
LINEARLY IMPLICIT DISCRETE EVENT METHODS FOR

STIFF ODE’S.

G. MIGONI† and E. KOFMAN†

†CIFASIS–CONICET. Laboratorio de Sistemas Dinámicos FCEIA - UNR. Riobamba 245 bis - (2000) Rosario.

Abstract— This paper introduces two new
numerical methods for integration of stiff ordi-
nary differential equations. Following the idea
of quantization based integration, i.e., replac-
ing the time discretization by state quantiza-
tion, the new methods perform first and sec-
ond order backward approximations allowing to
simulate stiff systems. It is shown that the new
algorithms satisfy the same theoretical prop-
erties of previous quantization–based integra-
tion methods. The translation of the new al-
gorithms into a discrete event (DEVS) specifi-
cation and its implementation in a DEVS sim-
ulation tool is discussed. The efficience of the
methods is illustrated comparing the simula-
tion of two examples with the classic methods
implemented by Matlab/Simulink.

Keywords— Stiff System Simulation, Quan-
tization Based Integration, DEVS

I. INTRODUCTION

The use of traditional methods (Hairer et al., 1993;
Hairer and Wanner, 1991; Cellier and Kofman, 2006)
based on time discretization to integrate stiff systems
require the use of implicit algorithms since the required
step size used by explicit methods is limited by the
stability region and the resulting step size becomes
inadmissibly small (Cellier and Kofman, 2006).

In fact, numerical integration methods that include
in their numerically stable region the entire left half
(λ ·h) plane (or at least a large portion of it) are neces-
sary for stiff systems integration (Cellier and Kofman,
2006). Only some implicit methods have this type of
stability region. Explicit algorithms showing that fea-
ture do not exist.

The problem with implicit methods is that they are
computationally expensive because in each step they
need to use iterative algorithms to determine the next
value (usually with the Newton Iteration). The prob-
lem becomes critical in applications related to real
time simulation, where in many cases performing it-
erations becomes unacceptable.

An alternative approach to classic time slicing
started to develop since the end of the 90’s, where time
discretization is replaced by state variables quantiza-
tion. As a result, the simulation models are not dis-

crete time but discrete event systems. The origin of
this idea can be found in the definition of Quantized
Systems (Zeigler et al., 2000).

This idea was then reformulated with the addition
of hysteresis –to avoid the appearance of infinitely fast
oscillations– and formalized as the Quantized State
Systems (QSS) method for ODE integration in (Kof-
man and Junco, 2001). This was followed by the def-
inition of the second order QSS2 method (Kofman,
2002), the third order QSS3 method (Kofman, 2006).

The QSS methods showed some important advan-
tages with respect to classic discrete time methods
in the integration of discontinuous ODEs (Kofman,
2004), sparsity exploitation (Kofman, 2002), the prop-
erty of absolute stability, and the existence of a global
error bound (Cellier and Kofman, 2006).

In spite of these properties, QSS, QSS2 and QSS3
fail when applied to stiff systems due to the appearance
of fast oscillations. They remain numerically stable at
the expense of utilizing excruciatingly small step sizes,
as any explicit algorithm is expected to require in this
situation.

To solve this problem, a first order backward QSS
method (called BQSS, after Backward QSS) was pro-
posed in (Migoni et al., 2007). The method was able
to efficiently integrate many stiff systems. The basic
idea of the BQSS method is to use a future value of the
states to obtain the quantized value. Yet, whereas the
algorithm is implicit, it still can be implemented with-
out Newton iterations. The reason is that each state
has only two possible future values. If a state vari-
able currently assumes a value of qj , the next value of
that state variable must be either qj +∆qj , or qj−∆qj .
Hence all possible next values can be enumerated with-
out an open-ended search. In other words BQSS was
the first explicit method for stiff ODEs.

The main drawback of BQSS is that it performs
only a first order approximation and accurate results
cannot be obtained. Another problem is that BQSS
introduced an extra perturbation term that increases
the error bound and, in some nonlinear systems, might
provoke the appearance of spurious equilibrium points.

This paper presents first a new method that com-
bines the idea of BQSS and linearly implicit integra-
tion.

The first order accurate linearly implicit QSS

(LIQSS) method follows the idea of BQSS, but avoids
the presence of the mentioned perturbation term and
the appearance of spurious equilibrium point using a
linearly implicit idea to find the state values where
some derivatives cross by zero. Then, a second or-
der accurate LIQSS method (called LIQSS2) is defined
combining the principles of LIQSS and the second or-
der accurate QSS method (QSS2). This new method
solves, up to certain limits, the problem of accuracy.

The work is organized in the following way: Sec-
tion II.recalls the principles of Quantization–Based
Integration and introduces the problems of QSS meth-
ods to deal with stiff systems. Then, Section III.intro-
duces the new methods, namely, LIQSS and LIQSS2
and discuss the main implementation issues of them.
Section IV.studies the properties of the new meth-
ods (legitimacy and error bound). Finally, Section V.
introduces some simulation examples and Section VI.
presents conclusions and future work.

II. QUANTIZATION-BASED
INTEGRATION

This section introduces the principles of QSS meth-
ods, shows the problems they have in the simulation
of stiff systems, and presents a first approximation to
solve these problems (the BQSS method). Finally, a
brief introduction to the DEVS formalism is provided
and the DEVS implementation of QSS methods is dis-
cussed.

A. QSS Method

Consider a time invariant ODE in its State Equation
System (SES) representation:

ẋ = f(x(t),u(t)) (1)

where x(t) ∈ R
n is the state vector and u(t) ∈ R

m is
an input vector, which is a known piecewise constant
function.

The QSS method simulates an approximate system,
which is called Quantized State System:

ẋ(t) = f(q(t),u(t)) (2)

where q(t) is a vector of quantized variables which are
quantized versions of the state variables x(t). Each
component of q(t) follows a piecewise constant trajec-
tory, related with the corresponding component of x(t)
by a hysteric quantization function so that:

qj(t) =

{
xj(t) if |qj(t

−) − xj(t)| = ∆Qj

qj(t
−) otherwise

(3)

and qj(t0) = xj(t0). Thus, qj(t) only changes when it
differs from xj(t) in ±∆Qj. The magnitude ∆Qj is
called quantum.

B. QSS and Stiff Systems

The system

ẋ1(t) = 0.01 x2(t)

ẋ2(t) = −100 x1(t) − 100 x2(t) + 2020
(4)

has eigenvalues λ1 ≈ −0.01 and λ2 ≈ −99.99 which
means that the system is stiff.

The QSS method approximates this system as

ẋ1(t) = 0.01 q2(t)

ẋ2(t) = −100 q1(t) − 100 q2(t) + 2020
(5)

Considering initial conditions x1(0) = 0, x2(0) = 20,
and quanta ∆Q1 = ∆Q2 = 1, the QSS integration
performs the following steps:

In t = 0 we set q1(0) = 0 and q2(0) = 20. Then,
ẋ1(0) = 0.2 and ẋ2(0) = 20. This situation remains
until |qi − xi| = ∆Qi = 1.

The next change in q1 is then scheduled at t =
1/0.2 = 5 while the change in q2 is scheduled at
t = 1/20 = 0.05.

Thus, a new step is performed in t = 0.05. After this
step it results q1(0.05) = 0, q2(0.05) = 21, x1(0.05) =
0.01, x2(0.05) = 21. The derivatives are ẋ1(0.05) =
0.21 and ẋ2(0.05) = −80.

The next change in q1 is rescheduled at 0.05 + (1 −
0.01)/0.21 = 4.764 while the next change in q2 is
scheduled at 0.05 + 1/80 = 0.0625. Hence, the next
step is performed at t = 0.0625.

In t = 0.0625 it results q1(0.0625) = 0, q2(0.0625) =
x2(0.0625) = 20, x1(0.0625) ≈ 0.0126 and the deriva-
tives coincide with those of t = 0.

This is cyclically repeated until a change in q1 oc-
curs. That change occurs at t ≈ 4.95, after 158
changes in q2 (which oscillates between 20 and 21).

The simulation continues in the same way. Fig.1
shows the evolution of q1(t) and q2(t) through 500
units of simulated time.

0 50 100 150 200 250 300 350 400 450 500
−5

0

5

10

15

20

25

t

q 1
(t

),
q 2

(t
)

q1(t)

q2(t)

Figure 1: QSS Simulation

The fast oscillations of q2 provoke a total of 15995
transitions in that variable, while q1 only changes 21
times. Consequently, the total number of steps to com-
plete the simulation is greater than 16000 (this number
is of the order of the 25000 steps needed by Forward
Euler method to obtain a stable result).

Evidently, the QSS method is unable to efficiently
integrate System (4).

C. QSS2 Method

The second order QBI method uses first order quan-
tization. As it is shown in Figure 2, a first order
quantizer produces a piecewise linear output trajec-
tory. Each section of that trajectory starts with the
value and slope of the input and finishes when it differs
from the input in ∆Qi. A formal definition of a first
order quantization function can be found in (Kofman,
2002).

First Order Quantizer

∆Q

Input
Output

Figure 2: Trajectories of a first–order quantizer.

The QSS2 method then approximates a system like
(1) by (2) but now, the quantized variables qi(t) fol-
low piecewise linear trajectories and the state variables
xi(t) are piecewise parabolic functions of the time.

Like the first order QSS, QSS2 can be represented
by a DEVS model. The advantage of QSS2 is that it
permits using a small quantum –i.e., setting a small
error tolerance– without increasing considerably the
number of calculations. In QSS, the number of steps
is inversely proportional with the quantum, while in
QSS2 it is only inversely proportional with its square
root.

QSS2 also exhibits the problem of fast oscillations in
the simulation of stiff systems. For instance, if we use
the QSS2 method to simulate System (4), it performs
65467 steps (19 changes in q1 and 65448 changes in
q2).

D. BQSS Method

The BQSS method is similar to QSS, but qi is always
chosen so that xi(t) goes to qi(t).

Basically, given a state variable xj(t), BQSS uses
two hysteretic quantization functions: one from be-
low (q

j
(t) ≤ xj(t)) and the other from above (qj(t) ≥

xj(t)). Both quantization functions are defined so that
they never differ from xj in more than 2∆Qj .

The quantized variable qj is chosen equal to either
q

j
or qj , according to the direction of ẋj(t). When

ẋj > 0 we use qj = qj , and viceversa.

When ẋj = fj(q,u) depends on qj , it could hap-
pen that the sign of the derivative changes when we

evaluate fj using each possibility, i.e., fj |q
j

> 0 and

fj |qj
< 0. Thus, we cannot find a correct value for qj .

However, in that situation, continuity in fj ensures
that a value q̂j exists, with q

j
< q̂j < qj , such that

fj |q̂j
= 0.

Thus, the BQSS method sets either qj = qj or qj =
q

j
and enforces the derivative ẋj = 0 adding an extra

perturbation term ∆fj = fj|qj
.

Then, given the system Eq.(1), instead of simulating
a system like Eq.(2), BQSS simulates a system of the
form:

ẋ(t) = f(q(t),u(t)) + ∆f(t) (6)

where ∆f(t) is normally zero, except when the situ-
ation described above is found (i.e., when we cannot
find a correct value for qj).

BQSS works fine with most stiff systems. Anyway,
the presence of the perturbation term ∆f(t) increases
the error and can cause the appearence of spurious
equilibrium points in some nonlinear systems.

Another limitation of BQSS is that it is only first
order accurate. We could not find, based on that idea,
a second order accurate method.

E. DEVS Formalism

A DEVS model (Zeigler et al., 2000) processes an input
event trajectory, and, based on that trajectory and the
initial state, produces an output event trajectory.

The behavior of an atomic DEVS model is formally
defined by the structure:

M = (X, Y, S, δint, δext, λ, ta) (7)

where

• X is input event set, i.e., the set of all possible
input event values.

• Y is the output event set.

• S is the state value set.

• δint, δext, λ and ta are the functions that define
the model dynamics.

Each possible state s (s ∈ S) has an associated time
advance given by the time advance function (ta(s) →
R

+
0). ta(s) is a non–negative number indicating how

long the system remains in a given state in absence of
input events.

Then, if at time t1 the state takes the value s1, after
ta(s1) time units (i.e., at time t1 + ta(s1)) the system
performs an internal transition going to a new state
s2 = δint(s1). Function δint (δint : S → S) is called
internal transition function.

When the state goes from s1 to s2 an output event is
produced, with value y1 = λ(s1). Function λ (λ : S →
Y) is called output function. Functions ta, δint and λ
defined the autonomous behavior of a DEVS model.

When an input event arrives, the state changes in-
stantaneously. The new state depends not only on the

input event value but also on the previous state and
the elapsed time since the last transition. If the model
arrives to state s3 at t3 and an input event arrives at
time t3 +e with a value x1, the new state is calculated
as s4 = δext(s3, e, x1) (notice that e < ta(s3)). In
this case, we say that the system performs an external
transition. Function δext (δext : S × ℜ+

0 × X → S) is
called external transition function. During an external
transition no output event is produced.

DEVS models can be coupled and the result of the
coupling defines an equivalent atomic DEVS model.

F. DEVS and QSS

Each component of Eq.(2) can be thought as the cou-
pling of two elementary subsystems. A static one,

dj(t) = fj(q1, · · · , qn, u1, · · · , um) (8)

and a dynamical one

qj(t) = Qj(xj(·)) = Qj(

∫
dj(τ)dτ) (9)

where Qj is the hysteretic quantization function (it is
not a function of the instantaneous value xj(t), but a
functional of the trajectory xj(·)).

Since the components uj(t) and qj(t) are piecewise
constant, the output of Subsystem (8), i.e., dj(t), will
be piecewise constant. In this way, both subsystems
have input and output piecewise constant trajectories
that can be represented by sequences of events.

Then, Subsystems (8) and (9) define a relation be-
tween their input and output sequences of events.
Consequently, equivalent DEVS models can be found
for these systems, called static functions and quantized
integrators respectively (Kofman and Junco, 2001).

The second order accurate QSS2 method can be im-
plemented in the same way of QSS. However, the tra-
jectories are now piecewise linear instead of piecewise
constant. Thus, the events carry two numbers that in-
dicate the initial value and the slope of each segment.
Also, the static functions and quantized integrators
are modified with respect to those of QSS so they can
take into account the slopes.

III. LINEARLY IMPLICIT QSS METHODS

In this section, we introduce the new Linearly Implicit
QSS (LIQSS) methods of first and second order and we
discusses the implementation of them as DEVS mod-
els.

A. First Order LIQSS Method

The idea of LIQSS is very similar to BQSS. However,
when a value qj so that xj goes to it cannot be found,
LIQSS tries to find the value q̂j for which ẋj = 0 in-
stead of adding the perturbation term ∆fj to enforce
that situation.

In order to illustrate this idea, we shall simulate Sys-
tem (4) from the same initial conditions and quantum
than before.

In t = 0, we can choose q2 = 19 or q2 = 21 accord-
ing to the sign of ẋ2(t). In both cases, ẋ1(0) > 0 so
the quantized future value of x1 will be q1(0) = 1.
On the other hand, if we choose q2(0) = 21 then
ẋ2(0) = −180 < 0 and if we choose q2(0) = 19,
it results ẋ2(0) = 20 > 0 so there exists a point
19 < q̂2(0) < 21 in which ẋ2(0) = 0. The value for
q̂2(0) can be calculated (exploiting the linear depen-
dence of ẋ2 with q2) as

q̂2(0) = 21 −
−180

−100
= 19.2

Then, the state derivatives result: ẋ1(0) = 0.192,
ẋ2(0) = 0.

The next change in q1 is scheduled for t = 1/0.192 ≈
5.2083 while the corresponding in q2 is scheduled for
t = ∞

Then, the next step takes place in t = 1/0.192 ≈
5.2083. At this time, x1 = 1 and x2 = 0. After
that, q1(5.2083) = 2 (because ẋ1(5.2083) > 0). If
we reevaluate ẋ2 for q2 = 19 and q2 = 21 it results
lower than zero in both cases, so the correct value is
q2(5.2083) = 19 because in this way x2 goes to q2.

With these values of q1 and q2 the following state
derivatives are obtained: ẋ1(5.2083) = 0.19 and
ẋ2(5.2083) = −80. The next change in q1 is sched-
uled to t = 1/0.192+1/0.19 ≈ 10.47149, while the one
in q2 is scheduled to t = 1/0.192+1/80 ≈ 5.22083. So,
the next step is given in t = 5.22083, when x2 reaches
q2.

Calculations follow in this way. Fig.3 show the evo-
lution of q1(t) and q2(t) through 500 units of simulated
time. As it can be seen, in this method the fast oscil-

0 50 100 150 200 250 300 350 400 450 500
−5

0

5

10

15

20

25

t

q 1
(t

),
x

1
(t

),
q 2

(t
),

x
2
(t

)

q1

q2

x1

x2

Figure 3: LIQSS Simulation

lations of q2 are not present. In this way, q1 changes
21 times and q2 changes 25 times, which totalizes 46
steps (this constitutes a rather decent result for a stiff
system).

B. LIQSS Definition

Given System (1), the LIQSS method approximates it
by Eq.(2), where each qj is defined by the following

function

qj(t) =





q
j
(t) if fj(q(t),u(t))(q

j
(t) − xj(t)) ≥ 0

qj(t) if fj(q(t),u(t))(qj(t) − xj(t)) ≥ 0
∧fj(q(t),u(t))(q

j
(t) − xj(t)) < 0

q̃j(t) otherwise
(10)

with

q
j
(t) =





q
j
(t−) − ∆Qj

if xj(t) − q
j
(t−) ≤ 0

q
j
(t−) + ∆Qj

if xj(t) − q
j
(t−) ≥ 2 · ∆Qj

q
j
(t−) otherwise

(11)

qj(t) = q
j
(t) + 2∆Qj (12)

q̃j(t) =

{
qj(t) −

1
Ajj

· fj(q
j(t),u(t)) if Ajj 6= 0

qj(t
−) otherwise

(13)
where qj(t) is equal to q(t−) except for the j–th com-
ponent, where it is equal to qj and Aj,j is the j, j com-

ponent of the Jacobian matrix evaluated in qj , i.e.,

Ajj =
∂fj

∂xj

∣∣∣∣
q

j ,u(t−)

(14)

As we shall see now, when Aj,j 6= 0, setting qj = q̃j

provokes (in the linear case) the situation ẋj = 0.

C. Calculation of q̃j

We take qj(t) equal to qj(t), except that the j–th com-
ponent is q

j
. Notice that we use q̃j when fj changes

the sign between q
j

and qj . Thus, an intermediate

point q̂j exists where fj = 0.
We take q̂j(t) equal to qj(t), except that the j–th

component is q̂j .
Defining

Aj =
∂fj

∂x

∣∣∣∣
q

j ,u(t−)

and the residual

g(x,u) = fj(x,u) − Ajx,

calling q̂j the point where fj = 0, we can write

fj(q
j ,u) = Ajq

j − Aj,jqj + Aj,jqj + g(qj ,u)

fj(q
j ,u) = Ajq

j − Aj,jqj
+ Aj,jqj

+ g(qj ,u)

fj(q̂
j ,u) = Aj q̂

j − Aj,j q̂j + Aj,j q̂j + g(q̂j ,u)

Taking into account that Ajq
j−Aj,jqj = Aj q̂

j−Aj,j q̂j

(because qj and q̂j only differ in the j–th component)
and considering that fj(q̂

j ,u) = 0, we can solve the
previous equations for q̂j , obtaining

q̂j = qj −
fj(q

j ,u)

Aj,j

+
g(qj ,u) − g(q̂j ,u)

Aj,j

(15)

In order to estimate Aj,j we can use the expression

Aj,j ≈
fj(q

j ,u) − fj(q
j ,u)

qj − q
j

(16)

If fj depends linearly on qj , Eq.(16) gives the exact
value of the Jacobian. Moreover, in that case the last
term in Eq.(15) results zero and q̃j = q̂j , i.e., the value
of q̃j provokes ẋj = 0.

In a nonlinear case, we will have q̃j ≈ q̂j , and ẋj ≈
0. Although the oscillations will not disappear in this
case, they will have a low frequency.

This is analogous to what linearly implicit discrete
time methods do by solving the implicit equation only
for the linear part of the problem, and this is the reason
for calling LIQSS to this method.

D. DEVS Implementation of LIQSS

The main difference between LIQSS and QSS is the
way in which q is obtained from x. Eq.(10) says that
qj not only depends on xj but also on q.

In QSS, the changes in qj are produced when xj dif-
feres from it in ∆Qj. Similarly, in LIQSS qj changes
when xj reaches qj . However, changes in qj can trig-
ger changes in other quantized variables because of
Eq.(10). In the same way, changes in some component
of uj can also change some quantized variable.

Following the idea of the DEVS implementation of
QSS, i.e., by the coupling of quantized integrators and
static functions, but taking into account the men-
tioned differences, we can obtain a DEVS model for
the LIQSS algorithm.

The structure of this implementation is shown in
Fig.4.

f1
LIQSS

Integrator

fn
LIQSS

Integrator

d1
u

dn

q1

qn

q

Figure 4: Block Diagram of LIQSS

Since the trajectories of uj(t) and qj(t) are piecewise
contant, the static funcions are the same than those of
QSS.

Then, we only need to define the LIQSS integrators
so that they calculate qj according to the definition of
LIQSS.

In order to build the DEVS model of the LIQSS
quantized integrator, we shall first analyze its behav-
ior.

Let us suppose that in time t the state xj reaches the
value of qj with a positive slope (ẋj(t

−) > 0). Then,
the upper and lower quantization functions qj and q

j

must be updated (increasing them by ∆Qj). In this
situation we first try with an output value qj(t) = qj =
qj(t

−) + ∆Qj.
If, due to the feedback, we receive an input event

with dj = ẋj(t) < 0, then we are in the situation
where we need to calculate the value q̂j that provokes
ẋj = 0, i.e., we estimate q̃j using Eq.(13), that in this
case takes the form

q̃j = qj −
1

Ajj

· dj

and we set qj(t) = q̃j (supposing that Aj,j 6= 0, other-
wise we just use qj = qj).

The value of Aj,j can be easily estimated using the
values of ẋj(t

−), ẋj(t), qj(t
−) and qj(t).

It could happen that the integrator then receives
(also at time t) another event with a nonzero value
(because of the error in the calculation of q̂j). In this
case we shall not calculate any further value for qj at
time t.

In the opposite case (when xj reaches qj from above)
we proceed in an analogous way.

The other case in which qj changes and the quan-
tized integrator must provoke output events is when a
change in the sign of the derivative is received. Sup-
pose that xj was going up towards qj = qj and at
time t (due to the change in some quantized variable
or input), an event with dj = ẋj(t) < 0 is received.

Then, the integrator must send the new output value
qj(t) = q

j
so that xj goes towards qj . In this case, it

can also happen that, due to the feedback, a new event
with ẋj < 0 is received at time t and we are again in
the situation where we need to calculate q̂j . In this
case, we proceed exactly as before, calculating q̃j and
ignoring any further change of sign at time t.

As before, the case where xj is initially going down
to qj is completely analogous to the one described
above.

In any situation, after calculating qj , it results easy
to schedule the next output event time:

σj =





(qj(t) − xj(t))/dj if dj > 0
(xj − q

j
(t))/dj if dj < 0

∞ otherwise

The behavior described for the quantized integrator
can be easily translated into a DEVS model.

E. Second Order LIQSS: Basic Idea

The second order linearly implicit method, called
LIQSS2, was developed combining the ideas of QSS2
and LIQSS.

The quantized variables of this new method are
piecewise linear instead of being piecewise constant
and they are chosen in order to verify ẍj ·(qj −xj) > 0,
i.e., so that xj goes towards qj .

As an example, in Figure 5 a general trajectory is
shown following this idea.

q
x

t1

Figure 5: LIQSS2 Trajectories

Analogously to the case of LIQSS and BQSS, it can
happen that the sign of ẍj changes when we start a
new segment of qj(t). Then, an intermediate slope mj

exists that makes ẍj = 0. In this case, we can also
select the initial value qj of the new segment so that
ẋj = mj , i.e., we can make the state trajectory to run
parallel to the quantized trajectory so that no events
are generated. Both values, qj and mj , can be easily
obtained when ẋj depends linearly on qj .

If we simulate System (4) from the same initial con-
ditions but with quanta ∆q1 = 0.1 and ∆q2 = 0.1 (10
times smaller than before), the LIQSS2 method only
performs 59 steps (20 changes in q1 and 39 in q2). The
simulation results can be seen in Figure 6

0 50 100 150 200 250 300 350 400 450 500
0

5

10

15

20

25

t

q 1
(t

),
x

1
(t

),
q 2

(t
),

x
2
(t

) x1

q1

q2

x2

Figure 6: LIQSS2 Simulation

F. LIQSS2 Definition

Given the system (1), the LIQSS2 method approxi-
mates it by (2), where each component qj is defined
as:

qj =





qj(t) if ẍj(t) > 0∨
(ẍj(t) = 0 ∧ ẋj(t) > mj)

q
j
(t) if ẍj(t) < 0∨

(ẍj(t) = 0 ∧ ẋj(t) <= mj)
q̃j(t) otherwise

(17)

with

q
j
(t) =






xj(t0) − ∆Qj if t = t0
q

i
(t−) + ∆Qj

if (xj(t) = q
j
(t−) + 2∆Qj

q
i
(t−) − ∆Qj

if (xj(t) = q
j
(t−)

q
j
(tj) + mj · (t − tj) otherwise

(18)

qj(t) = q
j
(t) + 2 · ∆Qj (19)

q̃j(t) =






mj(t) − ẍ(t−)
Aj,j

+ qj(t
−)

if Aj,j 6= 0
qj(t

−) otherwise

(20)

and

mj =





mj(t
−) if qj(t

−) = qj(t)

ẋj(t
−) if (ẍj(t) · ẍj(t

−) > 0 ∨ Aj,j = 0)

∧qj(t
−) 6= qj(t)

mj(t
−) −

ẍj(t
−)

Aj,j
otherwise

(21)
Note that in Eq.(21), the condition ẍj(t) · ẍj(t

−) < 0
means that an intermediate value mj exists so that
ẍj = 0. In a linear system this value can be cal-
culated analogously to LIQSS with the expression
mj(t) = mj(t

−) − ẍj(t
−)/Aj,j . In a nonlinear case,

we shall also obtain an approximate value.

G. DEVS Implementation of LIQSS2

The simulation scheme for LIQSS2 is the same than
before (Fig.4), but now the trajectories are piecewise
linear an parabolic.

Since the quantized variable trajectories of LIQSS2
are, as in QSS2, piecewise linear, the static functions
are the same of QSS2.

The main difference between QSS2 and LIQSS2 is
the way in which the quantized state variable trajec-
tories are calculated in the integrator.

Each segment of the quantized variable trajectory
can be characterized by an initial point qj and a slope
mqj . In the same way, the state derivative can be
characterized by the pair (dj , mdj). Thus, each input
and output event of the quantized integrator will carry
two numbers.

Let us then analyze the behavior of the resulting
DEVS model. Suppose that at time t the state xj

reaches either qj or q
j

with ẍj(t
−) > 0. Using the fact

that xj is piecewise parabolic, we know both ẋj(t
−)

and ẍj(t
−). Thus, we set the new segments of qj and

q
j

with slope mq = ẋj(t
−) and initial values xj +∆Qj

and xj − ∆Qj respectively. Then, as ẍj(t
−) > 0 we

select qj(t) = qj(t).

It could happen that, due to the feedback, at time t
we then receive an event with slope mdj(t) = ẍj(t) <
0. Thus, an intermediate output slope m̂qj between

the old and the new one exists that provokes the sit-
uation mdj = ẍj = 0. If Aj,j 6= 0, this slope can be
estimated as

m̂qj(t) ≈ m̃qj(t) = mqj(t
−) −

ẍ(t−)

Aj,j

(22)

We also calculate the value q̂j(t) that makes mdj =
ẋj(t) = m̂qj(t):

q̂j(t) ≈ q̃j(t) =
m̃qj(t) − ẍ(t−)

Aj,j

+ xj(t
−)

Thus, we update the slopes of q
j

and qj to the value

m̃qj and we output an event with the pair (q̃j , m̃qj .
Like the case of LIQSS, if we receive another event

at time t we do not produce any further output event.
Another situation in which qj changes is when an

event with a change in the sign of the second deriva-
tive is received. Suppose that xj was moving towards
qj with ẍj > 0 and at time t an event is received with
mdj = ẍj < 0 (due to the change is some other quan-
tized or input variable).

Thus, we first try with qj = q
j
(t) and we update

the slope mqj = ẋj(t
−). If, due to feedback, we re-

ceive another event at time t with mdj > 0, we must
calculate the value m̂qj that makes mdj = 0, and we
repeat what we did from Eq.(22).

Once qj is calculated, we must schedule the next
event time. The time to the next event is given by the
first crossing of xj with either qj or q

j
. This can be

calculated as the minimum positive solution σj of the
following equations

xj(t) + ẋj(t) · σj +
1

2
ẍj(t)σ

2
j = qj

xj(t) + ẋj(t) · σj +
1

2
ẍj(t)σ

2
j = q

j

Similarly to the case of LIQSS, Aj,j can be estimated
as:

Aj,j(t) =
mdj(t

−) − mdj

mqj(t−) − mqj(t)

All these ideas can be easily translated into the DEVS
model of the LIQSS2 quantized integrator.

H. PowerDEVS Implementation

PowerDEVS (Pagliero et al., 2003) is a software tool
for DEVS simulation. It has a graphical editor that
permits building block diagrams of DEVS models.
PowerDEVS libraries contain all the blocks needed to
implement the QSS methods, including quantized in-
tegrators, static functions, source terms and blocks for
discontinuity handling.

The DEVS models corresponding to both LIQSS
methods were added to the generic quantized integra-
tor that implementes the QSS methods. Now, this
block permits selecting among the following methods:
QSS, QSS2, QSS3, BQSS, CQSS, LIQSS and LIQSS2.

This block also permits selecting the quantum and the
initial state value.

Section V.illustrates the use of these new methods
in PowerDEVS.

IV. THEORETICAL PROPERTIES

We shall treat here the most important properties of
the LIQSS methods. We shall show first that the
methods perform a finite number of steps in a finite
interval of time (this guarantees that the simulation
time will always advance). Then we shall analyze the
stability and accuracy properties.

A. Trajectories and Legitimacy of LIQSS

A crucial requirement of QSS methods is the legiti-
macy condition, which ensures that a finite number of
events occurs in any finite interval of time. The fol-
lowing theorem proves this property for the first order
LIQSS method.

Theorem 1. Suppose that function f in (1) is bounded
in a domain D × Du, where D ⊂ ℜn, Du ⊂ ℜm and
assume that the trajectory u(t) ∈ Du is piecewise con-
stant. Then,

1. Any solution x(t) of (2) is continuous while q(t)
remains in D.

2. The trajectory q(t) is piecewise constant while it
remains in D.

Proof. The proof of (1) is straightforward since, ac-
cording to (2), the derivative of x is bounded.

For the item (2), in order to prove that q is piecewise
constant it is necessary to ensure that it only experi-
ences a finite number of changes in any finite interval
of time.

Let (t1, t2) be an arbitrary interval of time in which
q(t) remains in D. We shall prove that, within this
interval, q(t) has a finite number of changes.

The assumptions of the theorem ensure that f(q,u)
is bounded and, taking into account the relation be-
tween xj and qj , positive constants f̄j exist so that,
for t ∈ (t1, t2)

|ẋj(t)| ≤ f̄j ; for j = 1, . . . , n.

Let tc ∈ (t1, t2) and suppose that qj(t
−

c) 6= qj(t
+
c).

According to (12), this situation cannot be repeated
until |xj(t)−xj(tc)| ≥ ∆Qj . Thus, the minimum time
interval between two discontinuities in qj(t) is

tj =
∆Qj

f̄j

Then, calling nj the number of changes of qj(t) in the
interval (t1, t2), it results that

nj ≤ (t2 − t1)
f̄j

∆Qj

Since u(t) is piecewise constant, it will perform a finite
number of changes nu in the interval (t1, t2).

The definition of qj ensures that it can only change
when qj(t) changes or when there is a change in some
other quantized or input variable (qi(t) or ui(t)) that
inverts the sign of ẋj .

In conclusion, changes in qj(t) are linked to changes
in some qi(t) or ui(t). Thus, the total number of
changes will be equal or less than the sum of all the
changes in those variables, i.e.,

nj ≤ nu + (t2 − t1)
n∑

i=1

f̄i

∆Qi

which is a finite number.

Although this theorem is only valid for the first or-
der LIQSS method, an analog result for LIQSS2 can
be obtained combining this proof with that of QSS2
(Kofman, 2002).

B. Perturbed representation

The theorical properties of the QSS methods are based
in a perturbed representation of the original system (1)
that is equivalent to the approximation Eq.(2). Defin-
ing ∆x(t) = q(t)−x(t) each row of System (2) can be
rewritten as:

ẋi = fi(x(t) + ∆x(t),u(t)) (23)

From (10), (11), (12) and (13) in the definition, it can
be ensured that each component ∆xi(t) of ∆x(t) is
bounded by1

|∆xi(t)| ≤ 2 · ∆Qi (24)

where ∆Qi is the quantization adopted for xj(t).
Thus, the LIQSS methods simulate an approximate
system which only differ from the original SES(1) due
to the presence of the bounded state perturbation.

C. Global Error Bound and Stability

Given the LTI system

ẋa(t) = Axa(t) + Bu(t) (25)

were A is a Hurwitz matrix with Jordan canonical form
Λ = V −1AV , the LIQSS(2) approximation simulates
the system

ẋ = A(x(t) + ∆x(t)) + Bu(t) (26)

Defining the error as e(t) = x(t) − xa(t), and follow-
ing the procedure of (Kofman, 2002) and (Cellier and
Kofman, 2006), it results that

|e(t)| ≤ |V ||Re(Λ)−1Λ||V −1|2∆Q (27)

where ∆Q is the vector of quantum adopted.
The error bound is twice the error bound of QSS,

QSS2 and QSS3.

1The symbols | · | and “≤” denote the componentwise module

and inequallity, respectively.

D. Equilibrium Points

One of the drawbacks of BQSS was the appearence
of spurious equilibrium points. Due to the term ∆f ,
Eq.(6) admits equilibrium points also when f(q,u) 6=
0.

However, the only possibility in which LIQSS
or LIQSS2 arrive to an equilibrium point is when
f(q,u) = 0, i.e., when the quantized variables reach
an equilibrium point.

V. EXAMPLES

This section is aimed to introduce some examples
which show the advantages of the LIQSS methods.

A. Second Order Linear System

In Section II the following system was presented:

ẋ1 = 0.01x2

ẋ2 = −100x1 − 100x2 + 2020
(28)

with initial conditions x1(0) = 0 and x2(0) = 20
The system was first simulated using LIQSS and

LIQSS2 methods with quantum ∆Qi = 1. Then, the
simulations were repeated decreasing the quantum 10,
100 and 1000 times. The following table shows the
number of steps performed for each method using the
mentioned quantization:

∆Qi LIQSS1 LIQSS2
Nox1 Nox2 Total Nox1 Nox2 Total

1 21 25 46 8 17 24
0.1 201 203 404 20 39 59
0.01 2006 2026 4032 60 126 186
0.001 20064 28174 48238 186 391 577

This table shows that the number of steps performed
by LIQSS linearly varies with the quantization, while
the number of steps in LIQSS2 grows approximately
with the square root of the quantum reduction.

Figure 7 shows the simulation results using Simulink
ODE15s with tolerance 10−3 and PowerDEVS with
∆Qi = 0.001 (the difference between both methods
cannot be appreciated with the naked eye).

0 50 100 150 200 250 300 350 400 450 500
0

5

10

15

20

25

t

x
1
,x

2

x1

x2

Figure 7: Linear Stiff System Simulation

The simulation time could not be evaluated under
PowerDEVS using ∆Qi = 0.001 (it was too small in or-
der to be accurately measure). Thus, we compared the

simulation times using quantum ∆Qi = 0.0001. The
simulation in Simulink takes 0.078 seconds (ODE15s,
in accelerated mode, with tolerance 10−3), while in
PowerDEVS it takes 0.015 seconds.

The global error bound –Eq.(27)– ensures that the
error in the LIQSS2 simulation is always less than 2 ·
10−4 in x1 and 6 · 10−4 in x2.

Figure (8) shows the simulation error in Pow-
erDEVS with quanta ∆Qi = 0.0001. Comparing it
with the theoretical bound, we see that the last one is
a bit conservative.

0 50 100 150 200 250 300 350 400 450 500
−2

−1

0

1

2
x 10

−4

0 50 100 150 200 250 300 350 400 450 500
−1

−0.5

0

0.5

1
x 10

−4

x
1
er

ro
r

t

t

x
2
er

ro
r

Figure 8: Error

B. Van der Pol Oscillator

The problem consists of a second order differential
equation proposed by B. van der Pol in the 1920’s,
that describes the behavior of nonlinear vacuum tube
circuits. It has two periodic solutions, the constant
solution, z(t) = 0, which is unstable, and a nontriv-
ial periodic solution that corresponds to an attractive
limit cycle. The equation depends on a parameter that
weights the importance of the nonlinear part of the
equation. The corresponding state equations are:

ẋ1(t) = x2

ẋ2(t) = (1 − x2
1) · µ − x1

(29)

We fixed the parameter µ = 1000, what gives rise to a
stiff problem that is often used as a test problem for
stiff ODEs solvers (Enright and Pryce, 1987).

The model was then built in PowerDEVS (Fig.9)
For the simulation, we used initial conditions

x1(0) = 2, x2(0) = 0 and quantization ∆Q1 = 0.001,
∆Q2 = 1. We simulated the system with LIQSS2 until
tf = 4000. The results are shown in Figure 10. The
total number of steps was 2159 (838 in x1 and 1321 in
x2). The simulation takes 0.031 seconds.

The same system was simulated using different Mat-
lab/Simulink methods. The best results were obtained
with ODE15s. In order to obtain similar results to the
ones given by PowerDEVS the tolerance error must be
set to 10−14. Using larger tolerances the results were
qualitatively similar but with a significant phase er-
ror. In this case, the number of steps was 2697 and
the simulation takes 0.056 seconds.

Figure 9: PowerDEVS model of the Van der Pol oscil-
lator

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−3

−2

−1

0

1

2

3

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−1500

−1000

−500

0

500

1000

1500

x
1

t

t

Figure 10: Van der Pol oscillator simulation

It must be taken into account as we compare the
results, that the order of LIQSS2 is smaller that the
one of ODE15s.

Finally, the system was simulated again using
LIQSS2 but with quanta ∆Q1 = 0.0001 and ∆Q2 =
0.1 (ten times smaller). The number of steps per-
formed result 4148(1975 in x1 and 2173 in x2) and the
simulation takes 0.047 seconds. Comparing this result
with the previous one, it can be seen that the number
of steps was increased just in a factor of 2 while the
quantized levels were reduced in a factor of ten. This
put in evidence the second order nature of the LIQS2
method

VI. CONCLUSIONS

We presented two novel QBI methods that are able to
integrate stiff systems based on linearly implicit prin-
ciples. The fact that the methods do not call for it-
erations permits achieving an important reduction of
computational costs when compared with traditional
implicit discrete time methods.

We showed that these methods, satisfy the global
error bound property of QSS method.

We showed that these methods, satisfy the global
error bound property of QSS method.

The methods improve the performance of BQSS by
solving the problem of the spurious equilibrium points

and by increasing to 2 the order of accuracy.
Future work must be done in order to develop higher

order methods (following the idea of QSS3 for in-
stance). It is also important to establish which kind
of stiff system can be efficiently simulated with LIQSS
methods.

REFERENCES

Cellier, F. and E. Kofman, Continuous System Simu-
lation, Springer, New York (2006).

Enright, W. H. and J. D. Pryce, “Two (fortran) pack-
ages for assessing initial value methods,” (ACM)
Transactions on Mathematical Software, 13(1), 1–
27 (1987).

Hairer, E., S. Norsett, and G. Wanner, Solving Or-
dinary Differential Equations I. Nonstiff Problems,
Springer, 2nd edition (1993).

Hairer, E. and G. Wanner, Solving Ordinary Differen-
tial Equations II. Stiff and Differential–Algebraic
Problems, Springer, 1st edition (1991).

Kofman, E., “A Second Order Approximation for
DEVS Simulation of Continuous Systems,” Sim-
ulation, 78(2), 76–89 (2002).

Kofman, E., “Discrete Event Simulation of Hybrid
Systems,” SIAM Journal on Scientific Computing,
25(5), 1771–1797 (2004).

Kofman, E., “A Third Order Discrete Event Simula-
tion Method for Continuous System Simulation,”
Latin American Applied Research, 36(2), 101–108
(2006).

Kofman, E. and S. Junco, “Quantized State Systems.
A DEVS Approach for Continuous System Simula-
tion,” Transactions of SCS, 18(3), 123–132 (2001).

Migoni, G., E. Kofman, and F. Cellier, “Integración
por Cuantificación de Sistemas Stiff,” Revista
Iberoam. de Autom. e Inf. Industrial, 4(3), 97–
106 (2007).

Pagliero, E., M. Lapadula, and E. Kofman, “Pow-
erDEVS. Una Herramienta Integrada de Sim-
ulación por Eventos Discretos,” Proceedings of
RPIC’03,, San Nicolas, Argentina 1, 316–321
(2003).

Zeigler, B., T. Kim, and H. Praehofer, Theory of Mod-
eling and Simulation, Academic Press, New York,
2nd edition (2000).

