring calculation of a Lyapunov function for the system. The method is introduced for linear
systems having constant componentwise perturbation bounds and is then extended to the case of state-dependent perturbation bounds.
This extension enables the method to be applied to nonlinear systems by treating the perturbed nonlinear system as a linear system
with a perturbation bounded by a nonlinear function of the state. Examples are provided where the proposed systematic method yields
bounds that are tighter or at least not worse than those obtained via standard Lyapunov analysis. We also show how our method can
be combined with Lyapunov analysis to improve on the bounds provided by either approach.

1 Introduction

The effect of perturbations is a common issue related to the study and analysis of dynamical systems.
Perturbations could arise from modeling errors, ageing, uncertainties and disturbances, and are present in
any realistic problem (Khalil, 2002).

In a typical situation, the exact value of a perturbation variable is unknown but supposed to be bounded.
In the presence of nonvanishing perturbations, that is, perturbations that do not disappear as the state
approaches an equilibrium point, asymptotic stability is in general not possible. However, under certain
conditions, the ultimate boundedness of the trajectories can be guaranteed.

Nonvanishing perturbations can represent effects of quantization in A/D and D/A converters (Kofman,
2003), unknown disturbance signals (Rapaport and Astolfi, 2002), unmodeled dynamics (Oucheriah, 1999),
data rate limitations in control systems (Bullo and Liberzon, 2006; Walsh et al., 2002; Wong and Brockett,
1999), errors in numerical methods (Kofman, 2002), etc. In all of these problems, it is important to estimate
an ultimate bound as a measure of the undesirable perturbation effects. Estimation of an ultimate bound is
also important in the design of practical controllers, such as in the context of emulation of continuous-time
controllers (Laila et al., 2002) and sampled-data controller design via approximate discrete-time models
(Nesi¢ et al., 1999)

A standard tool for ultimate bound estimation is based on the use of Lyapunov functions (see, for
example, Khalil, 2002, Section 9.2). This approach is very general and powerful although there is an inher-
ent difficulty associated with the selection of a suitable Lyapunov function. For linear systems, however,
quadratic Lyapunov functions can be easily computed and ultimate bounds can be obtained in the form
of balls by using the system state 2-norm. This approach may result in conservative bounds due to the
loss of the structure of the system (and also possibly of the perturbation) during a generic analysis.

A closely related approach is based on the input-to-state stability (ISS) property of systems with distur-
bances (Jiang and Wang, 2001; Sontag, 1989; Sontag and Wang). Systems that are ISS with respect to the
disturbance input have an ultimate bound determined by the system disturbance-to-state asymptotic gain
(see, for example, Khalil, 2002, Theorems 4.18 and 4.19). Huang et al. (2005) propose a computational
framework based on dynamic programming for obtaining minimum ISS gains for nonlinear discrete-time
systems.
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An approach that is different from those above was introduced in Kofman (2005), where an ultimate
bound of a continuous-time linear time-invariant (LTT) system with a constant bound on the perturbation
term was deduced based on geometrical principles. That study arrived at a simple explicit ultimate bound
expression that, in the examples analyzed, provided a noticeably tighter bound as compared to what could
be obtained via classical Lyapunov analysis using quadratic functions.

The current work extends the approach of Kofman (2005) in two main directions: (i) by allowing the
perturbation term to be bounded by a state-dependent function and (ii) by deriving similar results for
discrete-time systems. Specifically, we consider a system defined by

z(t) = Az(t) + u(t), (1)

where z(t) € R" denotes the system state, u(t) € R" a perturbation input and A € R**" is Hurwitz. The
result of Kofman (2005), which applies only when A is also diagonalizable, essentially consists in obtaining a
componentwise ultimate bound on the state z, when the perturbation term u(t) is componentwise bounded
as

|ui(t)] < up,, fori=1,...,n.

Here, we derive ultimate bounds when A is Hurwitz (not necessarily diagonalizable) and the perturbation
term is componentwise bounded by a nonlinear function of the state, as follows

lui ()| < 6;(x(t)), fori=1,...,n. (2)
We also derive a discrete-time counterpart of the method, considering a discrete-time system of the form
z(k+1) = Az (k) + u(k),

where A € R™™™ has all its eigenvalues inside the unit circle and u(k) is componentwise bounded by a
state-dependent function.

These results are then utilized to derive ultimate bounds in perturbed nonlinear systems by regarding
such a system as a linear system having a (nonlinear) state-dependent perturbation term. In all cases,
we provide a systematic method for the computation of an ultimate bound and a set of initial states
from which the ultimate bound obtained is guaranteed. The method is based on the iteration of a map
constructed from the modal decomposition of the matrix A and the perturbation bounds (2).

As a motivation for the results in this paper, we now compare the result of Kofman (2005) with a
Lyapunov analysis. To this aim, consider the system

i) = ) ] 0+ 000 ()

—_——
A

where u1(t) = 0 and |ug(t)] < 0.1 for all ¢ > 0. A classical Lyapunov approach employs the quadratic
function U(z) = 2T Pz, where P > 0 is the solution of ATP + PA = —(Q, with Q > 0 and analyzes its
time derivative using the perturbation bound [Ju(t)|| < 0.1, for all ¢ > 0. For example, this approach is
used in Lemma 9.2 of Khalil (2002) to derive an ultimate bound for the 2-norm of z of the form

Amax(P) [ Amax(P)
Amin(Q) Amin (P)

=2 0.1 +e, (4)

where Apin and Anax denote the smallest and largest eigenvalues, respectively, of a real symmetric matrix,
and € > 0 can be made arbitrarily small. Numerical minimisation of (4) with respect to @ yields p =
1.3837+¢€, whence ||z(t)|| < 1.38374¢ for all t > t, for some t; > 0. We can also obtain the componentwise
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bounds |z1(t)| < 1.3837 + € and |zo(t)| < 1.3837 + €. Note that, since A is Hurwitz, the system (3) is ISS
with respect to the input v and an ISS analysis then leads to the same bounds (see, for example, Khalil,
2002, Theorems 4.18 and 4.19).

Application of the formula derived in Kofman (2005, Theorem 4) (and extended here to the general —not
necessarily diagonalizable— Hurwitz case in Theorem 3.3) results in the tighter bounds |z (¢)| < 0.1021
and |z2(t)| < 0.0204, and [|z(t)|| < 0.1041, for all ¢ > t;, for some ¢ty > 0. In this case, we can identify
two reasons why our method yields tighter bounds. First, the information on w;(t), namely |ui(¢)] = 0
is lost in the standard Lyapunov analysis, which requires a bound on ||u(t)||. Second, obtaining ultimate
bounds in the form of balls by means of quadratic Lyapunov functions seems to not be particularly well-
suited to system (3). We can verify this statement by supposing that the initial information on u(t) is
that ||u(t)|| < 0.1 for all ¢ > 0. Using then the componentwise bounds |u;(¢)| < 0.1 and |ug(t)] < 0.1
and applying again the formula derived in Kofman (2005, Theorem 4) (or here in Theorem 3.3) yields the
bounds |z (t)| < 1.1023 and |z(t)| < 0.1225, whence [|z(t)|| < 1.1091, for all £ > ¢4, for some ¢y > 0. This
bound is still tighter than the one obtained above via standard Lyapunov analysis.[J

The selected structure, (1)—(2), permits to represent most problems where estimation of an ultimate
bound is of practical importance. These problems include the presence of noise, the effect of uniform or
logarithmic quantization (where the perturbation can be bounded by a constant or by a linear function of
the state, respectively), systems with parametric uncertainty (where the product of an unknown matrix
and the state can be modelled as a perturbation), etc. Notice that in all these cases the perturbation
does not affect each component of the right-hand side of (1) in the same way and hence it may be useful
to bound the perturbation componentwise as in (2). Our method can also be easily extended to systems
of the form #(t) = Axz(t) + Bu(t) or z(k + 1) = Az(k) + Bu(k), where u € R™, with straightforward
modifications of the derived expressions.

The remainder of the paper is organized as follows. In Section 2, the notation, concepts and mathematical
tools employed throughout the paper are described. Sections 3 and 4 derive the ultimate bound estima-
tion method for continuous- and discrete-time systems, respectively. Illustrative examples are provided in
Section 5 and conclusions are drawn in Section 6.

2 Mathematical Tools

This section describes the notation, concepts and mathematical tools used throughout the paper. The
notation and some preliminary tools are described in Section 2.1. Since our results aim at exploiting
the system and perturbation structures, we employ a nonstandard definition of ultimate boundedness
that is better suited to this goal. Section 2.2 provides a standard definition of ultimate boundedness and
thus derives a preliminary result that links the results obtained throughout the paper with this standard
definition.

2.1 Notation and Preliminary Tools

If M is a matrix with (real or complex) entries M; j, then | M| and Re(M) denote its elementwise magnitude
and real part, respectively, that is, |M] is the matrix with entries |M; ;| and Re(M ), the one with entries

]Re(MZ-,j).
If z,y € R", then z < y and = < y denote the sets of componentwise inequalities z; < y; and z; < y;,
respectively, for ¢ = 1,...,n, and similarly for z > y and = > y. The expression ‘z £ 3’ is used as equivalent

to ‘c < y is not true’. Thus, z £ y does not necessarily imply that = > y.
According to these definitions, it is easy to show that

[z +yl <lz|+yl, [Maz|<[M]-|z|, (5)
|z < ly[ = |M] - x| < |M]-]yl, (6)

whenever z,y € C* and M € C™*™.
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R} and RY ; denote the sets of vectors in R” with positive and nonnegative components, respectively.
Consequently, if z € R" then z € R} < x> 0and z € N
1,, denotes the vector in R” all of whose components are equal to 1.

2.2 Ultimate Boundedness

We now provide a standard definition of ultimate boundedness, adapted from Khalil (2002), and derive a
preliminary result that links the results obtained later in the paper to this definition.

Definition 2.1 The solutions of & = f(¢,x) are said to be uniformly ultimately bounded if there exist a
vector norm || - || and positive constants d and ¢ such that for every a € (0, ¢) there is a positive constant
T = T (a) such that

lz(to)ll <a=llz(@)l <d, Vi=to+T. (7)

In essence, the results that we provide in Sections 3 and 4 guarantee that if |V "'z(t¢)| < B, then the
following implicit ultimate bound holds:

[V lz(t) <¢, forallt>ty+T, ®)

where ,c¢ € R}, V € C"*" is a nonsingular matrix and 7 € Ry o. Since (8) implies the componentwise
bound

lz(t)| < V|-V z@#)| < |V]e, forallt>to+T,

then the following Lemma shows that such results lead to ultimate bounds in the sense of Definition 2.1.
LEMMA 2.2 Consider the system & = f(t,x), where z(t) € R", and suppose that there exist 3,b € R,
T € Ry o and a nonsingular matriz V€ C**" such that

Vz(te)| < B = |z(t)| <b, VE>ty+T.

Then, the solutions of & = f(t,x) are uniformly ultimately bounded.
Proof Let Bmin £ min; B, bmax = ||bl/oc, Where || - |00 denotes the infinity norm of a vector and the
corresponding induced norm for a matrix. Note that By > 0. Then, for any a € (0, Buin/||V " oo ), We
have
1z (t0)lloe < = V™ z(t0)lloc < IV oo e

= ||V71$(t0)”oo < Pmin

= |V lz(t)| < B

= [3(t)] < b= [5(E)lloe < b

for all ¢ > to + 7. This concludes the proof. O

The discrete-time counterparts to Definition 2.1 and Lemma 2.2 are straightforward.

3 Ultimate Bounds for Continuous-time Systems

In this section, we develop a systematic method to obtain ultimate bounds for perturbed continuous-time
systems which is based on a componentwise analysis of the system in modal coordinates. In Section 3.1, we
derive ultimate bound expressions when the perturbation input is componentwise bounded by a constant.
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This result is used as an intermediate tool to derive ultimate bound expressions at the beginning of
Section 3.2, where the perturbation input is bounded by a state-dependent function. Section 3.2 then
proceeds to develop the aforementioned systematic method. In Section 3.3, we show how the results of
Section 3.2 may be applied to nonlinear systems.

3.1 Constant Perturbation Bounds

In this section, we present ultimate bounds of a linear system when the perturbation bound is constant.
This result is presented in Theorem 3.3, which requires the following two lemmas. Lemma 3.1 contains
a preliminary result for a perturbed scalar system and Lemma 3.2 a similar result for a system whose
evolution matrix consists of a single Jordan block.

LEMMA 3.1 Consider the scalar system
2(t) = Az(t) + v(¢) (9)

0. Suppose that |v(t)

where X, z(t),v(t) € C and Re(\) < | <w
| < |[Re(A)] ! | v for all 0 <

m for all 0 < t < 71, where vy, € R. If
|2(0)] < ‘[Re(k)]*l‘vm, then |z(t) t <

T.

Proof Express z(t) in polar form as z(t) = p(t) /%) where p(t) € Ry o and 6(t) € R. Substituting into
(9) and multiplying by e=7?() yields

pt) + jp(t) O(t) = Ap(t) +v(t) e 7).
Taking real part and using the bound on v(t), we have
() = Re(A)p(t) + Re (v(t) e*j"@) < Re(A\)p(t) + v, (10)
where the inequality is valid for 0 < ¢ < 7. Define the auxiliary system

y(t) = Re(N)y(t) + vm, (11)

with initial condition y(0) £ p(0) = |2(0)|. This linear differential equation can be solved as

y(0) = [0 + o (1 ) (12)

where we have used the fact that Re(A) < 0. Using the assumption |z(0)| < ‘[Re()\)]_l"um in (12), it
follows that y(t) < H]Re(k)]_l ‘ v for all ¢ > 0. Applying the Comparison Lemma to (10) and (11) (see, for
example, Khalil, 2002, p.102), we conclude that |z(¢)| < y(t), for all 0 < ¢ < 7, whence the result follows.
(|

LEMMA 3.2 Consider the system
2(t) = Az(t) + v(t) (13)
where z(t),v(t) € C" and A € C™*" is a Jordan block with eigenvalue X\ satisfying Re(\) < 0. Suppose that

[v(t)| < vy for all 0 < t < 7, where vy, € RT. If [2(0)] < |[Re(A)] | vy, then |2(t)] < |[Re(A)] | vy, for
all0 < t < 7.
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Proof First, note that the matrix |[Re(A)]~!| satisfies

[Re(A)~'| [Re(A) 72| ... [Re(A)~"|
0 |Re(A)"I... [Re(A) (1|

0 0 s |Re(N) 7Y
Define a £ ‘[Re(A)]*1 ‘ vy, and let a; denote the 4-th component of a. Then, we can write

o= 3| Re()] 4oy, (14)

J=i

fori=1,...,r. Let 2;(t) denote the i-th component of z(t). We will prove by induction that

|zi(t)| < a;, for0<t<T, (15)
for i =1,...,r. By assumption, |2(0)| < ‘[Re(A)]*1 ‘ U, and using a as defined above, we have
|2;(0)| < a;, fori=1,...,r. (16)

In particular, |z.(0)] < a, = H]Re()\)]_l ‘ Um, . From (13) and the Jordan form of A, it follows that z,(¢) =
A2, (t) + v (t), with |v,.(¢)] < vy, for 0 < t < 7. Applying Lemma 3.1 yields |z (¢)| < [Re(N) "oy, = a,
for 0 < ¢ < 7, proving (15) for i =r.

We now prove that if z; ;1 satisfies (15), then z; also does. Thus, suppose that z;;1 satisfies (15). This
implies

|zit1(t) + vi(t)| < @jy1 + v, for 0<t < 7. (17)

Using (14), the bound on the right-hand side of (17) satisfies

HRQO\)]_I ‘ (@ig1 + vm,) = ‘[Re()\)]_l‘ Z ‘[Re()\)]—(j—i)

Um; + Um;
j=i+1
= |Re(N)] | D | Re)] 02|,
j=i
= Z ‘[Re(k)]’(j’”” Uy = G4 (18)
Jj=t

From (13) and the Jordan form of A, we have 2;(t) = Az;(t) + zi41(t) +vi(t), for e = 1,...,r — 1, where the
last two terms satisfy (17). From (16) and (18), we have |z(0)| < a; = |[Re(A)] ™" | (ait1 + vm, ). Applying
Lemma 3.1 then yields

|2i(1)] < |[Re(AN)] ™| (@ir1 + vm,) = ai, for 0 <t <7,

proving that z; also satisfies (15).
Since we have already shown that z, satisfies (15), it follows that (15) is satisfied for i = 1,...,r and
the proof is complete. O

The following theorem provides ultimate bounds for linear systems with constant perturbation bounds.
This theorem extends the result of Kofman (2005) to the case where the system’s evolution matrix is
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required to be only Hurwitz (not necessarily diagonalizable). The main feature of this result is that it
does not require the calculation of a Lyapunov function for the system and may yield tighter bounds than
those obtained via standard Lyapunov analysis using quadratic functions, as shown in the introductory
example in Section 1. Part i) of the theorem characterizes a bounded invariant region in the state space,
that is, a region with the property that trajectories originating in that region remain in the region while
the perturbation remains bounded. Part ii) shows that, if the perturbation is bounded for all ¢ > 0, then
the trajectories converge to the bounded invariant region from any initial condition.

THEOREM 3.3 Consider the system
() = Az(t) + u(t) (19)

where z(t),u(t) € R*, and A € R™" is a Hurwitz matriz with Jordan canonical form A = V1AV,
Suppose that |u(t)| < upy, for all 0 <t <7 and define

S £ [[Re(A)] M- V. (20)

Then,

i) Invariance. If |V"'z(0)| < Sup,, then for all0 < t < T,
a) |[V=tz(t)] < Suy,.
) a(t)] < |V[Stnm.
i) Convergence. If T = oo, then given any initial condition £(0) € R™ and positive vector € € R}, a finite
time ty = ty(e,x(0)) exists so that for all t > ty,
a) |[V=tz(t)] < Suy, + €.
) [2(t)] < [V|Sum + V] e

Proof Let z(t) = Vz(t) and v(t) £ V" u(t). Then, using (19) we have
z(t) = Az(t) + v(t), (21)
where v(t) satisfies
[0()| < vm 2 [V gy, forall0<t< 7. (22)
Note that (21) constitutes a set of k£ (k < n) uncoupled differential equations of the form
Zz(t) = A,zz(t) + vi(t), for 1 <i <k, (23)
where z;,v; € C" and A; € C"*" is a Jordan block (r; is the multiplicity of the eigenvalue of the i—th
block). From (22), |vi(t)| < vy, for all 0 <¢ < 7.
i) By assumption, [2(0)] = |[V~'2(0)| < Sus,. Using (20) and (22), then |2(0)| < |[Re(A)] ™| vy, and
hence |z;(0)| < H]Re(Ai)]_l‘ Um,, for i =1,..., k. Applying Lemma 3.2 to (23), we obtain
12:(t)] < |[Re(A)] | vy, fori=1,...,k, (24)
for all 0 <t < 7. A compact expression for (24) is
2(t)] < |[Re(A)] | vy, forall0 <t <7, (25)
and the proof of i) a) follows by recalling that z(t) = V 1'x(t), v, = |V um and (20). To prove i) b)
note that |z(t)| = |Vz(¢t)| < |V|-|z(t)| and use (25). This completes the proof of i).

ii) Consider again system (21) with initial condition z(0) and with the perturbation term bounded by
(22) for all ¢ > 0, since by assumption 7 = oco. Let Z(t) satisfy Z(¢) = AZ(¢) and Z(0) = 2(0).
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Notice that limy_, . Z() = 0 since A is the Jordan form of A, which is Hurwitz. Then, given any positive
vector €, a finite time ¢y =t;(e, 2(0)) = t7(e, 2(0)) = ts(e,2(0)) can be found so that

|Z(t)| < e for all ¢ > ;. (26)

Define 2(t) £ z(t) — Z(¢). Then, 2(t) verifies (21) and (22). Note also that [2(0)] = 0 < [[Re(A)]™!| v
Thus, applying the result of part i), we conclude that |2(¢)| < ‘[Re(A)]*l‘ vy for all £ > 0. Then, using
the definition of Z and (26), we obtain

|2(8)] < 12(8)] + |2(1)] < [[Re(A)] ™" | v + € (27)

for all t > t, and the proof of ii) a) follows by recalling that z(t) = V="'z(t), vm = [V "' uy, and (20). To
prove ii) b) note that |z(t)| = |V z(¢)| < |V|-|2(¢)| and use (27). This completes the proof of the theorem.
d

Theorem 3.3 gives both implicit and componentwise ultimate bound estimations (see Lemma 2.2) of
LTT systems when the perturbation bound is constant, that is, when it does not depend on the state. The
regions of the state space defined by the implicit bounds given in Theorem 3.3 ii) a) are contained in the
corresponding axis-aligned sets given in Theorem 3.3 ii) b). The latter provides componentwise ultimate
bounds on the state.

3.2 State-dependent Perturbation Bounds

In this section, we present the main contribution of the paper for continuous-time systems. We provide
ultimate bound expressions for linear systems with state-dependent perturbation bounds that satisfy a
monotonicity condition [see (29) and (30) below]. These bounds are derived in Theorem 3.4, which requires
the existence of a point (x,,) satisfying a certain condition. We thus subsequently provide an algorithm to
test whether this condition is satisfied and a proof of its convergence. All these results provide a systematic
method to obtain ultimate bounds for continuous-time systems. As we will see in the examples, the bounds
provided by this systematic method may be tighter than those obtained via standard Lyapunov analysis
using quadratic functions, and can also be combined with the latter methodology to improve on the bounds
provided by either approach.

THEOREM 3.4 Consider the system
z(t) = Az(t) + u(t), (28)
where z(t),u(t) € R, and A € R"*" is Hurwitz with Jordan canonical form A =V ~'AV. Suppose that
[u(t)] < 8(a(t) VE>0 (29)
where 6 : R" — RY ; is a continuous map verifying
1] < |2 = 6(z1) < 6(x2). (30)
Consider the map T : R" — R  defined by
T(z) = |V|S(z), (31)

with S as defined in (20). Suppose that there exists x,, € R satisfying, T(Lm) < Tpm. Then,

i) b2 limy_o TF(x,,) exists and satisfies 0 < b < .
i) If [V1z(0)| < Sé(zm) then, given any positive vector € € R"., a finite time t; = tp(e, zp,) ewists so
that for all t > ty,
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a) |[V~'z(t)] < S6(b) +e.
B) la(0)] < b+ V]

Proof By (30), (31), (20) and (6), then T satisfies

i) Note that 0 < T(x,,) < z,, and hence |T(z;,)| < |zm|- By (32), then T(T(zy,)) < T(z;,) and
applying T repeatedly we obtain 0 < T%(z,,) < T* Y (z,,) < 2, for all k > 2. The sequence T*(z,,) is
thus nonincreasing and lower bounded by 0, and hence it must converge to some point b = limy_ Tk(:vm)
that satisfies 0 < b < zyy,.

ii) We now prove that |z(t)| < z,, for all ¢ > 0. For a contradiction, suppose that |z(tq)| € Zm, where
0 <ty < oc. Define

t. = inft, subject tot >0 and |z(t)] £ Zp. (33)
Note that |z(0)] < |V|-|V~'z(0)| and by assumption and (31), then
|z(0)] <|V|Sé(xm) =T (xm) < Tm.

Hence, 0 < t. < tq4 and since z(t) is continuous we have |z(t)| < z,, for all 0 < ¢ < .. By (29) and (30) then
|u(t)| < d(zm), for all 0 < ¢t < .. Applying Theorem 3.3, i) b) and using (31), then |z(¢)| < T'(zm) < Tm,
for all 0 < ¢t < t.. Since z(t) is continuous, then there exists a positive real constant a > 0 such that
|z(t)| < o, for all 0 < ¢ < t.+ a, contradicting (33) and proving that |z(¢)| < z,, for all ¢ > 0.

Therefore, using (29) and (30) it follows that |u(t)| < d(zy,) for all ¢ > 0. Using Theorem 3.3, ii) a),
then, given a positive vector v € R}, a finite time ¢; exists so that

[V lz ()] < Sé(zm) +
for all ¢ > ¢1. Then,
()| < V[ V7 ()] < T(xm) + V],

where we have used (31). Therefore, using (29) and (30), it follows that |u(t)| < 6(T(zy,) + |V] ) for all
t > t1. Applying again Theorem 3.3, ii) a), we conclude that a positive time ¢y exists so that

V2 (t)] < S6(T(@m) +V[7) + 7,
for all t > t; + to. Defining T, (z) £ T(z) + |V |, the recursive use of this procedure yields

IV a(t)] < SOTE (zm)) + 7, (34)

for all ¢ > Zfill ti. Since Ty(zy,) = T(xy) + |V|v and T(z,,) < zp,, we may choose v small enough so
that

Ty (2m) < T, (35)

Note that, since v € R}, then [V|vy € R} ; and thus T, (z) = |T',(z)| > 0 for all z € R". Then, from (32)
and (35), it follows that

Tf(xm) < Ty (zm),



January 31, 2006 17:21 International Journal of Control mathtools'v1l6

10 Systematic Ultimate Bounds for Perturbed Systems

and applying 7T’, recursively yields

Clearly, the sequence Tf(mm) is nonincreasing. Being nonincreasing and lower bounded (by 0), Tf(mm)
must converge to some point b,. Note that

lim b, =b
'yi%l‘*' 7 ’

since lim,,_,o+ T, () = T(x). Then, given € € R}, for any ¢; € R} we can select v = y(e1) € R} so that
v < €/2 and b, < b+ €;. In addition, as

khﬁr{)lo Tf(mm) =b,

for any e; € R}, a positive integer N = N(e2) can be found so that
TH(2m) < by+e forallk>N.
Then, using (34), (30) and by < b+ €1, it follows that

V- a(0)] < STN (@) + 7

S S5(b+ €1 + 62) +’Y, (36)

for all ¢ > ng{l ti. By (30), 6(b) < 6(b+ €1 + €2) and hence given € € R}, we can select €1,e2 € R} so
that

So(b+ €1 +€2) < So(b) +¢/2. (37)
Adding €/2 to both sides of (37) and recalling that v = y(€1) is selected so that v < €/2, then
So(b+e1+€2)+v<So(b) +e
and from (36), it follows that
[V~ la(t)] < S3(b) + e,

for all ¢t > ZZ]\Q{I ti, and the proof of ii) a) concludes by setting ¢y = ng’l t;. To prove ii) b), note that
lz(t)| < |V|- |V 'z(t)| and using ii) a) yields

|z(8)] < [V]Sa(b) + [V]e.

The proof is concluded by recalling (31) and the fact that 7'(b) = b, which follows from 1i). O

Theorem 3.4 provides a simple ultimate bound expression and shows that the set {z € R" : |[V " lz| <
Sé(xm)} is an estimation of the region of attraction to the ultimate bound. The theorem relies on finding
a point x,, so that T'(z,,) < z,,. Although checking this condition analytically might be possible, this
cannot be ensured in all cases. Therefore, we provide the following numerical algorithm, and then analyze
its convergence.

Algorithm 1 Numerical Obtention of z,, Consider a map T": R" — R .

1. Choose a scalar ¢ > 0.
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2. Define the map T.(z) £ T(z) + cl,, and iterate it from z = 0.
THEOREM 3.5 Suppose that a map T : R* — R  satisfies (32).

a) If, choosing ¢ = 1 > 0, Algorithm 1 converges to a point E%, then T(i‘%) < z¥. Also, if 0 < ¢ < 1,

choosing ¢ = ¢ Algorithm 1 converges to :Efil, where Th, < T

b) If x,, exists such that T(xy,) < Tp and if ¢ > 0 is chosen small enough in Step 1 of Algorithm 1, then
the algorithm converges to a point T, satisfying limy_eo T*(Zpm) < limg_yeo T*(24,).

Proof a). Convergence of Algorithm 1 to a point zh implies that zh = Tw(i%) and by definition of T},

and the fact that ¢ > 0, then T(:i%) < T(:i%) + 41, = Y. Since ¢ < 9, we have

T¢(0) = T(O) + ¢1, < T(O) + 1, = Tw(ﬂ).

Since T' satisfies (32), applying T to the inequality above yields T'(T;(0)) < T(T(0)). Then, T'(T4(0)) +
$1, < T(Ty(0)) + 41, whence Tq%(O) < Ti((]). Repeating this procedure we can obtain

T} (0) < Tp;(0), for all k> 0. (38)

Also, 0 < Ty(0), whence T(0) < T(T(0)) and T(0) + 1, = Ty(0) < T(T4(0)) + ¢1, = T3(0). Repeating
this procedure we can obtain

T (0) < T;1(0), for all k > 0. (39)

From (39), the sequence TZ;(O) is nondecreasing and from (38) it is bounded above by the converging
sequence T{Z(O). Therefore, T(f((]) must converge to some point Z%,. From (38) it follows that %, < 7%.
Using (32) then T(z5,) < T(zh), whence Ty(zh) = T(&5) + ¢1, < T(iw) + 91, = Ty (). Hence,
0 = T¢(E?n) < Tw(:iw) = 7. This concludes the proof of a).

b). Since T(2,,) < Zym, then by Theorem 3.4 i) the limit b £ limy_, o, T*(1,,) exists and satisfies b < z,,.
This implies that b = T'(b) < T'(b) + ¢1,, = T,.(b) < Te(z), where the first inequality follows from ¢ > 0
and the second one from the facts that T satisfies (32) and b < z,,. Also, by choosing ¢ > 0 small enough,
we can guarantee that T.(z,,) < z,,. Applying T, iteratively we arrive to

b< TF(zy) <TF Yam) < 2.

Then, the sequence T%(z,,) is nonincreasing and lower bounded, which implies that it converges to some
point b, satisfying

b< b, < T (40)

Consider now the sequence T%(0). Notice that since 0 < b, and T, satisfies (32), then 0 < T.(0) < b, and
applying T, iteratively yields

TF1(0) < TF(0) < be.

This implies that 7¥(0) is nondecreasing and upper bounded by b, which shows that Algorithm 7 must
converge to some point Z,, satisfying

T < be. (41)

By a), then T(Z,,) < Z, and by assumption, T(z,;,) < ;. Thus, Theorem 3.4 i) proves that
limy, 00 T*(Z,,) and limy_s o0 T* (1) both exist. Also, (40) and (41) imply that Z,, < x,,. Since T satisfies
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(32), applying T iteratively yields T*(%,,) < T*(x,,), whence the result follows straightforwardly. O

Remark 1 If Algorithm 1 converges, then by Theorem 3.5 a) the resulting z,, satisfies T'(Z,,) < Zn, and
thus the hypotheses of Theorem 3.4 are satisfied. We emphasize that this holds irrespective of how large
or small the chosen scalar ¢ is (provided Algorithm 1 converges). On the other hand, the scalar ¢ may need
to be small enough to ensure the convergence of Algorithm 7. The use of different values of ¢ for which
Algorithm 1 converges yields different points z,,. Higher values of ¢ for which Algorithm I converges are
more desirable since they provide larger z,,, hence resulting in a larger region of attraction to the ultimate
bound. In some cases, iteration of the map T from different Z,, provided by Algorithm 7 may converge to
different points, corresponding to different ultimate bounds. In addition, if ¢ is small enough, then iteration
of the map T from the point Z,, provided by Algorithm 1 leads to the smallest ultimate bound that can
be obtained via application of Theorem 3.4.

Remark 2 Theorem 3.4, Algorithm I and Theorem 3.5 provide a systematic method to obtain ultimate
bounds for continuous-time linear systems with perturbations bounded componentwise by state-dependent
functions.

3.3 Application to Nonlinear Systems

Consider a nonlinear system
(t) = f(x(t), u(?), (42)

where £(0,0) =0 and A £ % 00) is Hurwitz. Rewrite system (42) as

(1) = Ax(t) + [ (z(t), u(?)) — Az (t)].
If we can find a continuous function ¢ : R — R’} ; so that
|f(z(t),u(t)) — Az(t)| < 6(z(t)), forallt >0,

and (30) is satisfied, then we can analyze the map given by (31) and expect to be able to use Theorem 3.4
to estimate an ultimate bound and a region of attraction. In Section 5.1 we illustrate this procedure with
an example.

4 Ultimate Bounds for Discrete-time Systems

In this section, we develop a systematic method to obtain ultimate bounds for perturbed discrete-time
systems which is based on a componentwise analysis of the system in modal coordinates. In this case,
the ultimate bound expressions can be obtained in a more straightforward manner, via a procedure that
is different from the one developed in the continuous-time case. In particular, the result for constant
perturbation bounds is not needed as an intermediate tool to obtain ultimate bounds for state-dependent
perturbation bounds. We therefore directly obtain ultimate bounds for this latter case in Section 4.1 where
we also develop the aforementioned systematic method. We then show how to apply this result to nonlinear
systems in Section 4.2.

4.1 State-dependent Perturbation Bounds

As we did for continuous-time systems in Section 3.2, we now provide ultimate bound expressions for
linear systems with state-dependent perturbation bounds that satisfy a monotonicity condition [see (45)
and (46) below] and then develop a corresponding systematic method for the discrete-time case.
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THEOREM 4.1 Consider the system
z(k+1) = Az (k) + u(k), (43)

where z(k),u(k) € R" and A € R™™™ has all its eigenvalues strictly inside the unit circle and Jordan
canonical form

A=V1AV. (44)
Suppose that
lu(k)| < 6(|lz(k)|), for allk >0, (45)
where 6 : R o — RY o is a continuous map verifying
1] < |2| = 6(|1]) < 0(|22]). (46)
Consider the map T': R} ( — RY  defined by
T(y) £ [Aly + [V a(V]y). (47)

Suppose that a point b satisfying b = T(b) ewxists. Let z,, € R" denote any point satisfying
limy 00 T*([V " 2p|) = b (note that Vb is one such point). If the initial condition x(0) satisfies
|V~1z(0)| < |V 1z, then for any e € R} there exists £ = £(e,zm) > 0, such that for all k > ¢

a) [V 1z(k)| <b+e
b) |z(k)| < |V|b+|V]e.

Proof Let z(k) = Vz(k) and substitute into (43) to obtain
2(k4+1) = Az(k) + V tu(k).
Taking magnitudes and using (45) yields
|2(k + DI < A< [2(k)] + [V o(IV2(k)])
< [A[-Jz(0)] + [VHI(V] - [2(R))D),
where in the last line we have used (46). Define the auxiliary system
y(k+1) = [Aly(k) + V150V y(k)) = T(y(k)). (48)
Note that by (46), (47), (5) and (6), T' satisfies

pl < lgl = T(Ipl) < T(q)); (49)

and also |z(k)| < y(k) for all £ > 0 whenever the initial condition y(0) satisfies |2(0)| < y(0). By as-
sumption, |2(0)] = [V 'x(0)| < |V 'z,,| and hence set the initial condition y(0) = |V ~!z,,|. Then, by
assumption, limy_, o, 7% (y(0)) = b. Thus, iteration of (48) converges to the point b = T'(b) = limy,_,. y(k).
Therefore, given any € € R}, there exists £ = {(e, z,,,) > 0 such that y(k) < b+e, for all £ > £. The proof of
a) then follows by recalling that |V 'z (k)| = |2(k)| < y(k). To prove b) note that |z(k)| < |V]|- |V tz(k)|
and use a). O
)

The hypotheses of Theorem 4.1 are weaker than those of its continuous-time counterpart (Theorem 3.4).
In Theorem 3.4, it is required that a point z,, exist so that T(z,,) < Z,,. As shown in Theorem 3.4 i),
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this assumption is sufficient for 7" to have a fixed point. However, in the discrete-time case, we need only
assume the latter, that is, that T" has a fixed point. To find such a point, we may iterate T' starting from
the origin, as the following theorem proves.

THEOREM 4.2 Let T : R} o — RY  be a c?nt_z'nuous_ map s?tisfyz'ng (49) and suppose that there exists b
satisfying b = T(b). Then, limy_,o, T*(0) = b, b = T'(b) and b < b.

Proof Since b = T(b), then b > 0. Therefore, using (49), we have b = T'(b) > T'(0) > 0 and applying T
iteratively yields b > T*(0) > T%71(0). Thus, the sequence T%(0) is nondecreasing and upper bounded by
b and hence it converges to some point b satisfying T'(b) = b and b < b. O

Remark 1 Theorems 4.1 and 4.2 provide a systematic method to obtain ultimate bounds for discrete-time
linear systems with perturbations bounded componentwise by a state-dependent function.

4.2 Application to Nonlinear Systems

Consider a nonlinear system
z(k +1) = f(z(k),u(k)), (50)

where f(0,0) =0 and A £ 2L has all its eigenvalues inside the unit circle. Rewrite system (50) as

z(k+1) = Az(k) + [f(z(k),u(k)) — Az(k)].
If we can find a continuous function 9 : Ri,o — R1,0 so that
|f(z(k),u(k)) — Az(k)| < d(|z(k)|), forall k>0,

and (46) is satisfied, then we can analyze the map given by (47) and expect to be able to use Theorem 4.1
to estimate an ultimate bound and a region of attraction. In Section 5.2 we illustrate this procedure with
an example.

5 Examples

To illustrate the proposed methodology, we next consider continuous- and discrete-time systems with
unknown disturbance signals. Application of the method to the study of quantization effects in sampled-
data systems can be found in Haimovich et al. (2006)

5.1 Continuous Time

The system

&= [_01 _110] z+ [ml  sinfan) +7(0)) (51)

(& / N /

e

A u(t)

represents the dynamics of a pendulum with friction, where = = [z 5]” and 7(t) represents a perturbation
torque that is bounded by |7(¢)| < 0.1. This system has been written as suggested in Section 3.3. The
matrix A is Hurwitz with Jordan canonical form A = V' AV, where

v [ 0-9949 —0.1005]’ A [—0.1010 0

~ |—0.1005 0.9949 0 —9.8990]| -
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The term u(t) in (51) can be bounded by

lu(t)] < é(z) £ [ZT(; 0.1] '

Note that ¢ satisfies (30). The map T, from (31), is T(z) = |V|Sé(z), where S £ ‘[Re(A)]_l‘ VL
Choosing ¢ = 0.5, Algorithm I converges to the point [0.6484 0.5297]7, from which iteration of

the map T converges to b = [0.1023 0.0205]7. Hence, Theorem 3.4 concludes that if |V ~!z(0)] <

56([0.6484 0.5297]") = [0.1477 0.0149]” then given any e € R?, a finite time ¢ exists so that for all

t>ty,
.101

Va()] < [8 0(1]0;] +e, and (52)
0.1023

01 < |y o0n) + 171 (53)

These bounds yield the parallelogram and the axis-aligned rectangle shown in Figure 1. We have also
checked that using ¢ = 107% in Algorithm I yields a point from which iteration of the map 7T also
converges to b = [0.1023 0.0205]7". The use of a higher value of ¢ in Algorithm 1 provides a larger region
of attraction to the ultimate bound.

We now compare the ultimate bounds obtained above with the results from Lyapunov analysis. Exten-
sion of a systematic Lyapunov analysis, such as the one described in the introduction, to this nonlinear
perturbation case is not straightforward. We tried analyzing this system along the lines in Khalil (2002,
Examples 9.2 and 9.5), using a quadratic function U(z) = 27 Pz, with P to be determined. We performed

this analysis bounding u(t) by |Ju(t)| < % + 0.1. Note at this point that the perturbation structure is
already lost, since the fact that the first component of u(t) is zero is not taken into account. On the other
hand, taking this structure into account makes the analysis case-dependent and difficult to systematically
generalize. We next proceed similarly to Khalil (2002, Examples 9.2 and 9.5), and bound the term |z;|?
by ad|z||, where ad is the maximum value of |z1]? on the level surface U(z) = d. Pursuing the analysis
in this way, we concluded that, for the values of the parameters in this example, such a method did not
yield useful information since the different constraints involved could not be satisfied.

Having found this procedure uninformative for this example, we proceed in a nonsystematic way by
employing the function U(z) used in the introductory example in Section 1 and analyzing the exact
possible values of U(z) (for all values of 7(¢)) on the level surfaces of U(z). Note that the matrix A in
(51) is the same as that in (3) and that the function U(z) used in the introductory example minimizes
the Lyapunov-based formula (4) for the 2-norm ultimate bound on the state in the case of a constant
perturbation bound. After performing this tedious numerical evaluation, we find that convergence of the
system’s trajectories to the set enclosed by the level surface U(xz) = 0.0378 (see Figure 1) is guaranteed.
For any z in this set, we have |z1]| < 0.1076 and |z2| < 0.1181. These bounds are more conservative than
the ones given in (53).

In an attempt to obtain a tighter bound on zo, we find, via trial and error, the Lyapunov function
Ui(z) = 22+ 522+ 179, which ensures convergence to the set enclosed by the level surface Uy (x) = 0.0205,
also shown in Figure 1. For any z in this set, we have |zo| < 0.0657, still larger than the bound given in
(53).

This example illustrates that the Lyapunov approach using quadratic functions may be more conser-
vative, and that finding an appropriate Lyapunov function may be a difficult task. In addition, if the
systematic approach of minimizing (4) is overly conservative, one is obliged to resort to the tedious and
complicated procedure of evaluating the time derivatives of the Lyapunov function along its level surfaces.
On the other hand, the approach we propose provides a systematic method to obtain ultimate bounds
that can be easily computer coded. Moreover, we have shown in this example that our approach may lead
to tighter bounds.
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0.15 T T
U(z) = 0.0378
0.1f
U (z) = 0.020

0.05[

|V—1z| <[0.1017,0.0103

Z[ <b

-0.1f

L L L L L
-0.1 -0.05 0 0.05 0.1 0.15

Figure 1. Different ultimate bounds in the pendulum system

5.2 Discrete Time

Eq. (54) represents the Euler discretization of a controlled inverted pendulum with a perturbation w(k)
that satisfies |w(k)| < 0.01 and where z = [11 z2]".

2k +1) = [_(1]'9 0(']1] (k)

0
! [0-1[sin<x1<k)) — a1 (k)] - w(k)] | (54

The system has been written as suggested in Section 4.2 and has the form z(k + 1) = Az(k) + u(k). The
term u(k) can be bounded by |u(k)| < d(|z(k)|), where the function ¢ : Ri,o — ]R?ho is given by

0
§(z) & | s
(=) [g—o + 0.01]

and can be easily shown to satisfy (46). The matrices V' and A in the Jordan canonical form of the matrix
A, A=V"TAV, are

V= 0.7071 —0.1104 A 09 0
~|—0.7071 0.9939 |’ 10 01"

The map T : Rﬁ—,o — Rﬁ_’o, defined as
T(y) £ [Aly+ [V Ha([V]y)

has a fixed point at b = [0.0177 0.0126]7. Also, z,,, = [5 5] satisfies limy_,oo T%(|]V"'2p,|) = b. Then,
Theorem 4.1 states that if [V "1z(0)] < [V ~'z,,|, then for any e € R" there exists £ > 0 such that for
all k > £, [V 1z(k)| < b+ e and |z(k)| < |[V]b+ |V]e. These bounds yield the parallelogram and the
axis-aligned rectangle, respectively, shown in Figure 2.

To compare with a Lyapunov approach, the perturbed system was analyzed using the quadratic function
U(z) £ 27 Px, where P is the solution to ATPA — P = —I. After analyzing the increment AU (z(k)) £
U(z(k 4+ 1)) — U(xz(k)) on the level surfaces of U, AU satisfied AU(z) > 0 at some point z for which
U(z) = 0.00147 and then, using the function U we cannot insure an ultimate bound smaller than this level
surface. This surface is shown in Figure 2. We stress that the exact value of the nonlinear function AU was
numerically analyzed, without bounding any term. If the Lyapunov analysis had been performed —as is
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usually done— by bounding some expressions (like sin(z) for instance), the resulting ultimate bound would
have been significantly more conservative. Note that in the case of higher order systems, the numerical
analysis of the exact value of the Lyapunov function increment is computationally intractable and thus
the usual approach of bounding terms is the only resort in this case.

U(z) = 0.00147

0.02} V71$| S b

™
8

-0.01

-0.02

[Z[ < Vb

-0.03 1

~0.04 L L L L L
-0.015 -0.01 -0.005 0 0.005 0.01 0.015

z1

Figure 2. Different ultimate bounds in the discretized inverted pendulum

In this example, the ultimate bound obtained with the suggested method cannot be said to be tighter
than the one obtained via Lyapunov analysis. However, one can combine the results obtained by both
methodologies and compute an ultimate bound given by the intersection of the parallelogram and the ellipse
shown in Figure 2. Moreover, for this example, the Lyapunov analysis shows global convergence to the
ultimate bound given by the ellipse. Thus, since our method guarantees convergence to the parallelogram
shown in Figure 2 from the set {z € R? : |V~ lz| < |[V~lz,,|} with z,, = [5 5]7, and this set contains
the ellipse shown in Figure 2, then global convergence to the ultimate bound given by the intersection
of the parallelogram and the ellipse is ensured. This example then illustrates how the strengths of both
methodologies can be combined to obtain tighter bounds and larger regions of attraction.

6 Conclusions

We have presented a systematic method to obtain ultimate bounds for both continuous- and discrete-
time systems. The method is based on a componentwise analysis of the system in modal coordinates and
thus exploits the system geometry as well as the perturbation structure without requiring calculation of a
Lyapunov function. We have developed the method for linear perturbed systems with componentwise state-
dependent perturbation bounds and then shown that the method may be applied to nonlinear systems by
treating nonlinear terms as perturbations. The resulting ultimate bounds are given as simple expressions in
terms of the solution of a fixed point problem which can be solved analytically or numerically. The method
also provides an estimation of the region of attraction to the ultimate bound. We have shown by means
of examples that the method proposed may offer a simple alternative to the classical Lyapunov-based
analysis and may sometimes yield tighter bounds. In addition, the strengths of both methodologies can be
combined to obtain even tighter bounds and/or larger regions of attraction.

Given the practical importance of obtaining tight ultimate bounds, future work should aim at deriving
conditions under which our proposed methodology is guaranteed to yield tighter bounds than those ob-
tained via quadratic Lyapunov functions. Having such conditions could greatly simplify the task of deriving
ultimate bounds by providing a means to decide, in advance, which method should be employed. Future
work should also extend the method by deriving conditions for the ultimate bounds to be guaranteed from
any initial condition (global ultimate bounds). Work along these lines, jointly with the application of the
method to quantized sampled-data control systems can be found in Haimovich et al. (2006).
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