
Linearly Implicit Quantization–Based Integration

Methods for Stiff Ordinary Differential Equations.

Gustavo Migonia,b, Mario Bortolottoa,b, Ernesto Kofmana,b,∗, François E.
Cellierc

aDepartamento de Control. FCEIA. Universidad Nacional de Rosario.
Riobamba 245 bis, (2000) Rosario, Argentina

bCIFASIS – CONICET. Argentina
cDepartment of Computer Science, ETH Zurich. Switzerland

Abstract

In this paper, new integration methods for stiff ordinary differential equa-
tions (ODEs) are developed. Following the idea of quantization–based inte-
gration (QBI), i.e., replacing the time discretization by state quantization,
the proposed algorithms generalize the idea of linearly implicit algorithms.
Also, the implementation of the new algorithms in a DEVS simulation tool
is discussed. The efficiency of these new methods is verified by comparing
their performance in the simulation of two benchmark problems with that
of other numerical stiff ODE solvers. In particular, the advantages of these
new algorithms for the simulation of electronic circuits are demonstrated.

Keywords: Ordinary differential equation, Stiff systems, State
quantization, Quantized state systems, PowerDEVS

1. Introduction.

The digital simulation of dynamic systems is an area of ongoing devel-
opment both in theory and applications. On the one hand, the significant
developments in computer technology (both hardware and software) in recent
decades gave rise to the profusion of a large number of numerical methods

∗Corresponding author
Email addresses: migonig@fceia.unr.edu.ar (Gustavo Migoni),

mariob@fceia.unr.edu.ar (Mario Bortolotto), kofman@fceia.unr.edu.ar (Ernesto
Kofman), fcellier@inf.ethz.ch (François E. Cellier)

Preprint submitted to Simulation Modelling Practice and Theory March 14, 2013

for solving ordinary differential equations (ODEs), as modern computing en-
vironments allow ever more complex models to be simulated efficiently and
effectively [4, 7, 8, 20]. On the other hand, the increasing complexity of
models that describe modern engineering systems present new challenges for
these numerical algorithms.

In this paper, we shall discuss problems related to the efficient simulation
of stiff and discontinuous systems.

Many dynamical systems of practical relevance, both in science and en-
gineering, are stiff. That is, they have Jacobian matrices with eigenvalues,
the real parts of which are widely separated along the negative real axis of
the complex plane.

Integration of these systems using traditional numerical methods based on
time discretization requires the use of implicit algorithms, because all explicit
methods must necessarily restrict the integration step to ensure numerical
stability.

The reason is that the numerical stability domains of all explicit numerical
ODE solvers invariably bend into the left–half complex λ · h plane [4], and
algorithms with stability domains looping in the left–half plane force small
step sizes, h, on the numerical ODE solver, in order to capture all eigenvalues,
λi, of a stiff system inside the numerically stable region. The only way
to avoid that the integration step size be limited by numerical stability is
using algorithms, the stability domains of which bend into right–half complex
plane, a characteristic that can be observed in some, but not all, implicit ODE
solvers. Such solvers are referred to as stiff ODE solvers.

In return, implicit methods have higher computational cost than explicit
ones, because they call for iterative algorithms in each step to calculate the
next value. This is unacceptable in real–time applications, since it is im-
possible to predict beforehand, how many (Newton) iterations it will take
to converge to an acceptably accurate solution, i.e., it cannot be known in
advance, how much real time each simulation step will consume.

A totally different kind of ODE solvers can be formulated by replacing the
time discretization by state quantization. This idea led to the quantization
based integration (QBI) methods that approximate the differential equations
by discrete event systems in terms of the DEVS formalism [22].

Based on this idea, originally proposed by Zeigler [21, 23], the first gen-
eral purpose QBI solver developed was QSS1 (Quantized State Systems)
[13], which performs a first–order approximation. Based on similar prin-
ciples, second–order (QSS2) [9] and third–order (QSS3) [11] methods were

2

also developed that offer better accuracy without increasing the number of
calculations significantly.

Due to their asynchronous nature, QSS methods show important ad-
vantages when simulating discontinuous ODEs [10], and they exhibit nice
stability and error bound properties.

QSS methods were later extended to deal with stiff systems. A first–
order accurate method, called Backward QSS (BQSS) was proposed in [17].
BQSS, in spite of its backward formulation, does not call for iterations, and
the method preserves most of the advantages of the explicit QSS solvers.

While BQSS could not be extended to higher order approximations, it
inspired the formulation of a new family of methods that were introduced in
[16], with algorithms of orders 1 and 2. This family, called Linearly Implicit
QSS (LIQSS), combines the principles of QSS methods with those of linearly
implicit classic algorithms [4].

In this article, we reformulate the definition of LIQSS methods given in
[16], extending them to a generic N–th order of accuracy and providing a
general algorithm for its computer coding. We also study the main stability
and error bound properties of this new family of solvers.

We shall show that these algorithms are very efficient for the simulation
of some classes of systems that are simultaneously stiff and discontinuous.

The paper is organized as follows. After an introduction to the QSS family
of solvers provided in Section 2, the LIQSS methods are presented and defined
in Section 3. Section 4 then analyzes the theoretical properties of these
methods, and Section 5 discusses two simulation examples and compares
the results obtained by LIQSS against those found using classic algorithms.
Finally, Section 6 concludes the article.

2. Quantization Based Integration

In this section, we present the family of Quantized State System (QSS)
methods. We first introduce the QSS methods of orders 1 to 3. Since pa-
pers detailing these methods have been previously published [9, 11, 13], we
shall keep the discussion of these methods short and limit it to those aspects
that are necessary for the understanding of the remainder of this article. We
then introduce the LIQSS methods of orders 1 and 2 for stiff systems. A
preliminary paper describing these methods had also been previously pub-
lished [16]; however, the methods have evolved since the publication of that

3

article. They have become more efficient and are now capable of simulating
additional classes of stiff simulation models.

2.1. First–Order Quantized State Systems Method (QSS1).

2.1.1. QSS1 Definition

Given the system:
ẋa(t) = f(xa(t), t) (1)

with analytical solution xa(t), the QSS1 approximates it by

ẋ(t) = f(q(t), t) (2)

Here, q is the quantized state vector. Its entries are componentwise related
with those of the state vector x by the following hysteretic quantization func-
tion:

qj(t) =

{
xj(t) if |xj(t)− qj(t

−)| ≥ ∆Qj

qj(t
−) otherwise

(3)

where ∆Qj is called quantum.
It can be seen easily that qj(t) follows a piecewise constant trajectory that

only changes its value when the difference between qj(t) and xj(t) is equal
to the quantum. After each change in the quantized variable, it results that
qj(t) = xj(t).

2.1.2. QSS1 and Stiff Systems

The following examples illustrate the behavior of QSS1 and its poor per-
formance when simulating a stiff system.

Given the system

ẋa1(t) = 0.01 xa2(t)

ẋa2(t) = −100 xa1(t)− 100 xa2(t) + 2020
(4)

with eigenvalues λ1 ≈ −0.01 and λ2 ≈ −99.99. Consequently, the system is
stiff.

The QSS method approximates it by

ẋ1(t) = 0.01 q2(t)

ẋ2(t) = −100 q1(t)− 100 q2(t) + 2020
(5)

Considering initial conditions x1(0) = 0 and x2(0) = 20 together with
the quanta ∆Q1 = ∆Q2 = 1, the QSS numerical ODE solver performs the
following steps:

4

• At t = 0, we set q1(0) = 0 and q2(0) = 20. Then, ẋ1(0) = 0.2 and
ẋ2(0) = 20. This situation remains unchanged until |qi−xi| = ∆Qi = 1.

• The next change in q1 is thus scheduled at t = 1/0.2 = 5, whereas the
next change in q2 is scheduled at t = 1/20 = 0.05.

• Hence a new step is performed at t = 0.05. After this step, it results
that q1(0.05) = 0, q2(0.05) = 21, x1(0.05) = 0.01, x2(0.05) = 21. The
derivatives are ẋ1(0.05) = 0.21 and ẋ2(0.05) = −80.

• The next change in q1 is rescheduled to occur at 0.05+(1−0.01)/0.21 =
4.764, whereas the next change in q2 is scheduled at 0.05 + 1/80 =
0.0625. Hence, the next step is performed at t = 0.0625.

• At t = 0.0625, it results that q1(0.0625) = 0, q2(0.0625) = x2(0.0625) =
20, x1(0.0625) ≈ 0.0126, and the derivatives coincide with those found
at time t = 0.

• This behavior is cyclicly repeated until a change in q1 occurs. That
change occurs at t ≈ 4.95, after 158 changes in q2 oscillating back and
forth between 20 and 21.

• The simulation continues in the same way.

Figure 1 shows the evolution of q1(t) and q2(t) across 500 units of simu-
lated time.

It can be seen that fast oscillations occur in q2 that cause a total of
15,995 transitions in this variable, whereas q1 undergoes only 21 changes.
Ultimately, more than 16,000 steps are needed to complete the simulation
(comparable to the 25,000 steps performed by the forward Euler method to
achieve a stable solution).

Although the results are qualitatively correct, the QSS method is unable
to integrate the system of Eq.(4) efficiently.

2.2. Backward QSS Method (BQSS).

The BQSS method [17] attempts to prevent the appearance of fast oscil-
lations observed in QSS. The main idea behind the BQSS method is inspired
by the classic implicit methods that evaluate the state derivatives at future
instants of time (which requires iteration to solve implicit equations). How-
ever, in BQSS no iterations are performed.

5

0 50 100 150 200 250 300 350 400 450 500
−5

0

5

10

15

20

25

T ime [sec]

q 1
(t
),
q 2
(t
)

q1(t)

q2(t)

Figure 1: QSS solution of the stiff system of Eq.(4).

Like in QSS1, the quantized states qj follow piecewise constant trajecto-
ries. Also, the state derivatives ẋj are computed depending on the quantized
states, as Eq.(2) shows.

In order to evaluate the state derivatives at future values of the state, each
quantized state variable in BQSS contains a future value of the corresponding
state variable. This is, qj is selected so that xj goes towards it.

Thus, whenever xj reaches qj , a new step is performed selecting qj(t) =
xj(t)±∆Qj according to the sign of ẋj .

In other words, if during an event ẋj > 0, the new quantized state value
is set to qj = xj+∆Qj . Otherwise if ẋj < 0, it takes the value qj = xj−∆Qj .
In either case, the subsequent change in qj is scheduled for the instant when
xj reaches qj.

It could happen that, at a certain point, taking qj = xj +∆Qj provokes
that ẋj < 0 and taking qj = xj −∆Qj leads to ẋj > 0. Here, the mean value
theorem ensures that qj can adopt a value q̃j near xj at which the condition
ẋj = 0 is met.

In this case, the BQSS method does not actually search the value qj = q̃j ,
but it keeps xj constant as if its time derivative ẋj were zero.

With this idea, the introductory example of Eq.(4) can be simulated in

6

only 43 steps using the same quantum that was previously employed in the
simulation using QSS.

A precise specification of the BQSS method, its implementation, theoret-
ical properties, and main features are discussed in [15, 17].

The main limitation of BQSS is that it performs a first–order approxi-
mation only. Thus, we cannot obtain accurate results without accepting a
significantly increased number of steps.

Higher–order QSS approximations can be obtained from QSS1, as we
shall show below, whereas higher–order BQSS methods can unfortunately
not be obtained [15].

2.3. Linearly Implicit QSS Methods

In BQSS, we choose qj so that xj evolves towards qj . When this is not
possible, we know that there must exist a point q̃j near xj , for which ẋj = 0.
So, we enforce that condition without actually calculating q̃j .

We know that if we set qj = q̃j , then ẋj = fj(q,u) = 0. However, as we
do not calculate q̃j , there is no way of computing higher–order derivatives
of xj . Consequently, we cannot obtain higher–order approximations. This is
the reason why higher–order BQSS methods cannot be obtained.

In order to overcome this problem, the LIQSS1 method was defined in
[16], where the value of q̃j is approximated in a linearly implicit way.

In order to illustrate how LIQSS1 works, we shall simulate the system
of Eq.(4) step by step from the same initial conditions and using the same
quantum as before.

• At t = 0, we can choose either q2 = 19 or q2 = 21 according to the sign
of ẋ2(t). In both cases, ẋ1(0) > 0 so the future quantized value of x1

will be q1(0) = 1.

• If we choose q2(0) = 21, it results that ẋ2(0) = −180 < 0, and conse-
quently, x2 does not evolve towards q2. On the other hand, choosing
q2(0) = 19 implies that ẋ2(0) = 20 > 0, and once again, x2 does not
evolve towards q2.

Hence it is not possible to choose q2 so that x2 moves towards q2.

However, the fact that the sign of ẋ2 differs for q2 = 19 and q2 = 21
implies that there must exist a point, q̃2, in between those two values,
for which ẋ2 = 0.

7

The LIQSS1 algorithm calculates the value for q̃2(0) by solving a linear
equation:

ẋ2(0) = −100q1(0)− 100q̃2(0) + 2020 = 0

from which we obtain

q̃2(0) = 20.2− q1(0) = 19.2

• Then, the state derivatives obtained for t = 0 are ẋ1(0) = 0.192 and
ẋ2(0) = 0.

• The next change in q1 is scheduled at t = 1/0.192 ≈ 5.2083, whereas
the next change in q2 is scheduled at t = ∞.

• The next step takes place at t = 5.2083, i.e., when x1 reaches q1.

The calculations continue in the same way. Figure 2 shows the evolution
of q1(t) and q2(t) across 500 units of simulated time.

It can be seen that, using this method, no fast oscillations are present.
During this simulation, q1 changes 21 times, and q2 changes 25 times, result-
ing in 46 state changes or 46 simulation steps, which constitutes a decent
result for a stiff system.

0 50 100 150 200 250 300 350 400 450 500
−5

0

5

10

15

20

25

T ime [sec]

q 1
(t
),
x
1
(t
),
q 2
(t
),
x
2
(t
)

q1

q2

x1

x2

Figure 2: LIQSS solution of the stiff system of Eq.(4). Variables xi and qi are the states
and quantized states of the numerical solution.

8

2.4. Higher–Order QSS and LIQSS Methods

Based on QSS1, higher–order methods where developed. The algorithms
of QSS2 [9] and QSS3 [11], performing second– and third–order approxima-
tions, are outlined below.

2.4.1. Second– and Third–Order Quantized State Methods (QSS2/3).

The QSS2 method is based on the same principles as QSS1, but it replaces
the zero–order quantization function of Eq.(3) by a first–order quantization
function.

The input–output behavior of a first–order quantization function is shown
in Fig.3.

T ime

∆Qj

xj

qj

x
j
(t
),
q j
(t
)

Figure 3: State and quantized variable in a first–order quantization function.

The output trajectory is piecewise linear, and each segment starts with
a value and slope equal to those of the input. When the input and output
trajectories differ by ∆Qj , a new output segment begins.

The definition of the QSS2 method is identical to that of QSS1. That is,
QSS2 approximates Eq.(1) by Eq.(2), except for using first–order quantiza-
tion to relate xj and qj.

9

The third–order accurate QSS3 method follows the same idea but uses
second–order quantization functions that compute piecewise parabolic quan-
tized state trajectories.

QSS2 and even more so QSS3 are efficient for the simulation of discontin-
uous non–stiff ODEs. However, neither of these solvers can deal efficiently
with stiff systems. Both solvers lead to high–frequency oscillations when
confronted with stiff systems, just as QSS1 does.

2.4.2. Second–Order LIQSS Method

The second–order accurate linearly implicit QSS method (LIQSS2) com-
bines the ideas of QSS2 and LIQSS1.

Like in QSS2, the trajectories of the quantized variables are piecewise
linear instead of piecewise constant. We aspire that the state and quantized
trajectories have the same slope at the moment of change.

In order to avoid oscillations in LIQSS1, we choose qj so that xj evolves
towards it. This condition is equivalent to

(qj − xj) · ẋj ≥ 0

and it prevents oscillations in the derivative ẋj around 0.
In LIQSS2, we choose qj to avoid changes in the sign of the second deriva-

tive ẍj . This translates to the following condition:

(qj − xj) · ẍj ≥ 0

That is, when the second derivative ẍj is positive, we choose a piecewise linear
quantized trajectory from above xj . Otherwise, we choose the trajectory from
below.

Similarly to LIQSS1, when the upper trajectory results in a negative value
for ẍj and the lower trajectory results in a positive value for ẍj , we know that
there exists an intermediate trajectory, for which ẍj = 0. Thus, we search
for that trajectory in a linearly implicit way.

The simulation of the system of Eq.(4) from the same initial conditions
(x1(0) = 0 and x2(0) = 20) using a quantum 10 times smaller than before
(∆Q1 = ∆Q1 = 0.1) with LIQSS2 takes a total of 40 steps.

Had we used LIQSS1 or BQSS with a quantum of 0.1, the entire simu-
lation would have undergone at least 200 state transitions in each variable,
since the two trajectories evolve from 20 to 0 and from 0 to 20, respectively.
The much smaller number of steps encountered in the LIQSS2 simulation
was achievable because LIQSS2 is a second–order accurate algorithm.

10

2.5. QSS Implementation

Although QSS methods can be coded as stand alone solvers, the simplest
way of implementing them is by means of the DEVS formalism.

In a DEVS implementation, an n–th order system is split into n static
functions and n quantized integrators.

The j–th static function computes a piecewise constant trajectory ẋj(t)
from the piecewise constant trajectories of the quantized states qi according
to ẋj = fj(q, t). These trajectories are represented by sequences of events,
according to the DEVS formalism.

Similarly, the j–th quantized integrator integrates the piecewise constant
trajectory ẋj calculated by the corresponding static function and computes
the piecewise constant trajectory of qj .

The atomic DEVS models for static functions and quantized integrators
are quite simple and have been specified in [4, 11]. Coupling these atomic
DEVS models, we obtain a new model that can be used to exactly simulate
the behavior of the QSS1 approximation of the original ODE.

Higher–order QSS methods can also be implemented in the same way. To
this end, the events of quantized integrators and static functions take vector
values representing the coefficients of the corresponding piecewise polynomial
segments.

The whole family of QSS methods, including the methods introduced
in the next section, were implemented in PowerDEVS [2], a DEVS–based
simulation platform specially designed for and adapted to simulating hybrid
systems based on QSS methods.

In addition, the explicit QSS methods of orders 1 to 3 were also imple-
mented in Modelica [1] and in Open Source Physics, a Java–based simulation
tool [6], and implementations of the first–order QSS methods can also be
found in CD++ [5] and VLE [18].

3. N–th Order LIQSS Methods

This section reformulates and extends the methods of LIQSS, originally
defined in [16]. We first explain the basic idea of an LIQSS method of order
N . Subsequently, we provide a formal definition. Then after discussing the
differences between the new and the previously published formulations of
LIQSS, we present an implementation algorithm for the methods. Finally,
we briefly explain how LIQSS algorithms can be implemented using a DEVS
simulation engine.

11

3.1. Basic Idea

LIQSS1 selects the value of qj = xj ± ∆Qj so that xj approaches qj .
Whenever qj reaches xj , a new segment of qj starts. This implies that (qj −
xj) · ẋj > 0.

When this condition cannot be met, the mean value theorem ensures that
there exists a value q̃j near xj for which the time derivative of the state ẋj(t)
equals zero.

In this case using a linear approximation, the algorithm estimates the
value q̃j(t) for which ẋj(t) = 0.

In a N–th order method, xj and qj follow piecewise polynomial trajec-
tories of orders N and N − 1, respectively. The idea that xj goes towards
qj (assuming that both trajectories start out with parallel sections) leads to
the condition:

(qj(t)− xj(t)) ·
dNxj(t)

dtN
= (qj(t)− xj(t)) · x

(N)
j (t) > 0

Figure 4 illustrates this idea for the third–order case.

qj
xj

T ime[sec]

x
j
(t
),
q j
(t
)

Figure 4: State and quantized trajectories in LIQSS3 method.

Like in LIQSS1 when the condition (qj(t)− xj(t)) · x
(N)
j (t) > 0 cannot be

met, the algorithm estimates the value q̃j(t) for which x
(N)
j (t) = 0.

12

Actually in LIQSS1, the condition (qj − xj) · ẋj > 0 is not verified using
the actual value of ẋj , as this would imply performing an extra function
evaluation. Instead, we make use of a linear approximation of the j–th
component of the ODE:

˙̂xj(t) = Ajjx̂j(t) + vj(t)

where x̂j(t) is the approximate state, Ajj is the j–th diagonal entry of
the Jacobian matrix and vj(t) is a term that approximates the expression
fj(x̂, t)− Ajjx̂j(t).

This is the same linear approximation that we use to compute q̃j(t).
Similarly in LIQSS N, we estimate the N–th derivative of the state us-

ing successive differentiations of the previous linear approximation, and we
compute q̃j from that expression.

3.2. Formal Definition

Given the ODE of Eq.(1), the N–th order accurate LIQSS N method
approximates it by the quantized state system

ẋ(t) = f(q(t), t) (6)

where each component qj of q is represented by the following piecewise poly-
nomial function

qj(t) = q
[0]
j (k) + q

[1]
j (k)(t− tkj) + · · ·+ q

[N−1]
j (k)(t− tkj)

N−1

=

N−1∑

i=0

q
[i]
j (k)(t− tkj)

i (7)

for tkj ≤ t ≤ tk+1
j .

Here q
[i]
j (k) is the i–th coefficient of the polynomial at the k–th instant

of change tkj .

Let x
(i)
j (t)− be the i–th left time derivative1 of xj(t) and let x̂

(N)
j (q̂j , t

k
j)

be an estimate of the N–th time derivative of xj at time tkj subject to qj(t) =

1The i-th time derivative of xj(t) is obtained by differentiation of the j–th component
of Eq.(6) exploiting the fact that the components of q(t) are sections of polynomials.

13

q̂j(t). Then the coefficients q
[i]
j (k) can be written as:

q
[0]
j (k) ,

xj(t
k
j) + ∆Qj if x̂

(N)
j (qj, t

k
j) > 0 ∧ x̂

(N)
j (q

j
, tkj) > 0

xj(t
k
j)−∆Qj if x̂

(N)
j (qj, t

k
j) < 0 ∧ x̂

(N)
j (q

j
, tkj) < 0

q̃
[0]
j (k) otherwise

(8)

q
[i]
j (k) (i = 1...N − 1) ,

x
(i)
j (tkj)

−

i!
if q

[0]
j (k) 6= q̃

[0]
j (k)

q̃
[i]
j (k) otherwise

(9)

where qj(t
k
j) = xj(t

k
j) + ∆Qj and q

j
(tkj) = xj(t

k
j)−∆Qj .

The estimate x̂
(N)
j and the values q̃

[i]
j (k) are obtained from a linear approx-

imation of the ODE of Eq. (6). The j–th component of this approximation
for tkj ≤ t < tk+1

j can be written as

˙̂xj(t) = Ajj(k)qj(t) + vj(t)

=
N−1∑

i=0

Ajj(k)q
[i]
j (k)(t− tkj)

i +
N−1∑

i=0

v
[i]
j (k)(t− tkj)

i
(10)

where Ajj(k) is the j–th diagonal entry of the Jacobian matrix A = ∂f
∂x

at
t = tkj that can be estimated as

Ajj =
x
(1)
j (tkj)

+ − x
(1)
j (tkj)

−

q
[0]
j (k)− qj((tkj)

−)
(11)

and the coefficients of the input term vj(t) can be obtained from successive
differentiations of Eq.(10) as:

v
[i]
j (k) =

x
(i+1)
j (tkj)

−

i!
−Ajj(k)

N−1∑

m=i

(
m
i

)
q
[m]
j (k − 1)(tkj − tk−1

j)(m−i) (12)

Then, the estimate of the N–th time derivative of xj when qj = q̂j
can be computed by successive differentiations of the linear model ẋj(t) =
Ajj(k)qj(t) + vj(t) and taking q̇j = ẋj. In this fashion, we find

x̂
(N)
j (q̂j(t), t) = AN

jj(k)q̂j(t) +

N∑

i=1

Ai−1
jj (k)v

(N−i)
j (t) (13)

14

Letting t = tkj , the previous expression becomes

x̂
(N)
j (q̂j , t

k
j) = AN

jj(k)q̂j +
N∑

i=1

Ai−1
jj (k)v

[N−i]
j (k)(N − i)! (14)

Integrating Eq.(10), we find

x̂j(t) = xj(t
k
j) +

N−1∑

i=0

Ajj(k)q
[i]
j (k) + v

[i]
j (k)

i+ 1︸ ︷︷ ︸
x̂
[i+1]
j (k)

(t− tkj)
i+1

= xj(t
k
j) +

N−1∑

i=0

x̂
[i+1]
j (k)(t− tkj)

i+1 tkj < t < tk+1
j (15)

and we can compute the coefficients q̃
[i]
j (k) so that x̂

[N]
j (k) = 0 and x̂

[i]
j (k) =

q
[i]
j (k). Then from Eq.(15), it results that

q̃
[i]
j (k) =

− v
[N−1]
j (k)

Ajj(k)
for i = N − 1

(i+ 1)q̃
[i+1]
j (k)− v

[i]
j (k)

Ajj(k)
for i = 0 · · ·N − 2

(16)

Finally, the sequence of values tkj (k = 0, 1, ...) is defined so that tk+1
j is

the minimum t > tkj where

|xj(t)− q̌j(t)| = ∆Qj (17a)

or

x̂
(N)
j (qj(t), t) = 0 (17b)

with

q̌j(t) , xj(t
k
j) +

N−1∑

i=1

q
[i]
j (k)(t− tkj)

i (18)

3.3. Differences with previous definitions of LIQSS1 and LIQSS2

In the definition of LIQSS1 given in [16], the condition (qj(t) − xj(t)) ·
ẋj(t) > 0 was verified using the actual value of ẋj , which implied an ex-
tra function evaluation per step. Similarly in LIQSS2, the verification of

15

condition (qj(t) − xj(t)) · ẍj(t) > 0 implied the usage of two extra function
evaluations per step.

In the new definition, the previous conditions are replaced by (qj(t) −

xj(t)) · x̂
(N)
j (t) > 0, where the estimate x̂(N) does not require any additional

function evaluation.
Another change is introduced in LIQSS2 by Eq.(17b). This condition,

which was not included in the previous definition of LIQSS2, states that a
new step is performed whenever the estimate x̂

(N)
j (t) changes its sign. Since

qj is not constant for methods of orders higher than 1, it could happen that

qj(t) reaches the value q̃j (i.e., the value at which x̂
(N)
j (t) = 0) before meeting

the condition qj(t) = xj(t). When the step condition qj(t) = xj(t) is finally
met, q̃j could be far away from xj (a distance greater than ∆Qj), and we
could not use that value for qj , as this would introduce a large error. In the
previous definition of LIQSS2, this case led to fast oscillations in some cases.

3.4. LIQSS N Simulation Algorithm

The definition of LIQSS N can be implemented by the following simula-
tion algorithm:
a. When at t = tkj Eq.(17) is verified (i.e., |xj(t)− q̌j(t)| = ∆Qj or x̂

(N)
j (qj(t), t) = 0) then

1. Update the state xj and its derivatives x
(i)
j to the current time t using its polynomial

representation

xj(t
k
j) = xj(t

k−1
j) +

N∑

i=1

x
(i)
j (tk−1

j) · (tkj − tk−1
j)i

i!

x
(1)
j (tkj) = x

(1)
j (tk−1

j) +

N−1∑

i=1

x
(i+1)
j (tk−1

j) · (tkj − tk−1
j)i

i!

...

Update also the quantized state polynomial coefficients to the current time t with
an analogous formula.

2. Store the actual values of the quantized state qj(t
−), the state derivative x

(1)
j (t−),

and set q̌j(t
k
j) = xj(t).

3. If x
(N)
j (tkj) > 0 then take q̂j = xj(t) + ∆Qj else take q̂j = xj(t)−∆Qj

4. Estimate x̂
(N)
j (q̂j , t) from Eq.(14).

5. If x̂
(N)
j (q̂j , t) · x

(N)
j (tkj) > 0 or Ajj(k) = 0, then from Eqs.(8)–(9)

16

• Take q
[0]
j (k) = q̂j .

• Calculate q
[i]
j (k) =

x
(i)
j (tkj)

i!
.

6. Otherwise according to Eq.(16)

• Compute q
[N−1]
j (k) =

− v
[N−1]
j (k)

Ajj(k)

• Calculate q
[i]
j (k) =

(i + 1)q
[i+1]
j (k)− v

[i]
j (k)

Ajj(k)
starting from i = N − 2 down to

i = 0.

7. Compute the instant t = tk+1
j when Eq.(17) is satisfied (i.e., |xj(t)− q̌j(t)| = ∆Qj

or x̂
(N)
j (qj(t), t) = 0).

8. For each i so that fi(x, t) explicitly depends on xj

• Evaluate x
(1)
i (t) = fi(q, t) and the higher order derivatives x

(m)
i (t) with m =

2, · · · , N .

• if i = j then recompute Ajj(k) from Eq.(11) as

Ajj =
x
(1)
j (t−)− x

(1)
j (t)

qj(t−)− q
[0]
j (k)

• Estimate the input coefficients v
[m]
i (k) using Eq.(12)

• Recompute the next instant of change t = tk+1
i when Eq.(17) is satisfied (i.e.,

|xi(t)− q̌i(t)| = ∆Qi or x̂
(N)
i (qi(t), t) = 0).

b. Advance the simulation time t to the smallest future value of time when any state

variable undergoes a transition and go back to the beginning. The usage of this
algorithm in a simple example is illustrated in Appendix A.

Remark 1. The definition of LIQSS N and the corresponding algorithm given
above are valid for an arbitrary order N . However, LIQSS methods of or-
ders greater than 4 are impractical. The reason is that the computation of
the next instant of change at Eq.(17) requires finding the roots of a N–th
order polynomial. Thus, an LIQSS N method of order 5 or greater requires
iterations.

Beside from the aforementioned difficulty, LIQSS N methods are primar-
ily intended for the simulation of systems with frequent discontinuities. In
such systems, methods of very high order do not offer advantages, as the
integration step sizes are limited by the occurrence of discontinuities. Thus,
algorithms of order greater than 4 are rarely used in these types of systems.

17

3.5. DEVS Implementation of LIQSS Algorithms

The LIQSS methods of orders 1 to 3 were implemented in PowerDEVS
[2]. The static functions are the same as those of the QSS methods of orders
1 to 3 as they compute functions of piecewise polynomial trajectories.

The LIQSS N quantized integrators are similar to those of QSS N. The
main difference is that they compute the coefficients of qj(t) not only de-
pending on the coefficients of xj(t) but also on the estimate of the N–th

derivative x̂
(N)
j (t) as described in points 1 to 5 of the algorithm above. They

also estimate the values of Ajj and the coefficients of vj(t) as described in
point 7 of the algorithm.

The LIQSS N quantized integrators can be used with parameter values
identical to those of the QSS N and BQSS integrators allowing the usage
of logarithmic quantization. With logarithmic quantization [12] the quan-
tum size is proportional to the state magnitude, and its use implies intrinsic
control of the relative error.

A logarithmic quantization function is specified defining a relative quan-
tum, ∆Qrel, and a minimum quantum, ∆Qmin. Then, the quantum changes
with the quantized state, qj , according to the equation:

∆Qj = max(∆Qrel · |qj|,∆Qmin)

4. Theoretical Properties of the LIQSS Methods

In this section, we study the order, stability and accuracy properties of
LIQSS methods.

4.1. Perturbed Representation

Since LIQSS methods have the same quantized system representation of
Eq.(2) as QSS methods, they also share their perturbed representation:

ẋ(t) = f(x(t) +∆x(t),u(t)) (19)

where the perturbation term is defined as:

∆x(t) , q(t)− x(t)

Notice that Eq.(17a) establishes that when the condition |q̌j(t)−xj(t)| = ∆Qj

is met, a new step is performed. Since each section of q̌j(t), defined in Eq.(18),

18

starts at xj(t), it follows that q̌j(t) and xj(t) never differ from each other by
more than ∆Qj .

From Eq.(18), the polynomial of q̌j(t) only differs from the polynomial of
q(t) in its first coefficient, so q(t) and q̌(t) run parallel to each other.

At each step, the value of qj(t) is taken as qj(t) = xj(t)±∆Qj or qj(t) = q̃j
where |q̃j − xj(t)| < ∆Qj . Thus, qj does not differ from xj by more than
∆Qj at the time of the transition, and consequently, qj(t) never differs from
q̌j(t) by more than ∆Qj .

It follows that

|qj(t)− xj(t)| = |qj(t)− q̌j(t) + q̌j(t)− xj(t)|

≤ |qj(t)− q̌j(t)|+ |q̌j(t)− xj(t)| ≤ 2∆Qj (20)

Thus, LIQSS N methods simulate an approximate system that only differs
from the original system of Eq.(1) due to the presence of the bounded state
perturbation.

4.2. Stability and Global Error Bound

Based on the perturbed representation of Eq.(19) and the fact that

|qj(t)− xj(t)| ≤ ∆Qj ∀t ≥ 0 (21)

it was proven that

• Assuming that f is locally Lipschitz, the numerical solution obtained
by the QSS1 solver converges to the analytical solution [13].

• Provided that the original ODE has an asymptotically stable equi-
librium point, the QSS1 solution is ultimately bounded around that
equilibrium point [13].

As LIQSS1 only replaces Eq.(21) by (20) it is straightforward to prove that
both properties are also satisfied by the first order LIQSS1 method.

Theoretical properties for higher–order QSS methods were only studied
for Linear Time Invariant (LTI) systems, and they can be extended to LIQSS
methods as follows.

Given the LTI system

ẋa(t) = Axa(t) +Bu(t) (22)

19

where A is a Hurwitz matrix with Jordan canonical form Λ = V −1AV . Any
LIQSS approximation simulates the system:

ẋ = A(x(t) + ∆x(t)) +Bu(t) (23)

Defining the error as e(t) , x(t)− xa(t), it follows that

ė = A(e(t) + ∆x(t)) (24)

where, according to Eq. (20), |∆xj | ≤ 2∆Qj for j = 1, · · · , n.
In QSS1, QSS2 and QSS3 methods, starting from Eq.(24) and knowing

that |∆xj | ≤ ∆Qj , it was proven in [9, 11] that

|e(t)| � |V ||Re(Λ)−1Λ||V −1|∆Q

where ∆Q is the vector of quanta, the symbol ‘| · |’ computes the elementwise
absolute value of a matrix or vector, and ‘�’ represents a componentwise
inequality.

Following an identical reasoning, it is straightforward to prove that in
LIQSS methods

|e(t)| � |V ||Re(Λ)−1Λ||V −1|2∆Q (25)

which is twice the error bound of the QSS methods.
For the case of logarithmic quantization, the conclusions are identical to

those of the QSS methods given in [12], again except for a factor of 2.

4.3. Order of the Approximation

According to Eq.(7) in the definition of LIQSS N, each component qj(t)
of the quantized state q(t) follows a piecewise polynomial trajectory of order
N − 1.

Equation (9) defines that the i–th coefficient (for 1 ≤ i ≤ N − 1) of each

section of polynomial q
[i]
j is equal to either q̃

[i]
j or the i–th coefficient of the

Taylor expansion of the state xj(t). Considering also that the coefficients q̃
[i]
j

are computed so that q̃j goes parallel to xj , it follows that in both cases each
section of the quantized state qj starts parallel to that of the state xj(t).

After a new polynomial section starts, the next change is scheduled for
the time instant, at which the difference between xj and qj becomes equal to
a given value. Since both trajectories only differ on the initial value and the

20

N–th coefficient of their polynomial representation (which is 0 for qj), then
the time for the next change is scheduled at

x
[N]
j (tk) · (t− tk)

N = c

where x
[N]
j is the N–th coefficient of the polynomial representation of xj(t)

and c is a constant depending on the quantum and the initial difference
between xj(tk) and qj(tk). Thus, the time of the next step is computed as

t = tk + N

√
c

x
[N]
j (tk)

This expression shows that the time between events changes with the N–
th root of the quantum, which is proportional to the error bound of the
numerical solution. Then, the number of steps performed by LIQSS N grows
with the N–th root of the accuracy.

In this way, when we use the first–order accurate LIQSS1 method, the
number of steps grows linearly with the accuracy. In LIQSS2 it grows with
the square root of the accuracy, and so on.

For instance, if we wish to improve a simulation result to get a solution
that is 106 times more accurate, we can expect 106 times as many steps in
LIQSS1, 103 times as many steps in LIQSS2, but only 102 as many steps
in LIQSS3. It must, however, be mentioned that these numbers are only
approximations as, in presence of frequent discontinuities, a fixed amount of
additional steps is performed that does not depend on the accuracy settings.

Thus, regarding the order, LIQSS methods are similar to variable step
classic algorithms. The order does not define the accuracy (it is a parameter
in both cases), but it affects the number of steps performed.

5. Examples

This section presents two simulation examples where the performance of
LIQSS methods is compared against that of classic algorithms.

5.1. Buck Converter - Motor Speed Control

The first example is a DC motor fed by a buck converter (Fig.5), where
the output voltage is controlled so that the motor speed ω follows a reference
signal Ωref .

21

Figure 5: Electric schematic of the buck converter.

PWMPI Voltage controlPI Speed Control

Figure 6: PowerDEVS speed control schematic of a DC Motor with buck converter.

Figure 6 represents the complete schematic of the system as shown by
the PowerDEVS graphic user interface.

The system implements a proportional integral (PI) controller for the
speed and another PI controller for the buck converter output voltage.

The signal that controls the buck switch state (open/close) is obtained
from a pulse width modulator (PWM) that generates a square wave signal.
High or low states are obtained by comparing the signal x(t) with a triangular
wave of 10kHz. If the value x(t) is greater than the triangular, we set ξ = 1,
otherwise we set ξ = −1. Figure 7 shows the behavior described in the PWM
block.

22

0 50 100 150 200 250 300 350

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

Figure 7: Behavior of PWM block diagram of Fig.6.

The equations that describe the system are:

DC Motor
equations

{
İa = 1

La
(VC −Ra · Ia −Km · ω)

ω̇ = 1
J
(Ia ·Km − b · ω + Tc)

(26)

Buck converter

V̇C = IL
C
− VC

RC
− Ia

C

İL = VD−VC

C

VD = RD

(
VCC−VD

RLL
− IL

) (27)

Speed controller

{
eω(t) = ωref(t)− ω(t)

Vref(t) = kpω · eω(t) + kiω
∫ t

0
eω(t)dt

(28)

Converter output
voltage controller

{
eVout

(t) = Vref(t)− Vout(t)

x(t) = kpv · eVout
(t) + kiv

∫ t

0
eVout

(t)dt
(29)

where

RSw =

{
RSw−on if ξ = 1 (Sw closed)
RSw−off if ξ = −1 (Sw open)

(30)

RD =

{
RD−off if VD > 0(ID · RD > 0)
RD−on if VD ≤ 0(ID · RD ≤ 0)

(31)

Equations (30)–(31) exhibit the discontinuous nature of the system. Stiff-
ness is related to the large value of RD−off representing the large resistance

23

of the diode in its off state.
The system was simulated using the parameter values shown in Tables 1

and 2.

Parameter Value

R 1Ω
C 10−4 F
L 10−4 H
RD−on 10−6

RD−off 106

RSW−on 10−6

RSW−off 106

Switching frequency 10 kHz
Vcc 24V

Table 1: Parameter values for the buck converter.

Parameter Value

Armature Resistance (Ra) 1.73 Ω
Armature inductor (La) 2.54 mH
Rotor mass moment of inertia (J) 1.62 · 10−5 Nm/s2

Electromotive force constant(Km) 0.0551
Mechanical system’s damping ratio(b) 1.12 · 10−5

kpω 1.5
kiω 5
kpv 0.5
kiv 0.5

Table 2: Parameter values of the DC motor and controller.

The speed reference signal starts at t = 0 with a value ωref(0) = 0 and
evolves with a constant slope of 54.2 until t = 2, when it reaches the value
ωref = 108.4. From that moment on, it remains constant.

The model was simulated in PowerDEVS setting a final simulation time
of tf = 3sec. All initial conditions are set equal to zero. The simulations
were performed using the LIQSS2 and LIQSS3 solvers for different sets of
relative and minimum quantum values, ∆Qrel and ∆Qmin.

24

Then under identical conditions, the system was simulated with different
solvers implemented in Dymola [3] for different accuracy settings. Here, the
best results were obtained using the ‘esdirk23a’ algorithm2. The esdirk23a
solver turned out to be more efficient than the default ‘dassl’ solver when
simulating this model.

Figures 8–10 plot the motor speed, the converter output voltage, and the
diode current obtained by LIQSS3 in PowerDEVS using quantization values
of ∆Qmin = ∆Qrel = 10−4 for all state variables.

0 0.5 1 1.5 2 2.5 3
0

20

40

60

80

100

120

0 0.01 0.02 0.03 0.04 0.05
0

1

2

3

4

ω
[r
a
d
se
c]

T ime [sec]

Figure 8: Simulated trajectory of the motor speed.

Table 3 summarizes the simulation performance of the LIQSS and es-
dirk23a solvers in PowerDEVS and Dymola, respectively.

The error was computed comparing the results with the solution given by
DASSL using a very small error tolerance. More precisely, it was computed
as

Err =

∑M

k=1(ω(tk)− ωref(tk))
2

M
(32)

2esdirk23 stands for Explicit Singly Diagonally Implicit Runge Kutta 2–3 (i.e., a diag-
onally implicit RK algorithm with explicit first stage) [14]

25

V
c
[A

]

T ime [sec]

Figure 9: Simulated buck converter output voltage.

where ω(tk) are the samples of the numerical solution for the motor speed
and ωref(tk) are the samples of the reference solution.

In order to compare the number of function evaluations, we took into
account that each LIQSS step does not involve full function evaluations. It
only performs evaluations at those components of f that explicitly depend
on the quantized variable that changes or on a discontinuity taking place.

For instance, the simulation using LIQSS3 with ∆Qmin = ∆Qrel = 10−4

consumed a total of 895,660 integration steps, namely 148,793 at VC , 592,790
at IL, 7539 at ω, 134,984 at Ia, 11,004 at the voltage controller, and 339 at
the speed controller. In addition, 60,035 discontinuities were detected in the
switch, and 84,297 occurred in the diode. Consequently, 1,922,289 scalar
function evaluations were needed altogether.

Dymola using the esdirk23a solver with a relative error tolerance of 1·10−4

involved 705,264 accepted and 96,671 rejected integration steps; in addition,
89,972 true and 60,000 temporary state events were detected. The simulation
involved a total of 4,923,076 full function evaluations. Taking into account
that the system is of order 6, esdirk23a performed 29,538,456 scalar function
evaluations.

Besides function evaluations, there are other factors that increase CPU

26

0 0.5 1 1.5 2 2.5 3
−0.5

0

0.5

1

1.5

2

2.5

3

2.804 2.8045 2.805 2.8055 2.806

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

I L
[A

]

T ime[sec]

Figure 10: Simulated diode current at the buck converter.

time in both methods. On the one hand, LIQSS3 has to solve a cubic equation
at each step, and the DEVS engine of PowerDEVS performs some tasks
related to event scheduling and propagation, which can be computationally
expensive. In contrast, esdirk23a must calculate a Jacobian matrix, solve a
linear system of equations involving that Jacobian matrix, perform Newton
iterations, and search for discontinuities.

The Dymola simulations ran more accurately than the LIQSS simulations,
and the simulation results turned out to be more accurate than requested.
The esdirk23a step size and thereby the simulation accuracy is controlled in
this example primarily by the frequently occurring discontinuities and not
so much by the requested error tolerance. For a low error tolerance of 10−2,
Dymola attempts a too large initial step, and the simulation dies before it
ever takes off due to numerical stability problems.

In contrast, the LIQSS simulations of this system are more robust. The
LIQSS solver never turns numerically unstable, and a user who requests less
accurate results can get those and be rewarded by faster simulation runs.
This feature can be essential in simulations that are running under real–time
constraints, for example. The fastest simulation obtained by Dymola ran 3.3
times slower than the fastest simulation obtained by PowerDEVS.

27

5.2. Logical Inverter Chain

A logical inverter performs a logical operation over a signal. When the
input signal assumes a high level, the inverter outputs a low level, and vice-
versa.

Logical inverters are implemented by electrical circuits. They exhibit a
non–ideal response since the rise and fall time of the signal output is limited
by physical characteristics of the inverter circuit, and thus, the correct output
level is not immediately obtained, i.e., it is delayed.

An inverter chain is a concatenation of several inverters, where the out-
put of each inverter acts as the input to the next one. Making use of the
aforementioned limitations, inverter chains can be used to obtain delayed
signals.

Integration method No of Scalar function Error CPU
Steps evaluations fj time [sec]

LIQSS2
(∆Qmin,rel = 10−2) 400,774 819,738 0.8043 8.21

LIQSS2
(∆Qmin,rel = 10−3) 931,348 1,936,255 0.1132 16.12

LIQSS2
(∆Qmin,rel = 10−4) 2,695,093 5,675,314 7.5 · 10−3 43.41

LIQSS3
(∆Qmin,rel = 10−3) 539,114 1,162,301 0.072 11.6

LIQSS3
(∆Qmin,rel = 10−4) 895,660 1,922,289 7.2 · 10−3 17.9

LIQSS3
(∆Qmin,rel = 10−5) 1,640,678 3,558,047 8.6 · 10−5 30.18

Dymola esdirk23a
Tolerance:1e-5 1,276,767 53,392,584 1.8 · 10−6 62.3

Dymola esdirk23a
Tolerance:1e-4 705,264 29,538,456 1.9 · 10−5 53.9

Dymola esdirk23a
Tolerance:1e-3 350,108 14,098,782 2.6 · 10−5 27.21

Dymola esdirk23a simulation simulation simulation simulation
Tolerance:1e-2 fails fails fails fails

Table 3: Performance comparison for different integration methods and software when
simulating Eqs.(26)–(29).

28

We consider here a chain of m inverters according to the inverter model
given in [19] that is characterized by the following equations:

{
ω̇1(t) = Uop − ω1(t)−Υg (uin(t), ω1(t))
ω̇j(t) = Uop − ωj(t)−Υg (ωj−1(t), ωj(t)) j = 2, 3, .., m

(33)

where

g(u, v) = (max(u − Uthres, 0))
2 − (max (u− v − Uthres, 0))

2 (34)

We used the set of parameter values proposed in [19]: m = 500 inverters,
Υ = 100 (which results in a very stiff system), Uthres = 1, and Uop = 5.

The initial conditions are, as in the cited reference, ωj = 6.247 · 10−3 for
odd values of j and ωj = 5 for even values of j. Finally, the input signal is
given by:

uin(t) =

t− 5 if 5 ≤ t ≤ 10
5 if 10 < t ≤ 15
5
2
(17− t) if 15 < t ≤ 17

0 otherwise

(35)

A block diagram of a logic inverter built in PowerDEVS is provided in
Fig.11. The inverter chain consist in a vector model that contains m sub–
models implementing the individual inverters.

Figure 12 shows some components of the solution computed by the LIQSS2
solver using ∆Qmin = ∆Qrel = 0.001 for all state variables.

Although the final simulation time was set to 500 sec, the simulation
ended at t = 128.47 sec, because an equilibrium situation was reached at
that point. Under the simulation conditions mentioned before, the simulation
takes 178, 595 steps and 2.72 sec of CPU time. Each integrator performed
between 350 and 370 steps, i.e., changes in their quantized state.

The simulation was repeated with different tolerance settings using LIQSS2
and LIQSS3. It was also simulated using different Matlab and Dymola al-
gorithms and tolerances. In all cases, we used a final simulation time of 130
sec.

The results, including also those reported in [19], are summarized in Ta-
ble 4.

This example shows the true power of the LIQSS solvers. The LIQSS sim-
ulations run a thousand time faster than the Dymola simulations; they run
several hundreds of times faster than the Matlab simulations; and they run

29

Figure 11: PowerDEVS block diagram of the inverter chain system.

even faster than the multi–rate simulations that were specifically designed
for this type of problem.

The dramatic difference in the performance can be explained by the asyn-
chronous nature of discrete event integration. At each step, a discrete time
method, like esdirk23a or ode15s, evaluates all components of the vector
function f , in this case at least 500 scalar function evaluations. In contrast,
LIQSS methods only evaluate those components that explicitly depend on
the quantized variable that undergoes a change.

Another reason is that discrete time integration methods for stiff systems
are implicit solvers. They need to perform a Newton iteration during each
integration step. To this end, they need to solve in each iteration step a
linear system of n equations, where n is the order of the system. This fact
also adds significantly to the computational load. This is not a huge issue
for a 6th order system, but it is a big issue for a 500th order system.

The large error values reported for all simulations of this example are
deceiving 3. They are caused by the large gradients during switching times.
A tiny phase shift in the switching time of an inverter leads to a huge error
in the signal.

3The error was computed as in the previous example, substituting ω by ω500 in Eq.(32).

30

0 20 40 60 80 100 120 140

0

1

2

3

4

5

6

ω2 ω126 ω250 ω374 ω498

T ime [sec]

Figure 12: Selected ωj–components (for j even) of the inverter chain PowerDEVS simula-
tion.

In order to analyze the dependence of the required CPU time on the
system order, the inverter chain model was simulated across tf = 130 sec,
while varying the number of logical inverters. The results of this experiment
are shown in Fig.13.

Notice that the CPU time consumed by both LIQSS2 and LIQSS3 grows
linearly with the system order, whereas the CPU time needed by ode15s
and esdirk23a grows cubically with the system order. For a small number of
inverters, the performance of LIQSS is similar to that of esdirk23a or ode15s,
but for a large number of inverters, the LIQSS solvers turn out to be much
more efficient.

Multi–rate methods, such as those reported in [19], exhibit a similar per-
formance to that of LIQSS methods. They share the principle of trying to
perform larger steps in variables that don’t undergo rapid changes. How-
ever, those methods discard several function evaluations when the tolerance
settings are not met. Consequently, the number of function evaluations is
noticeable larger. Moreover to the best of our knowledge, the problem of dis-
continuity detection has not been addressed in the context of those methods.

31

Integration Error No of Scalar Error CPU
method tolerance Steps/ fi eval. time

Events [sec]

PowerDEVS
LIQSS2
(∆Qmin = ∆Qrel)

∆Qrel = 10−2 178,595 ev. 714,380 0.61 2.72
∆Qrel = 10−3 259,591 ev. 1,038,364 0.022 3.81
∆Qrel = 10−4 533,200 ev. 2,132,800 0.00023 8.04

PowerDEVS
LIQSS3
(∆Qmin = ∆Qrel)

∆Qrel = 10−2 81,377 ev. 488,262 1.343 1.51
∆Qrel = 10−3 165,931 ev. 995,586 0.443 2.99
∆Qrel = 10−4 286,806 ev. 1,720,836 0.119 4.95
∆Qrel = 10−5 368,857 ev. 2,213,142 0.0133 6.49
∆Qrel = 10−6 626,693 ev. 3,760,158 0.00205 11.1

Dymola
esdirk23a

erel = 10−1 7875 steps > 37, 748, 000 0.062 1786.59
erel = 10−2 8664 steps > 43, 937, 000 0.046 2005.64
erel = 10−3 10,005 steps > 51, 935, 000 0.037 2147.1

Matlab Ode15s erel = 10−2 13,220 steps > 33, 050, 000 0.041 651.37

Multirate II erel = 10−4 - 4,795,878 - 6.36*

Multirate II erel = 10−5 - 17,358,472 - 21.65*

Table 4: Performance comparison when simulating the model of Eq.(33) using different
methods. The CPU time for multi–rate methods was not obtained on the same computer,
but has been added as reported in [19].

6. Conclusions

We presented a new family of QSS solvers based on linearly implicit prin-
ciples of orders 1 to 3 that are suitable for the simulation of some classes of
stiff systems.

We demonstrated that the LIQSS methods preserve most of the theoret-
ical and practical characteristics of the non–stiff QSS solvers. They ensure
stability and a global error bound in linear systems. Also, they handle dis-
continuities in a highly efficient manner.

Compared with classic discrete time methods, LIQSS exhibit important
advantages when simulating stiff systems experiencing frequent discontinu-
ities. We illustrated this feature in the simulation of a complex system in-
volving a power electronic device.

Another advantage is related to the simulation of some classes of large
stiff sparse systems. Like in the case of the non–stiff QSS solvers, LIQSS
steps perform local calculations in those states only that undergo a change.

32

0 50 100 150 200 250 300 350 400 450 500

0

2

4

6

8

10

12

14

16

18

20

Model Order

Dymola

Matlab (ode15s)

LIQSS3(e=1e−5)

LIQSS2(e=1e−4)

C
P

U
 T

im
e
 [

se
c
]

2500

2000

1500

1000

500

0

0 50 100 150 200 250 300 350 400 450 500

C
P
U
ti
m
e
[s
ec
]

Model Order

Figure 13: CPU time vs. number of logical inverters.

In large systems experiencing activities in a few states only at any given
moment of time, LIQSS only computes functions that are directly related to
those active states. This advantage was demonstrated in the simulation of
the logical inverter chain.

It was mentioned that LIQSS algorithms do not perform matrix inver-
sions. Unfortunately, this fact imposes a severe limitation on this class of
solvers. LIQSS solvers avoid fast oscillations in xj by searching for the point
q̂j , at which the state derivative ẋj changes its sign. This search is done
by looking at the diagonal elements Ajj of the Jacobian matrix only. When
stiffness is not due to the diagonal terms of the Jacobian matrix, but caused
by some structural feature, LIQSS solvers may be unable to deal with the
stiffness inherent in such a model, and oscillations may still occur. The same
limitation applies to classical linearly implicit algorithms.

In power electronic circuits, where stiffness is mainly due to the large
or small resistance values of the switching devices in their off or on states,
LIQSS algorithms usually work well. However in other systems, such as those
resulting from spatial discretization of a diffusion equation by the method
of lines, for example, where the stiffness is not reflected in large diagonal
elements of the Jacobian matrix [4], the LIQSS methods do not perform any
better than their non–stiff QSS brethren.

We have not studied yet what conditions a stiff system must satisfy for
LIQSS methods to be successful in their simulation. How can stiff systems
that are not solvable efficiently by LIQSS solvers be recognized? Without

33

such an analysis, LIQSS solvers cannot replace the classical dassl solver as
default simulation method in a general purpose modeling and simulation
environment, such as Dymola. Thus, it is important to research this question.
We conjecture that, in power electronics circuits with non–ideal switching
devices, such as those used in the Modelica standard library, LIQSS methods
will always work. At least, we have not come across any counterexample
until now. However, we have not yet been able to prove this conjecture.

7. Acknowledgments

We wish to acknowledge support by CONICET under grant PIP-2009/2011-
00183

References

[1] T. Beltrame, F. Cellier, Quantised state system simulation in Dy-
mola/Modelica using the DEVS formalism, in: Proceedings of the Fifth
International Modelica Conference, volume 1, Vienna, Austria, pp. 73–
82.

[2] F. Bergero, E. Kofman, PowerDEVS. a tool for hybrid system modeling
and real time simulation, Simulation: Transactions of the Society for
Modeling and Simulation International 87 (2011) 113–132.

[3] D. Brück, H. Elmqvist, S. Mattsson, H. Olsson, Dymola for multi-
engineering modeling and simulation, in: Proceedings of the Second
International Modelica Conference, pp. 55.1–55.8.

[4] F. Cellier, E. Kofman, Continuous System Simulation, Springer, New
York, 2006.

[5] M. D’Abreu, G. Wainer, M/CD++: Modeling continuous systems using
Modelica and DEVS, in: Proceedings of MASCOTS 2005, Atlanta, GA,
pp. 229 – 236.

[6] F. Esquembre, Easy Java Simulations: a software tool to create scientific
simulations in Java, Computer Physics Communications 156 (2004) 199–
204.

34

[7] E. Hairer, S. Nørsett, G. Wanner, Solving Ordinary Dfferential Equa-
tions I. Nonstiff Problems, Springer, Berlin, 2nd edition, 1993.

[8] E. Hairer, G. Wanner, Solving Ordinary Differential Equations II. Stiff
and Differential-Algebraic Problems., Springer, Berlin, 1991.

[9] E. Kofman, A second order approximation for DEVS simulation of con-
tinuous systems, Simulation 78 (2002) 76–89.

[10] E. Kofman, Discrete event simulation of hybrid systems, SIAM Journal
on Scientific Computing 25 (2004) 1771–1797.

[11] E. Kofman, A third order discrete event simulation method for contin-
uous system simulation, Latin American Applied Research 36 (2006)
101–108.

[12] E. Kofman, Relative error control in quantization based integration,
Latin American Applied Research 39 (2009) 231–238.

[13] E. Kofman, S. Junco, Quantized state systems. a DEVS approach for
continuous system simulation, Transactions of SCS 18 (2001) 123–132.

[14] A. Kværnø, Singly diagonally implicit Runge-Kutta methods with an
explicit first stage, BIT Numerical Mathematics 44 (2004) 489–502.

[15] G. Migoni, Simulación por Cuantificación de Sistemas Stiff, Ph.D. thesis,
Facultad de Ciencias Exactas, Ingenieŕıa y Agrimensura. Universidad
Nacional de Rosario, Rosario, Argentina, 2010.

[16] G. Migoni, E. Kofman, Linearly implicit discrete event methods for stiff
ODEs, Latin American Applied Research 39 (2009) 245–254.

[17] G. Migoni, E. Kofman, F. Cellier, Quantization-based new integration
methods for stiff ODEs., Simulation: Transactions of the Society for
Modeling and Simulation International 88 (2012) 387–407.

[18] G. Quesnel, R. Duboz, E. Ramat, M. Traoré, Vle: a multimodeling and
simulation environment, in: Proceedings of the 2007 Summer Computer
Simulation Conference, San Diego, California, pp. 367–374.

35

[19] V. Savcenco, R. Mattheij, A multirate time stepping strategy for stiff
ordinary differential equations, BIT Numerical Mathematics 47 (2007)
137–155.

[20] L. Shampine, M. Reichelt, The matlab ODE suite., SIAM Journal on
Scientific Computing 18 (1997) 1–22.

[21] B. Zeigler, DEVS representation of dynamical systems: Event-based
intelligent control, Proceedings of the IEEE 77 (1989) 72–80.

[22] B. Zeigler, T. Kim, H. Praehofer, Theory of Modeling and Simulation.
Second edition, Academic Press, New York, 2000.

[23] B. Zeigler, H. Sarjoughian, H. Praehofer, Theory of quantized systems:
Devs simulation of perceiving agents, Cybernetics and Systems 31 (2000)
611–648.

Appendix A. Step–by–step behavior of the LIQSS Algorithm

Here, we illustrate the behavior of the LIQSS N simulation algorithm
introduced in Section 3.4. To this end, we consider the simulation with the
LIQSS1 method of the first order system

ẋ(t) = −x(t) + 1 , f(x(t)) (A.1)

from the initial state x(0) = 0 using quantum ∆Q = 0.4.
At the initialization (which was not described in Section 3.4) we set t0 = 0,

A11(1) = 0, v[1] = 0, and evaluate ẋ(t0) at f(x(t0)±∆Q in order to decide the
initial value for q(t). Since f > 0 in both cases, we take q(t0) = x(t0)+∆Q =
0.4.

Then, it results that x1(t0) = f(q(t0)) = 1− 0.4 = 0.6, x(t) = 0 + 0.6 · t,
for t0 < t < t1 (with t1 still unknown), q̌(t0) = x(t0) = 0 and we start the
algorithm from this situation.
a. At t = t1 = 0.4/0.6 = 2/3, Eq.(17) is verified (since |x(t1)− q̌(t1)| = 0.4 = ∆Q). Then

1. We store the actual values of the quantized state q(t−) = 0.4, the state derivative
x(1)(t−) = 0.6, and set q̌(t1) = x(t) = 0.4.

2. Since x(1)(t1) > 0, we take q̂ = x(t) + ∆Q = 0.8.

3. We estimate x̂(1)(q̂, t) from Eq.(14), obtaining x̂(1)(q̂, t) = 0 (at the first step we do
not have an estimate of the linear model).

36

4. Since A11(1) = 0, then from Eqs.(8)–(9)

• Take q[0](1) = q̂j = 0.8.

5. Compute the instant t = t2 when |x(t) − q̌(t)| = ∆Q. Here we obtain t2 = t1 +
0.4/0.6 = 4/3.

6. As f(x) depends explicitly on x (we have only one state), we continue as follows:

• Evaluate x(1)(t) = f(q, t) = −0.8 + 1 = 0.2.

• Recompute A11(2) from Eq.(11) as

A11 =
x(1)(t−)− x(1)(t)

q(t−)− q[0](k = 1)
=

0.6− 0.2

0.4− 0.8
= −1.

• Estimate the input coefficient using Eq.(12) as v[0](1) = 0.6 + 0.4 = 1.

• Recompute the next instant of change t = t2 when Eq.(17) is satisfied (i.e.,
|x(t) − q̌(t)| = ∆Q, which with the new state derivative results at t2 =
t1 + 0.4/0.2 = 8/3.

b. Advance the simulation time t to the smallest future value of time when any state

variable undergoes a transition, so we set t = t2 = 8/3, and go back to the beginning.

The second step is then performed as follows
a. At t = t2 = 8/3 Eq.(17) is verified (since |x(t1)− q̌(t1)| = 0.4 = ∆Q). Then

1. Store the actual values of the quantized state q(t−) = 0.8, the state derivative
x(1)(t−) = 0.2, and set q̌(tk) = x(t) = 0.8.

2. Since x(1)(t2) > 0, we take q̂ = x(t) + ∆Q = 1.2.

3. We estimate x̂(1)(q̂, t) from Eq.(14), obtaining x̂(1)(q̂, t) = −0.2.

4. The condition x̂(1)(q̂, t) · x(1)(t2) > 0 or A11(2) = 0 is not met, so we proceed from
the next step.

5. According to Eq.(16)

• Compute q[0](2) =
− v[0]

A11
=

− 1

−1
= 1.

6. Compute the instant t = t3 when |x(t) − q̌(t)| = ∆Q. Here we obtain t2 = t2 +
0.4/0.2 = 14/3.

7. As f(x) depends explicitly on x (we have only one state), we continue as follows:

• Evaluate x(1)(t) = f(q, t) = −1 + 1 = 0.

• Recompute A11(3) from Eq.(11) as

A11 =
x(1)(t−)− x(1)(t)

q(t−)− q[0](k = 2)
=

0.2− 0

0.8− 1
= −1.

• Estimate the input coefficient using Eq.(12) as v[0](1) = 0.2 + 0.8 = 1.

37

• Recompute the next instant of change t = t3 when Eq.(17) is satisfied (i.e.,
|x(t)− q̌(t)| = ∆Q. As the new state derivative is zero, it results that t3 = ∞.

b. Advance the simulation time t to the smallest future value of time when any state

variable undergoes a transition, so we set t = ∞, which finishes the simulation at the

equilibrium point.

38

