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†CIFASIS–CONICET. Laboratorio de Sistemas Dinámicos FCEIA - UNR. Riobamba 245 bis - (2000) Rosario.

Abstract— This paper introduces a method
to achieve reltive error control in Quantized
State System (QSS) methods. Based on the
use of logarithmic quantization, the proposed
methodology solves the problem of quantum se-
lection.

Keywords— Quantization Based Integra-
tion, Continuous System Simulation.

I. INTRODUCTION

Numerical integration of ordinary differential equa-
tions (ODEs) is a topic of permanent research and
development. Based on classic methods like Eu-
ler, Runge–Kutta and Adams and impulsed with the
development of modern and fast computers, several
variable–step and implicit ODE solver methods were
introduced (Hairer et al., 1993; Hairer and Wanner,
1991; Cellier and Kofman, 2006).

Simultaneously, different software simulation tools
implementing those modern methods have been de-
veloped. Matlab/Simulink (Shampine and Reichelt,
1997) and Dymola (Elmqvist et al., 1995) can be men-
tioned among the most popular and efficient general
purpose ODE simulation packages.

In spite of the several differences between the men-
tioned ODE solvers, all of them share a property: they
are based on time discretization. This is, they give a
solution obtained from a difference equation system,
i.e. a discrete–time model.

A completely different approach started to develop
since the end of the 90’s, where time discretization is
replaced by state variables quantization. As a result,
the simulation models are not discrete time but dis-
crete event systems. The origin of this idea can be
found in the definition of Quantized Systems (Zeigler
et al., 2000).

This idea was then reformulated with the addition
of hysteresis –to avoid the appearance of infinitely fast
oscillations– and formalized as the Quantized State
Systems (QSS) method for ODE integration in (Kof-
man and Junco, 2001). This was followed by the defini-
tion of the second order QSS2 method (Kofman, 2002),
the third order QSS3 method (Kofman, 2006), a first
order Backward QSS method (BQSS) for stiff systems
(Migoni et al., 2007), and a first order Centered QSS
for marginally stable systems.

The QSS–methods show some important advantages
with respect to classic discrete time methods in the
integration of discontinuous ODEs (Kofman, 2004),
sparsity exploitation (Kofman, 2002), explicit integra-
tion of stiff and marginally stable systems (Migoni
et al., 2007), absolute stability, and the existence of
a global error bound (Cellier and Kofman, 2006).

One of the major drawbacks of the QSS methods is
the need of choosing a quantization parameter (called
quantum) for each state variable, as the efficience and
accuracy of the simulation depends strongly on this
choice. The problem is also related to the fact that the
methods intrinsically control the absolute error instead
of the relative error as classic variable step methods do.

This work shows that the use of time varying quan-
tization, proportional to the magnitude of each state
variable (i.e., logarithmic quantization), leads to an
intrinsic relative error control in the QSS methods.
Moreover, it will be shown that the relative error is
approximately proportional to the constant factor that
relates the quantum with the state magnitude. This
property will permit selecting directly the relative tol-
erance as a global property of the simulation (as it is
done in discrete time variable step methods).

The paper is organized as follows. After introduc-
ing some notation, Section II presents the principles of
quantization based integration and the QSS methods.
Then, Section III introduces the main result (i.e., the
relationship between logarithmic quantization and rel-
ative error control) and Section IV apply these results
to two simulation examples.

A. Notation and Preliminaries

In the sequel, |M | , {|mi,j |}, Re(M) , {Re(mi,j)}

and Im(M) , {Im(mi,j)} denote the elementwise
magnitude, real part and imaginary part, respectively,
of a (possibly complex) matrix or vector M . Also,
x ≤ y (x < y) denotes the set of componentwise
(strict) inequalities between the components of the real
vectors x and y, and similarly for x ≥ y (x > y). Ac-
cording to these definitions, it is easy to show that

|x + y| ≤ |x| + |y|, |M x| ≤ |M | · |x|, (1)

whenever x, y ∈ C
n and M ∈ C

m×n.



II. QUANTIZATION BASED
INTEGRATION

This section recalls the basis of Quantization Based
Integration (QBI) methods. After presenting a simple
example that shows the principles of QBI, the family
of QSS methods is formally introduced.

A. Introductory Example

Consider the second order system

ẋa1
(t) = xa2

(t)
ẋa2

(t) = −xa1
(t)

(2)

and the following approximation:

ẋ1(t) = floor(x2(t)) = q2(t)
ẋ2(t) = −floor(x1(t)) = −q1(t)

(3)

Consider also the initial condition x1(t0) =
4.5, x2(t0) = 0.5.

Although the last system is nonlinear and discon-
tinuous, the solution to the initial value problem can
be easily found. Notice that q1(t0) = 4 and q2(t0) = 0
and these values remain unchanged until x1 or x2 have
its integer value modified.

Then, we have ẋ1(t0) = 0 and ẋ2(t0) = −4 meaning
that x1 is constant and x2 decreases with a constant
slope equal to −4. Thus, after t1 = t0 + 0.5/4 = 0.125
units of time x2 reaches the value 0 and q2(t

+

1 ) becomes
−1 and then ẋ1(t

+

1 ) = 1.
The situation changes again when x2 reaches −1 at

time t2 = t1 + 1/4. In that moment, we have x1(t2) =
4.5 − 1/4 = 4.25 and ẋ1(t

+

2 ) = −2.
The next change now occurs when x1 reaches 4 at

time t3 = t2 + 0.25/2. Then, q1(t
+

3 ) = 3 and the slope
in x2 now becomes −3. This analysis then continues
in a similar way.

Figure 1 show the results of this simulation. These
results look in fact similar to the solution of the origi-
nal system of Eq.(2).
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Figure 1: Trajectories in System (3)

What we did in this example is to replace xi(t) by
qi(t) at the right hand side of the original equation.
Then, the resulting system could be exactly integrated
after a finite number of steps.

The steps were produced at times t0, t1, t2, . . . .
While in any classical integration method we could
find a difference equation of the the form x(tk+1) =
f(x(tk)) to express the evolution of the approximated
system, here this is no longer possible.

The steps in t1 and t2 involve changes in q2 while t3
corresponds to a change in q1. Evidently, each state
variable follows its own time steps and System (3) does
not behave like a discrete time system. However, this
behavior can be easily represented by a discrete event
system in terms of the DEVS formalism.

B. QSS Method

In the example introduced above, the states variables
were quantized with a floor function. This kind of
quantization will not work in general cases due to the
appearance of infinitely fast oscillations. The addition
of hysteresis to the quantization solves this problem
and leads to the QSS method (Kofman and Junco,
2001).

A uniform hysteretic quantization function relates
a continuous input trajectory xi(t) with a piecewise
constant output trajectory qi(t) that satisfies

qi(t) =

{

xi(t) if |qi(t
−) − xi(t)| = ∆Qi

qi(t
−) otherwise

(4)

and qi(t0) = x(t0). Thus, qi(t) only changes when it
differs from xi(t) in ±∆Qi. The magnitude ∆Qi is
called quantum.

Then, given a time invariant ODE

ẋa(t) = f(xa(t), u(t)), (5)

where xa(t) ∈ Rn is the state vector and u(t) ∈ Rm

is an input vector, which is a known piecewise con-
stant function, the QSS method (Kofman and Junco,
2001) simulates an approximate system, which is called
quantized state system (QSS):

ẋ(t) = f(q(t), u(t)). (6)

Here, q(t) is a vector of quantized variables which are
quantized versions of the state variables.

Each quantized variable qi(t) is related with the cor-
responding state variable xi(t) with a hysteretic quan-
tization function. Notice that instead of the time step
size, we have to choose the quantum ∆Qi for each state
variable.

Since q(t) and u(t) are piecewise constant, the left
hand side of (6) (the state derivative ẋ) is also piece-
wise constant and then the state x(t) is a piecewise
linear function of the time. These features allow solv-
ing Eq.(6) in a straightforward way, as we did in the
introductory example.



A systematic way of simulating Eq.(6) consists in
finding a DEVS model that mimics the behavior of
the quantized system. PowerDEVS (Pagliero et al.,
2003), is a DEVS simulation software with libraries
that implement the complete family of QSS methods.

C. QSS2 and QSS3 Methods

The second order QBI method uses first order quan-
tization. As it is shown in Figure 2, a first order
quantizer produces a piecewise linear output trajec-
tory. Each section of that trajectory starts with the
value and slope of the input and finishes when it differs
from the input in ∆Qi. A formal definition of a first
order quantization function can be found in (Kofman,
2002).

First Order Quantizer
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Figure 2: Trajectories of a first–order quantizer.

The QSS2 method then approximates a system like
(5) by (6) but now, the quantized variables qi(t) fol-
low piecewise linear trajectories and the state variables
xi(t) are piecewise parabolic functions of the time.

The QSS3 method extends the idea of the QSS2
method using second order quantization functions, so
that the quantized variable trajectories qi(t) are piece-
wise parabolic and the state trajectories xi are piece-
wise cubic.

The advantage of QSS2 and QSS3 is that they
permit using a small quantum –i.e., a small error
tolerance–without increasing considerably the number
of calculations. In QSS, the number of steps is in-
versely proportional with the quantum. In QSS2 it
is inversely proportional with the square root of the
quantum, and, in QSS3 the number of steps grows
with the inverse of the cubic root of the quantum.

D. BQSS and CQSS Method

The BQSS method is similar to QSS, but qi is always
chosen so that xi(t) goes to qi(t). It also uses a uniform
quantum and the quantized variable qi is restricted so
that it never differs from qi in more than ∆Qi. The

advantage of BQSS is that it permits simulating stiff
systems.

CQSS is a blend between BQSS and QSS, that takes
the value of qi equal to the mean of both methods. The
method –being appropriate for stiff systems– is also
F-stable, i.e., it conserves the stability properties even
on the imaginary axis. This feature makes it suitable
for the simulation of marginally stable systems (i.e.,
systems without or with very small damping).

E. Theoretical Properties of QBI Methods

The most important property of the QBI methods is
the existence of a global error bound. Given a LTI
system ẋa(t) = Axa(t) + Bu(t) where A is a Hurwitz
matrix with Jordan canonical form Λ = V −1AV , the
error in the QSS methods is always bounded by

|e(t)| ≤ |V ||Re(Λ)−1Λ||V −1|∆Q (7)

where ∆Q is the vector of quantum adopted at each
component (in the case of BQSS and CQSS there is
an additional term of error).

Inequality (7) holds for all t, for any input trajec-
tory and for any initial condition. Having a global
error bound that can be computed makes a difference
between QBI and classic discrete time methods.

III. RELATIVE ERROR CONTROL

In this section, we shall show that using logarithmic
quantization, i.e., making the quantum proportional to
the magnitude of the quantized variable, QSS methods
achieve an intrinsic relative error control.

In order to prove this property, we need first to study
the effects of delayed–affine perturbations in a generic
LTI system.

A. Ultimate Bound with Affine Perturbations

The following theorem, proven in (Kofman et al.,
2007), is an auxiliary result for the main result of this
section.

Theorem 1. Consider the system

ė(t) = Ae(t) + Hw(t) (8)

where e(t) ∈ Rn, w(t) ∈ Rk, H ∈ Rn×k and A ∈ Rn×n

is a Hurwitz matrix with Jordan canonical form Λ =
V −1AV . Suppose that |w(t)| ≤ wm for all 0 ≤ t ≤ τ
and define

S ,
∣

∣[Re(Λ)]−1 · V −1H
∣

∣ . (9)

Then, if |V −1e(0)| ≤ Swm, then for all 0 ≤ t ≤ τ ,

a) |V −1e(t)| ≤ Swm.

b) |e(t)| ≤ |V |Swm.

The next theorem estimates an ultimate bound for
a LTI system with perturbations bounded by an affine
delayed function of the state. Particularly, it shows
the invariance property of the ultimate bound set es-
timated by Theorem 3.1 of (Kofman et al., 2008).



Theorem 2. Consider the perturbed system

ė(t) = Ae(t) + Hw(t), (10)

where e(t) ∈ Rn, A ∈ Rn×n is a Hurwitz matrix with
Jordan canonical form Λ = V −1AV , H ∈ Rn×k and
the perturbation variable w(t) ∈ Rk satisfies the com-
ponentwise bound

|w(t)| ≤ Fθ(t) + w̄ for all t ≥ t0, (11)

with F ∈ R
k×n
+,0 , w̄ ∈ R

k
+,0, and

θ(t) , max
t0≤τ≤t

|e(τ)|, (12)

where the maximum is taken componentwise.

Define

R , |V |
∣

∣[Re(Λ)]−1V −1H
∣

∣ , (13)

suppose that1 ρ(RF ) < 1, and let

b , (I − RF )−1Rw̄. (14)

Assume also that θ(t) = 0, ∀t < t0 and e(t0) = 0, then,
it results that |e(t)| ≤ b, ∀t ≥ t0.

Proof. Take an arbitrary constant ε > 0.

Suppose for a contradiction that |e(t)| 6≤ b(1 + ε)
for some instant of time t with t0 < t < ∞ and define
tc as the first instant of time in which this situation
occurs:

tc , inf t, subject to t ≥ t0 and |e(t)| 6≤ b(1 + ε).
(15)

Then, we have |e(t)| ≤ b(1 + ε) for t ∈ [t0, tc). From
Eq.(12) it results that θ(t) ≤ b(1 + ε) for t ∈ [t0, tc)
and then, using Eq.(16), we obtain

|w(t)| ≤ Fb(1 + ε) + w̄ for all t ∈ [t0, tc). (16)

Taking into account that e(0) = 0 we can apply The-
orem 1 with vm = Fb(1 + ε) + w̄, which results in

|e(t)| ≤ |V |Svm = RFb(1 + ε) + Rw̄ = b + RFbε =

= b + (b − Rw̄)ε = b(1 + ε) − Rw̄ε

Using the fact that Rw̄ > 0, we finally get

|e(t)| < b(1 + ε) (17)

for t0 ≤ t < tc. The continuity of e(t) then contra-
dicts the assumption |e(t)| 6≤ b(1 + ε) at time tc and
concludes the proof.

1We call ρ(RF ) to the spectral radius of matrix RF , i.e.,
the maximum absolute value of its eigenvalues. The condition
ρ(RF ) < 1 means that the eigenvalues of RF are inside the unit
circle and it ensures that (I − RF ) is invertible

B. Error Bound with Logarithmic
Quantization

The basic idea of logarithmic quantization is to take
the value of the quantum ∆Qi proportional to xi.
Since xi changes continuously with the time, and we
do not want the quantum to change continuously, it
makes sense to take ∆Qi proportional to the value of
xi when it last reached an event condition.

Yet, if the quantum is chosen in that way, a problem
will occur when xi evolves near zero. In that case, ∆Qi

will result too small and an unnecesarily large number
of events would be produced. Thus, the correct choice
for the quantum must have the form:

∆Qi(t) = max(Ereli · |xi(tk)|, ∆Qmini
) (18)

where tk is the last event time in xi (i.e., tk ≤ t <
tk+1). As we shall see, Erel is related to the allowed
relative error and ∆Qmin is the minimum quantum.

Then, if we want to simulate a LTI system

ẋa(t) = A · xa(t) + B · u(t), (19)

defining ∆x(t) , q(t) − x(t), the QSS methods will
approximate it by

ẋ(t) = A · (x(t) + ∆x(t)) + B · u(t). (20)

Substracting (19) from (20), we obtain the equation
for the error e(t) = x(t) − xa(t):

ė(t) = A(e(t) + ∆x(t)) (21)

where |∆x(t)| ≤ ∆Q(t) for all t ≥ t0. Then, taking
one component of ∆xi we have

|∆xi(t)| ≤ ∆Qi(t) = max(Ereli · |xi(tk)|, ∆Qmini
)

≤ max(Ereli · |xai
(tk) + ei(tk)|, ∆Qmini

)

≤ Ereli |ei(tk)| + max(Ereli · |xai
(tk)|, ∆Qmini

)

for tk ≤ t < tk+1.
Taking into account that

|ei(tk)| ≤ θi(t) , max
t0≤τ≤t

|ei(τ)|

and also

|xai
(tk)| ≤ sup

t0≤τ≤t

(|xai
(τ)|) = xmaxi

we can apply Theorem 2 to system (21).
Taking H = A, Fi,i = Ereli , w̄i = max(Ereli ·

xmaxi
, ∆Qmini

), and assuming that ρ(RF ) < 1, we
conclude that

|e(t)| ≤ (I − RF )−1Rw̄. (22)

Calling Erel to the diagonal matrix with diagonal en-
tries Ereli , and ∆Qmin to the vector of minimum
quanta, we finally obtain

|e(t)| ≤ (I − RErel)
−1R max(Erel · |xmax|, ∆Qmin).

(23)



It becomes clear that, provided that xa reaches some
large value, the bound on |e(t)| is proportional to that
maximum value, i.e., the error bound is relative to the
maximum value of xa. In other words, we have an
intrinsic relative error control.

The stability of the numerical solution is ensured
by the condition ρ(R ·Erel) < 1, which will be always
satisfied for small values of Erel.

An interesting case occurs when Ereli = Erel for
i = 1, . . . , n, i.e., when we apply the same factor to all
the state variables. In that case we obtain the same
expression of (23), but now Erel is a scalar constant.

In most applications, we shall choose a very small
value for Erel. A typical value would be Erel = 0.01 or
even Erel = 0.001. In that case, we can approximate
Eq.(23) as:

|e(t)| ≤ R max(Erel · |xmax|, ∆Qmin). (24)

It is worth to remark that we have analyzed a global
error property, which is only valid for stable LTI sys-
tems. In general, global error properties cannot be
ensured for unstable systems as the error grows with
the advance of the time. In the case of marginally
stable systems, the error in QSS schemes is bounded
by a linear growing function of the time (Kofman and
Zeigler, 2005).

IV. EXAMPLES

The following examples were implemented and simu-
lated with PowerDEVS using a notebook PC running
under Windows XP with a 933MhZ Pentium III pro-
cessor.

A. Mass–Spring–Damper System

The LTI system

ẋ(t) = v(t)

v̇(t) = 1/m(−k · x(t) − b · v(t) + u0(t))
(25)

represents a mass–spring-damper system with an ex-
ternal force u0(t). In this experiment, we shall consider
that

u0(t) =

{

10 if 0 ≤ t ≤ 10

0 otherwise
(26)

Taking parameters k = m = b = 1, and selecting
Erel = 0.01, ∆Qmin = 0.001 in both state variables,
the simulation with the QSS2 method gives the result
shown in Figure 3.

Since the system is LTI, we can calculate the maxi-
mum error following the analysis of Section B.. In this
case, Eq.(23) results:

|e(t)| ≤

[

2.421 2.421
2.421 2.421

]

· max(0.01 ·

[

xmax

vmax

]

, ∆Qmin).

where xmax and vmax are the maximum absolute value
reached by x and v in Eq.(25).
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Figure 3: Spring–Mass System Trajectories

Then, it results that the error in each variable is
theoretically bounded by

|ei(t)| ≤ 0.02421 · (xmax + vmax) ≈ 0.396 (27)

Figure 4 corroborates this bound for x(t). It also
compares the absolute error |ex(t)| with the magni-
tude that bounds the quantum Erel|x(t)|, showing that
there is a close relationship between these quantities.
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Figure 4: Absolute error

If uniform quantization were used, the error in Fig-
ure 4 would have been bounded by a constant instead
of being bounded by a signal proportional to the actual
value of the state.

The number of steps performed by the simulation
was 115 and 156 in x and v, respectively. A similar
number of steps using QSS2 with uniform quantization
can be obtained selecting ∆Q = 0.01. However, the
simulation with this quantum provokes an important
realtive error when the trajectories cross near zero.

Moreover, if we increase the force u0(t) by a factor
of 100, the simulation with logarithmic quantization
using the same settings than before performs almost
the same number of steps (there are only 50 aditional



steps, i.e., a 18% increase). The simulation with uni-
form quantization, however, multiplies by 10 the num-
ber of steps (i.e., a 1000% increase).

In other words, the computational costs using loga-
rithmic quantization is almost independent of the mag-
nitude of the signals, while using uniform quantization,
the costs are highly dependent on these magnitudes.

B. 80th order marginally stable stiff nonlinear
system

The following system of equations represents a lumped
model of a lossless LC transmission line where L =
C = 1, with a nonlinear load at the end:

φ̇1 = u0(t) − u1(t); u̇1 = φ1(t) − φ2(t)

...

φ̇j = uj−1(t) − uj(t); u̇j = φj(t) − φj+1(t)

...

φ̇n = un−1(t) − un(t); u̇n = φn(t) − g(un(t))

(28)

We consider an input pulse entering the line, u0, given
by Eq.(26), and a nonlinear load with a law g(un(t)) =
(10000 · un)3. We also set null initial conditions ui =
φi = 0.

We consider 40 LC sections (i.e., n = 40), which re-
sults in a 80th order system. The linearization around
the origin (ui = φi = 0), shows that the system is
marginally stable (the linearized model does not have
any damping term). Also, the system is stiff (the non-
linear load adds a fast mode when un grows).

We decided to simulate the system of Eq.(28) using
the F–stable CQSS method with logarithmic quanti-
zation with Erel = 0.01 and ∆Qmin = 0.0001 in all
the state variables.

To obtain the first 100 seconds of simulated time,
CQSS needed about 47 seconds. Figure 5 shows the
voltage at the 35th section of the line (i.e., near the
load end).
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Figure 5: CQSS simulation of System (28)

In order to analyze the accuracy of the results, we
simulated the system with Matlab’s ode15s method
(ode15s was the best Matlab algorithm for this ex-
ample) using a very small error tolerance (we set the
relative and absolute error to 1 × 10−12). We found
that the results obtained with CQSS are very similar
to those obtained with ode15s, and they cannot be
distinguished with the naked eye.

Increasing the amplitude of the input pulse by a
factor of 100, the simulation time grows to 86 seconds.
Increasing it again by a factor of 100 (i.e., selecting
u(t) = 100000) the simulation time becomes 125 sec-
onds.

Using uniform quantization, in order to get a sim-
ilar accuracy, we need to select ∆Q = 0.01 in all the
state variables except for the one corresponding to u39,
where the signal is too small and an appropriate value
is ∆Q = 0.0001. Although with this choice we get
faster results (about 18 seconds), whenever we increase
the input amplitude by a factor of 100, the simulation
time also increases about this factor.

This analysis shows that logarithmic quantization
can be used with any QBI method and it works provid-
ing a selected accuracy irrespective of the signal am-
plitudes (which are usually unknown before the simu-
lation is performed).

On the other hand, uniform quantization depends
strongly on the system and its input signals and initial
conditions. In many cases, if we do not know anything
about the system trajectories, it is almost impossible
to select an appropriate uniform quantum.

V. CONCLUSIONS

We introduced a modifiction to QSS methods, where
the quantum grows and decreases proportional to the
magnitude of the corresponding state variable. We
showed that this strategy produces an intrinsic relative
error control, in contrast to the absolute error control
associated to the use of uniform quantization.

The main advantage of the proposed methodology
is that a user can select directly the relative tolerance
of a simulation without a prior knowledge about the
system trajectories. This idea makes QSS methods
more robust and much easier to use, without sacrifying
accuracy or computational efficience.

REFERENCES

Cellier, F. and E. Kofman, Continuous System Simu-
lation, Springer, New York (2006).

Elmqvist, H., D. Brueck, and M. Otter. Dymola
User’s Manual. Dynasim AB, Research Park
Ideon, Lund, Sweden (1995).

Hairer, E., S. Norsett, and G. Wanner, Solving Or-
dinary Differential Equations I. Nonstiff Problems,
Springer, 2nd edition (1993).



Hairer, E. and G. Wanner, Solving Ordinary Differen-
tial Equations II. Stiff and Differential–Algebraic
Problems, Springer, 1st edition (1991).

Kofman, E., “A Second Order Approximation for
DEVS Simulation of Continuous Systems,” Sim-
ulation, 78(2), 76–89 (2002).

Kofman, E., “Discrete Event Simulation of Hybrid
Systems,” SIAM Journal on Scientific Computing,
25(5), 1771–1797 (2004).

Kofman, E., “A Third Order Discrete Event Simula-
tion Method for Continuous System Simulation,”
Latin American Applied Research, 36(2), 101–108
(2006).

Kofman, E., H. Haimovich, and M. Seron, “A sys-
tematic method to obtain ultimate bounds for per-
turbed systems,” International Journal of Control,
80(2), 167–178 (2007).

Kofman, E. and S. Junco, “Quantized State Systems.
A DEVS Approach for Continuous System Simula-
tion,” Transactions of SCS, 18(3), 123–132 (2001).

Kofman, E., M. Seron, and H. Haimovich, “Control
Design with Guaranteed Ultimate Bound for Per-
turbed Systems,” Automatica, 44(7), 1815–1821
(2008).

Kofman, E. and B. Zeigler, “DEVS Simulation
of Marginally Stable Systems,”Proceedings of
IMACS’05, Paris, France (2005).

Migoni, G., E. Kofman, and F. Cellier, “Integración
por Cuantificación de Sistemas Stiff,” Revista
Iberoam. de Autom. e Inf. Industrial, 4(3), 97–
106 (2007).

Pagliero, E., M. Lapadula, and E. Kofman, “Pow-
erDEVS. Una Herramienta Integrada de Sim-
ulación por Eventos Discretos,” Proceedings of
RPIC’03,, San Nicolas, Argentina 1, 316–321
(2003).

Shampine, L. and M. Reichelt, “The MATLAB ODE
Suite,” SIAM Journal on Scientific Computing,
18(1), 1–22 (1997).

Zeigler, B., T. Kim, and H. Praehofer, Theory of Mod-
eling and Simulation. Second edition, Academic
Press, New York (2000).


