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Abstract

In this article we propose a modification to Linearly Implicit Quan-
tized State System Methods (LIQSS), a family of methods for solving
stiff ODE’s that replace the classic time discretization by the quantiza-
tion of the state variables. LIQSS methods were designed to efficiently
simulate stiff systems but they only work when the system has a par-
ticular structure. The proposed modification overcomes this limitation
allowing the algorithms to efficiently simulate stiff systems with more
general structures. Besides describing the new methods and their algo-
rithmic descriptions , the article analyzes the algorithms performance
in the simulation of some complex systems.

1 Introduction

The simulation of continuous time models requires the numerical integration
of the Ordinary Differential Equations (ODEs) that represent them. The
literature on numerical methods for ODEs [1, 2, 3] contains hundreds of al-
gorithms with different features that make them suitable for solving different
types of problems.

Some ODE systems exhibit certain characteristics that pose difficulties
to numerical ODE solvers. The presence of simultaneous fast and slow dy-
namics, known as stiffness, is one of these cases. Due to stability reasons,
these systems enforce the usage of implicit ODE solvers that must perform
expensive iterations over sets of nonlinear equations at each time step. The
presence of discontinuities is another difficult case, where the ODE solvers
must detect their occurrence using iterative procedures, restarting the simu-
lation after each event.

ODE models coming from power electronics, spiking neural networks,
multi-particle collision dynamics, and several other technical areas, exhibit
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very frequent discontinuities and, sometimes, stiffness. Consequently, the
simulation of these systems becomes very expensive.

In the last years, a new family of numerical ODE solvers that can effi-
ciently handle discontinuities was developed. These algorithms, called Quan-
tized State System (QSS) [1, 4], replace the time discretization performed by
classic ODE solvers by the quantization of the state variables. Regarding
stiffness, a family of Linearly Implicit QSS (LIQSS) solvers was recently de-
veloped [5], that can efficiently simulate some of these systems.

A limitation of LIQSS algorithms is that they require that the stiffness
is due to the presence of large entries on the main diagonal of the Jacobian
matrix of the system. Otherwise, spurious oscillations may appear on the
simulated trajectories impoverishing the performance.

In this article, extending the preliminary results on the first order accu-
rate LIQSS1 algorithm presented in [6], we propose a modification of LIQSS
methods of order 1 and 2 that overcomes that limitation. Although the mod-
ified LIQSS (mLIQSS) algorithms do not cover all stiff structures, we show
that they work in several practical cases.

Besides introducing the new algorithms, we analyze their properties, we
describe their implementation in the stand-alone QSS solver [7] and we
present simulation results, comparing the performance of the new methods
with that of the original LIQSS algorithms as well as that of classic solvers
like DASSL and DOPRI.

The paper is organized as follows: Section 2 introduces the previous con-
cepts and definitions used along the rest of the work. Then, Section 3 de-
scribes the new algorithms and their implementation. Finally, Section 4
presents the simulation results and Section 5 concludes the article.

2 Background

This section provides the background required to tackle the rest of the article.
Starting with a brief description of the problems suffered by classic ODE
solvers when dealing with discontinuous and stiff systems, the family of QSS
solvers is presented.

2.1 Numerical Integration of Stiff and Discontinuous
ODEs

Many dynamical systems of practical relevance, both in science and engi-
neering, are stiff. Integration of these systems using traditional numerical
methods based on time discretization requires the use of implicit algorithms,
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because all explicit methods must necessarily restrict the integration step to
ensure numerical stability.

The reason is that the numerical stability domains of all explicit numer-
ical ODE solvers invariably bend into the left–half complex λ · h plane, and
algorithms with stability domains looping in the left–half plane force small
step sizes, h, on the numerical ODE solver, in order to capture all eigenval-
ues, λi, of a stiff system inside the numerically stable region. The only way
to avoid that the integration step size be limited by numerical stability is us-
ing implicit algorithms, the stability domains of which bend into right–half
complex plane, a characteristic that can be observed in some, but not all,
implicit ODE solvers. Such solvers are referred to as stiff ODE solvers. In
return, implicit methods have higher computational cost than explicit ones,
because they call for iterative algorithms in each step to calculate the next
value.

Regarding discontinuities, it must be taken into account that classic algo-
rithms are based, either explicitly or implicitly, on Taylor series expansions
[1] that express the solution at the next time tk+1 as polynomials in the
step size h around the current time tk. As discontinuous trajectories cannot
be represented by polynomials, the numerical algorithms usually introduce
unacceptable errors when a discontinuity occurs between time tk and tk+1.

To avoid this problem, ODE solvers must detect the exact instant at
which the discontinuity occur, advance the simulation until that time, and
restart the simulation from the new conditions. This strategy, known as zero
crossing detection and event handling, is expensive in terms of computational
costs as the zero crossing location usually involves iterations.

2.2 Quantized State System Methods

QSS methods replace the time discretization of classic numerical integration
algorithms by the quantization of the state variables.

Given a time invariant ODE in its State Equation System (SES) repre-
sentation:

ẋ = f(x(t), t) (1)

where x(t) ∈ Rn is the state vector, the first order Quantized State System
(QSS1) method [4] analytically solves an approximate ODE called Quantized
State System:

ẋ = f(q(t), t) (2)

Here, q(t) is the quantized state vector that follows piecewise constant
trajectories. Each quantized state qi(t) is related to the corresponding state
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xi(t) by a hysteretic quantization function:

qi(t) =

{
xi(t) if |qi(t−)− xi(t)| = ∆Qi

qi(t
−) otherwise

This is, qi(t) only changes when it differs from xi(t) by a magnitude ∆Qi

called quantum. After each change in the quantized variable, it results that
qi(t) = xi(t).

Since the quantized state trajectories qi(t) are piecewise constant, then,
the state derivatives ẋi(t) also follow piecewise constant trajectories and,
consequently, the states xi(t) follow piecewise linear trajectories.

Due to the particular form of the trajectories, the numerical solution of
Eq. (2) is straightforward and can be easily translated into a simple simula-
tion algorithm.

For j = 1, . . . , n, let tj denote the next time at which |qj(t)− xj(t)| =
∆Qj. Then, the QSS1 simulation algorithm works as follows:

Algorithm 1: QSS1.

1 while(t < tf) // simulate until final time tf

2 t = min(tj) // adavance simulation time

3 i = argmin(tj) // the i-th quantized state changes first

4 e = t− txi // elapsed time since last xi update . (tx is an
array containing the last update time of each state.)

5 xi = xi + ẋi · e // update i-th state value

6 qi = xi // update i-th quantized state

7 ti = min(τ > t) subject to |qi − xi(τ)| = ∆Qi // compute next i-th

quantized state change

8 for each j ∈ [1, n] such that ẋj depends on qi
9 e = t− txj // elapsed time since last xj update

10 xj = xj + ẋj · e // update j-th state value

11 if j 6= i then txj = t // last xj update

12 ẋj = fj(q, t) // recompute j-th state derivative

13 tj = min(τ > t) subject to |qj − xj(τ)| = ∆Qj // recompute j-th

quantized state changing time

14 end for
15 txi = t // last xi update

16 end while

QSS1 has very nice stability and error bound properties: the simulation
of a stable system provides stable results [4] and the maximum simulation
error (in the simulation of a linear time invariant system) is bounded by a
linear function of the quantum size ∆Q.

Since the states follow piecewise linear trajectories, the instant of times
at which they cross a given threshold can be computed without iterations,

4



allowing the straightforward detection of discontinuities. Moreover, when
a discontinuity occurs, it will eventually change some state derivatives in
the same way a change in a quantized variable does during a normal step.
That way, the simulation does not need to be restarted. In conclusion, the
detection and handling of a discontinuity does not take more computational
effort than that of a single step. Thus, the QSS1 method is very efficient to
simulate discontinuous systems [8].

In spite of this advantage and the fact that it has some nice stability and
error bound properties [1], QSS1 performs only a first order approximation
and it cannot obtain accurate results without significantly increasing the
number of steps. This accuracy limitation was improved with the definition
of the second and third-order accurate QSS methods called QSS2 [9] and
QSS3 [10], respectively.

QSS2 and QSS3 have the same definition of QSS1 except that the compo-
nents of q(t) are calculated to follow piecewise linear and piecewise parabolic
trajectories, respectively.

The simulation algorithm for QSS2 is similar to that of QSS1, except
that it also computes the quantized state slopes q̇i(t) and the state second
derivative ẍi(t) as it is sketched below:

Algorithm 2: QSS2.

1 while(t < tf) // simulate until final time tf

2 t = min(tj) // adavance simulation time

3 i = argmin(tj) // the i-th quantized state changes first

4 e = t− txi // elapsed time since last xi update

5 // update i-th state value and its derivative

6 xi = xi + ẋi · e+ 0.5 · ẍi · e2
7 ẋi = ẋi + ẍi · e
8 // update i-th quantized state

9 qi = xi
10 q̇i = ẋi
11 ti = min(τ > t) subject to |qi(τ)− xi(τ)| = ∆Qi // compute next i-

th quantized state change

12 for each j ∈ [1, n] such that ẋj depends on qi
13 e = t− txj // elapsed time since last xj update

14 // update j-th state value and its derivatives

15 xj = xj + ẋi · e+ 0.5 · ẍj · e2
16 ẋj = fj(q(t), t) // recompute state derivative

17 ẍj = ḟj(q(t), t) // recompute state second derivative

18 tj = min(τ > t) subject to |qj(τ)− xj(τ)| = ∆Qj // compute next

j-th quantized state change

19 if j 6= i then txj = t // last xj update

20 end for
21 txi = t // last xi update

5



22 end while

QSS2 steps are more expensive than those of QSS1. In particular, there
are two scalar function evaluations to compute ẋj and ẍj (lines 16–17) and
the calculation of the next quantized state change in line 18 involves solving
a quadratic equation. This additional cost is compensated by the fact that
QSS2 can perform much larger steps achieving better error bounds.

QSS2 and QSS3 share the same advantages and properties of QSS1, i.e.,
they satisfy stability and error bound properties and they are very efficient
to simulate discontinuous systems.

2.3 Linearly Implicit QSS Methods

In spite of these advantages, QSS1, QSS2 and QSS3 methods are inefficient
to simulate stiff systems. In presence of simultaneous slow and fast dynamics,
these methods introduce spurious high frequency oscillations that provoke a
large number of steps with its consequent computational cost [1].

To overcome this problem, the family of QSS methods was extended with
a set of algorithms called Linearly Implicit QSS (LIQSS) which are appro-
priate to simulate some stiff systems [5]. LIQSS methods combine the prin-
ciples of QSS methods with those of classic linearly implicit solvers. There
are LIQSS algorithms that perform first, second and third-order accurate
approximations: LIQSS1, LIQSS2, and LIQSS3, respectively.

The main idea behind LIQSS methods is inspired in classic implicit meth-
ods that evaluate the state derivatives at future instants of time. In classic
methods, these evaluations require iterations and/or matrix inversions to
solve the resulting implicit equations. However, taking into account that
QSS methods know the future value of the quantized state (it is qi(t)±∆Qi),
the implementation of LIQSS algorithms is explicit and does not require it-
erations or matrix inversions.

LIQSS methods share with QSS methods the definition of Eq. (2), but the
quantized states are computed in a more involved way, taking into account
the sign of the state derivatives.

In LIQSS1 the idea is that qi(t) is set equal to xi(t) + ∆Qi(t) when the
future state derivative ẋi(t

+) is positive. Otherwise, when the future state
derivative is negative qi(t) is set equal to xi(t) − ∆Qi(t). Then, when xi
reaches qi, a new step is taken. That way, the quantized state is a future
value of the state and the derivatives in Eq. (2) are computed using a future
state value, as in classic implicit algorithms.

In order to predict the sign of the future state derivative the following
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linear approximation for the i–th state dynamics is used:

ẋi(t) = Ai,i · qi(t) + ui,i(t) (3)

where Ai,i = ∂fi
∂xi

is the i-th main diagonal entry of the Jacobian matrix and
ui,i(t) = fi(q(t), t)− Ai,i · qi(t) is an affine coefficient.

It could happen that Ai,i ·(xi(t)+∆Qi)+ui,i(t) < 0, i.e., when we propose
to use qi(t) = xi(t)+∆Qi the derivative ẋi(t

+) becomes negative. It can also
happen that Ai,i · (xi(t) − ∆Qi) + ui,i(t) > 0. Thus, qi(t) cannot be chosen
as a future value for xi(t). However, in that case, qi can be chosen such that
ẋi(t) = 0. That equilibrium value for qi can be calculated from Eq.(3) as

qi = − ui,i
Ai,i

(4)

Then, the LIQSS1 simulation algorithm works as follows:

Algorithm 3: LIQSS1.

1 while(t < tf) // simulate until final time tf

2 t = min(tj) // adavance simulation time

3 i = argmin(tj) // the i-th quantized state changes first

4 e = t− txi // elapsed time since last xi update

5 xi = xi + ẋi · e // update i-th state value

6 q−i = qi // store previous value of qi

7 ẋ−i = ẋi // store previous value of dxi /dt

8 ẋ+i = Ai,i · (xi + sign(ẋi) ·∆Qi) + ui,i // future state derivative

estimation using last linear approximation stored in
arrays A and u.

9 if (ẋi · ẋ+i >0) // the state derivative keeps its sign

10 qi = xi + sign(ẋi) ·∆Qi

11 else // the state changes its direction

12 qi = −ui,i/Ai,i // choose qi such that dxi /dt = 0

13 end if
14 ti = min(τ > t) subject to xi(τ) = qi // compute next i-th

quantized state change

15 for each j ∈ [1, n] such that ẋj depends on qi
16 e = t− txj // elapsed time since last xj update

17 xj = xj + ẋj · e // update j-th state value

18 if j 6= i then txj = t// last xj update

19 ẋj = fj(q, t) // recompute j-th state derivative

20 tj = min(τ > t) subject to xj(τ) = qj or |qj − xj(τ)| = 2∆Qj //

recompute next j-th quantized state change

21 end for
22 // update linear approximation coefficients

23 Ai,i = (ẋi − ẋ−i )/(qi − q−i ) // Jacobian diagonal entry

24 ui,i = ẋi −Ai,i · qi // affine coefficient

25 txi = t // last xi update

26 end while
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It can be seen that LIQSS1 steps only add a few calculations to those of
QSS1. In particular, LIQSS1 estimates the future state derivative using a
linear model (line 8) and it estimates the Jacobian main diagonal entry Ai,i

and the affine coefficient (lines 23–24).
Notice also that in line 20 the algorithm checks the additional condition

|qj − xj(τ)| = 2∆Qj, as a change in variable qi can change the sign of the
state derivative ẋj(t) so that xj does no longer approach qj. In this case,
we still ensure that the difference between xj and qj is bounded (by 2∆Qj).
However, we shall see then that the fact that xj does not always approach qj
may result into non efficient simulation of some stiff systems.

LIQSS1 shares the main advantages of QSS1 and it can efficiently inte-
grate stiff systems provided that the stiffness is due to the presence of large
entries in the main diagonal of the Jacobian matrix. Like QSS1, it cannot
achieve good accuracy, and higher order LIQSS methods were proposed.

The second order accurate LIQSS2 combines the ideas of QSS2 and
LIQSS1. In this case, like in QSS2, the quantized states follow piecewise
linear trajectories. This algorithm will be explained later.

2.4 Implementation of QSS Methods

The easiest way of implementing QSS methods is by building an equivalent
DEVS model, where the events represent changes in the quantized variables.
Based on this idea, the whole family of QSS methods were implemented
in PowerDEVS [11], a DEVS–based simulation platform specially designed
for and adapted to simulating hybrid systems based on QSS methods. In
addition, the explicit QSS methods of orders 1 to 3 were also implemented
in a DEVS library of Modelica [12] and implementations of the first–order
QSS1 method can also be found in CD++ [13] and VLE [14].

Recently, the complete family of QSS methods was implemented in a
stand–alone QSS solver [7] that improves DEVS–based simulation times in
more than one order the magnitude.

3 Modified LIQSS Algorithms

In this section, we first analyze the main limitation of LIQSS algorithms
concerning the appearance of fast oscillations in systems where the stiffness
is not due to large entries on the main diagonal of the Jacobian matrix. Then,
we propose an idea to overcome this problem, and using this approach, we
propose a first and second order accurate modified LIQSS methods.
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3.1 LIQSS limitations

The simulation of a stable first order system with QSS1 algorithm produces
a result that usually finishes with the state trajectory oscillating around the
equilibrium point [1]. These oscillations are the reason why QSS1 is not
efficient to simulate stiff systems.

That problem is solved by LIQSS1, that prevents the oscillations by tak-
ing the quantized state as a future value of the state. When it is not possible,
LIQSS1 finds the equilibrium point using a linear approximation.

However, LIQSS1 cannot ensure that qi is always the future value of xi
because, after computing qi, ẋi can change its sign due to a change in some
other quantized variable qj. In such case, then it can also happen that the
next change in qi triggers a change in the sign of ẋj. This situation may lead
to oscillations involving states xi and xj.

We shall illustrate this behaviour in a simple example. Consider the
following system

ẋ1 = −x1 − x2 + 0.2

ẋ2 = x1 − x2 + 1.2
(5)

with initial conditions x0 = [−4 4]T and quantum ∆Q1,2 = 1.
The successive steps of the simulation of this system with LIQSS1 algo-

rithm can be seen on Table 1. It can be noticed that at time t6 = 7.01, the
states and quantized states are identical to those at time t2 = 2.95. Thus, in-
stead of reaching the equilibrium, the simulation exhibits an oscillation with
period t6 − t2 = 4.06, as depicted in Fig.1.

time q1 q2 ẋ1 ẋ2 next time
t0 0 -4 4 0.2 -6.8 0.29
...

...
...

...
...

...
...

t1 1.65 0 0 0 1.2 2.95
t2 2.95 0 1.2 -1 0 4.21
t3 4.21 -1 1.2 0 -1 5.01
t4 5.01 -1 0.2 1 0 6.01
t5 6.01 0 0.2 0 1 7.01
t6 7.01 0 1.2 -1 0 8.01
t7 8.01 -1 1.2 0 -1 9.01
t8 9.01 -1 0.2 1 0 10.01

Table 1: Evolution of the simulation with former LIQSS1 algorithm.
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(a) With tf = 10sec. (b) With tf = 100sec.

Figure 1: Simulation of system (5) with LIQSS1 algorithm

If Eqs.(5) were part of a larger system with slower dynamics, those spu-
rious oscillations would provoke an unnecessary large number of simulation
steps. That way, LIQSS1 cannot efficiently simulate stiff systems having this
type of structure.

3.2 Basic Idea

In order to avoid the oscillations between pairs of variables, we propose to
check whether a quantized state update produces a significant change of some
other state derivative value, such as a change in the sign of it . If so, we
additionally check whether an eventual update of the second quantized state
would cause a significant change of the previous state derivative. Under this
situation, we expect that both variables experience spurious oscillations, and,
in order to prevent them, we apply a simultaneous change in both quantized
states using a linearly implicit step.

While this strategy may not solve general stiff structures, it will avoid
the appearance of oscillations between pairs of variables, which covers several
practical cases.

In order to deal with simultaneous changes in pairs of variables, we shall
exploit the resemblance of LIQSS1 steps with Backward Euler steps. In fact,
a change in a quantized state qi can be alternatively computed as

qi = xi + h · (Ai,i · qi + ui,i) (6)

where h is the largest step size such that

|qi − xi| ≤ ∆Qi (7)
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Notice that, provided that h is finite, then qi = xi+sign(ẋi)·∆Qi as stated in
line 10 of Algorithm 3. Otherwise, when h is infinite, then (Ai,i · qi +ui,i) = 0
as stated in line 12.

In other words, the calculation of qi can be done using a Backward Euler
step on the linear model approximation1 of Eq.(3) with a step size h defined
as the maximum step size that accomplishes the inequality of Eq.(7).

Also notice that this formulation does not require to check the sign of the
state derivatives.

3.3 Modified LIQSS1 (mLIQSS1)

Based on the idea expressed above, the modification introduced to the LIQSS1
algorithm consists in checking an additional condition to verify that after
changing a quantized state the other state derivatives do not significantly
change. To check this condition, for each pair of state variables xi, xj, such
that both influence each other state derivatives, a linear approximation of
the form

ẋi = Aii · qi + Aij · qj + uij

ẋj = Aji · qi + Ajj · qj + uji
(8)

is used. Here, Ai,j = ∂fi
∂xj

(q, t) is the i, j entry of the Jacobian matrix, and

uij = fi(q, t)− Aii · qi − Aij · qj is an affine coefficient.
If the new value of qi does not significantly change any state deriva-

tive computed with the linear approximation of Eq.(8), the algorithm works
identically to LIQSS1. Otherwise, we propose a new value for qj in the new
direction of xj. Then, we check if that proposed value for qj significantly
changes back ẋi. If it does not, we forget about the change in qj and the
algorithm follows identical steps to those of LIQSS1. In other case, we know
that an oscillation may appear between states xi and xj, so we compute both
quantized states qi and qj simultaneously using a Backward Euler step on
the linear model of Eq.(8).

Defining

qij ,

[
qi
qj

]
, xij ,

[
xi
xj

]
, ẋij ,

[
ẋi
ẋj

]
(9)

and

Aij =

[
Aii Aij

Aji Ajj

]
, uij ,

[
uij
uji

]
(10)

1Performing implicit steps on the linear approximation is similar to what classic Lin-
early Implicit algorithms do. The name of Linearly Implicit QSS is due to this reason.
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the backward Euler step is given by the equation

qij = xij + h · ẋij = xij + h · (Aij · qij + uij) (11)

that can be rewritten as

qij = (I− h ·Aij)
−1(xij + h · uij) (12)

where h is computed as the maximum step size so that the difference between
the states and the quantized states is bounded by the quantum.

Given an integration step h, Eq.(12) allows to compute the quantized
states qi and qj. The value of h should be such that the quantized states do
not differ from the states in a quantity that exceeds the quantum, i.e.,

|qi − xi| ≤ ∆Qi, |qj − xj| ≤ ∆Qj. (13)

The maximum value of h that accomplishes both inequalities can be found
analytically by solving Eq.(12) for h under qi = xi±∆Qi and qj = xj ±∆Qj

and taking the minimum among the different solutions. Alternatively, h can
be found by iterations on Eq.(12). In either case, Eq.(12) with the restrictions
imposed by Eq.(13), implicitly define a function that computes the maximum
value of h satisfying those restrictions, i.e.,

hmax = max be step(xij) , max(h : |qi−xi| ≤ ∆Qi∧ |qj−xj| ≤ ∆Qj) (14)

Thus, the mLIQSS1 simulation algorithm is identical to that of LIQSS1
until line 14. Afterwards it continues as follows:

Algorithm 4: mLIQSS1.

15 for each j ∈ [1, n] such that (i 6=j and Aij ·Aji 6= 0)
16 e = t− txj // elapsed time since last xj update

17 xj = xj + ẋj · e // update j-th state value

18 uji = ujj −Aji · q−i // affine coefficient

19 ẋ+j = Aji · qi +Ajj · qj + uji // next j-th state der . est .

20 if(|ẋj − ẋ+j | > |ẋj + ẋ+j |/2) // update in qi => significant

change in dxj /dt

21 q+j = xj + sign(ẋ+j ) ·∆Qj // update qj in future xj ’s

direction

22 uij = uii −Aij · qj // affine coefficient

23 ẋ+i = Aii · qi +Aij · q+j + uij // next i-th state der . est .

24 if(|ẋi − ẋ+i | > |ẋi + ẋ+i |/2) // update in qj => significant

change in dxi /dt

25 // presence of oscillations

26 q−j = qj // store previous value of qj
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27 ẋ−j = ẋj // store previous value of dxj /dt

28 h = MAX_BE_STEP_SIZE(xi, xj , ẋi, ẋj) // maximum BE step

size such that

|xi(k + 1)− xi(k)| ≤ ∆Qi ∧ |xj(k + 1)− xj(k)| ≤ ∆Qj

29 [qi, qj ] = BE_step(xi, xj , h) // qi and qj are computed using

a BE step size h from xi and xj

30 tqj = t // last qj update

31 tj = min(τ > t) subject to xj(τ) = qj or |qj − xj(τ)| = 2∆Qj //

compute next j-th quantized state

32 for each k ∈ [1, n] such that ẋk depends on qj
33 e = t− txk // elapsed time since last xk update

34 xk = xk + ẋk · e // update k-th state value

35 ẋ−k = ẋk // store previous value of dxk /dt

36 ẋk = fk(q, t) // recompute k-th state derivative

37 tk = min(τ > t) subject to xk(τ) = qk or |qk − xk(τ)| = 2∆Qk

// compute next k-th quantized state

38 Ak,j = (ẋk − ẋ−k )/(qj − q−j ) // Jacobian

39 txk = t // last xk update

40 end for
41 Aj,j = (ẋj − ẋ−j )/(qj − q−j ) // Jacobian diagonal entry

42 uj,j = ẋj(t)−Aj,j · qj // affine coefficient

43 end if
44 end if
45 end for
46 for each j ∈ [1, n] such that ẋj depends on qi
47 e = t− txj // elapsed time since last xj update

48 xj = xj + ẋj · e // update j-th state value

49 ẋ−j = ẋj // store previous value of dxj /dt

50 ẋj = fj(q, t) // recompute j-th state derivative

51 tj = min(τ > t) subject to xj(τ) = qj or |qj − xj(τ)| = 2∆Qj //

compute next j-th quantized state

52 Aj,i = (ẋj − ẋ−j )/(qi − q−i ) // Jacobian

53 txj = t // last xj update

54 end for
55 // update linear approximation coefficients

56 Ai,i = (ẋi − ẋ−i )/(qi − q−i ) // Jacobian diagonal entry

57 ui,i = ẋi(t)−Ai,i · qi // affine coefficient

58 txi = t // last xi update

59 end while

Notice that this new algorithm adds the calculation of a simultaneous step
on states xi and xj (lines 28–29), but this only takes place under the occur-
rence of oscillations. In other case, the algorithm only has some additional
calculations to detect changes in the signs in the state derivatives, which
requires estimating them (lines 19 and 23) and estimating also the complete
Jacobian matrix (lines 38, 41, 52 and 56) and different affine coefficients.

Let us now return to the previous example, now simulating the system of
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Eq.(5) with the mLIQSS1 algorithm from the same initial conditions.
As we discussed earlier, the algorithm behaves identically to LIQSS1 until

the oscillation condition is detected. This situation occurs at time t2, when
updating variable q2 would provoke that ẋ1 goes from ẋ2(t

−
2 ) = 0 to ẋj(t

+
2 ) =

−1 (as it occurred in LIQSS1).
Here, the modified algorithm detects the situation and checks if the sub-

sequent change in q1 provokes a significant change in ẋ2. By proposing
q1(t

+
2 ) = x1 − ∆Q, it results that the state derivative ẋ2(t

+
2 ) = −2 changes

significantly. Thus, a future oscillation between both variables is predicted
and a simultaneous Backward Euler step is performed in both variables. As
the states are close to an equilibrium point, the Backward Euler step size
is until final time tf and the quantized state take the equilibrium values
q1 = −0.5 − q2 = 0.7. With these values, both state derivatives are null, so
the simulation finishes without any oscillations, as depicted in Fig.2.

Figure 2: Simulation of system (5) with the modified LIQSS1 algorithm.

3.4 An Improved Version of LIQSS2

Before presenting the modified LIQSS2 algorithm, we shall introduce a change
to the original LIQSS2 formulation of [5]. This change, which is necessary
to define the mLIQSS2 algorithm, will improve the performance of LIQSS2
algorithm even in simpler cases where oscillations between pairs of variables
do not appear.

The original definition of LIQSS2 combined the ideas of QSS2 and LIQSS1,
where the quantized states qi(t) follow piecewise linear trajectories such that,
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at the end of each segment, they reach the states, i.e., qi(t+ h) = xi(t+ h).
However, the quantized state slopes were chosen such that they coincide with
the state derivatives at the beginning of the step, i.e., q̇i(t) = ẋi(t).

In order to extend the idea of mLIQSS1, we shall need to reformulate
LIQSS2 such that the quantized state slopes and the state derivatives coincide
at the end of the step, i.e., q̇i(t+ h) = ẋi(t+ h).

For that goal, qi and q̇i are computed in order to verify the following
equations:

q̇i = ẋi + h · ẍi = Ai,i · qi + ui,i + h · (Ai,i · q̇i + u̇i,i)

qi + h · q̇i = xi + h · ẋi +
h2

2
· ẍi =

= xi + h · (Ai,i · qi + ui,i) +
h2

2
· (Ai,i · q̇i + u̇i,i)

(15)

where u̇i,i is the affine coefficient slope. Notice that the first equation says
that the quantized state slope q̇i is equal to the state derivative ẋi at time
t + h. The second equation says that the quantized state qi is equal to the
state xi at time t+ h.

Here, h is computed as the maximum step size on Eq.(15) such that |qi−
xi| ≤ ∆Qi. Similarly to mLIQSS1, this value of h can be found analytically
(i.e., by solving Eq.(15) for h using qi = xi ±∆Qi) or numerically.

Then, the LIQSS2 simulation algorithm works as follows:

Algorithm 5: LIQSS2.

1 while(t < tf) // simulate until final time tf

2 t = min(tj) // adavance simulation time

3 i = argmin(tj) // the i-th quantized state changes first

4 e = t− txi // elapsed time since last xi update

5 // update i-th state value and its derivative

6 xi = xi + ẋi · e+ 0.5 · ẍi · e2
7 ẋi = ẋi + ẍi · e
8 ẋ−i = ẋi // store previous value of dxi /dt

9 uii = uii + exi · u̇ii // affine coefficient projection

10 e = t− tqi // elapsed time since last qi update

11 q−i = qi + e · q̇i // store previous value of qi projected

12 h = MAX_2ND_ORDER_STEP_SIZE(xi)
13 [qi, q̇i] = 2ND_ORDER_step(xi, h)
14 tqi = t // last qi update

15 ti = min(τ > t) subject to xi(τ) = qi(τ)// compute next i-th

quantized state change

16 for each j ∈ [1, n] such that ẋj depends on qi
17 e = t− txj // elapsed time since last xj update
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18 // update j-th state value and its derivatives

19 xj = xj + ẋj · e+ 0.5 · ẍj · e2
20 ẋj = fj(q(t), t) // recompute state derivative

21 ẍj = ḟj(q(t), t) // recompute state second derivative

22 tj = min(τ > t) subject to xj(τ) = qj(τ) or |qj(τ)− xj(τ)| = 2∆Qj

// compute next j-th quantized state change

23 txj = t // last xj update

24 end for
25 // update linear approximation coefficients

26 Ai,i = (ẋi − ẋ−i )/(qi − q−i ) // Jacobian diagonal entry

27 ui,i = ẋi −Ai,i · qi // affine coefficient

28 txi = t // last xi update

29 end while

Here, we can see that LIQSS2 steps add a few calculations to those of
QSS2. It calculates the maximum second order step size h (line 12) and
uses it to compute the quantized state and its derivative (line 13). It also
calculates the Jacobian main diagonal entry Ai,i and the affine coefficients
ui,i and u̇i,i (lines 26–27).

Like in LIQSS1, the algorithm checks a condition to ensure that the
difference between xj and qj is still bounded (by 2∆Qj) if a change in the
quantized state value qi causes that xj no longer approaches qj (line 22).

3.5 Modified LIQSS2 (mLIQSS2)

The modified LIQSS2 algorithm combines the ideas of LIQSS2 and the
mLIQSS1 methods. This is, the algorithm works identically to LIQSS2 until
a chain of significant changes in pairs of state derivatives xi and xj is de-
tected2. Under this situation, a simultaneous change in the quantized states
qi and qj and their slopes q̇i and q̇j is applied following a second order accurate
backward formula.

In order to predict the future first state derivatives, ẋi and ẋj, the linear
approximation of Eq.(8) is used. Additionally the future second state deriva-
tives, ẍi and ẍj are estimated by differentiating the linear approximation of
Eq.(8), obtaining the following system of equations.

ẍi = Aii · q̇i + Aij · q̇j + u̇ij

ẍj = Aji · q̇j + Ajj · q̇j + u̇ji
(16)

2In the second order accurate algorithm we not only check for changes in the sign, but
also for significant changes in the values of the state derivatives as they would possibly
lead to sequences of small steps. The reason is that when a change in the quantized state
qi provokes an abrupt change in some state derivative ẋj , this will provoke that xj and qj
split from each other, what soon provokes a new step in qj . If this new step also provokes
a large change in ẋi, then a fast oscillation appears.
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where two new coefficients, u̇ij and u̇ji appear, corresponding to the affine
coefficient slopes.

When a new value of the quantized state qi does not cause a signifi-
cant change in any other state derivative, the algorithm works identically to
LIQSS2. However, when the new value of qi provokes that ẋj or ẍj changes
significantly, we propose a new value for qj in the new direction of xj. Then,
we check if that proposed value for qj changes ẋi or ẍi as well. If it does not,
we forget about the change in qj and the algorithm follows identical steps
to those of LIQSS2. Otherwise, we know that an oscillation may appear
between states xi and xj, so we compute both quantized states qi and qj and
their slopes simultaneously using a second order accurate backward step on
Eq.(8).

Using definitions of Eqs.(9)–(10), and also defining:

q̇ij ,

[
q̇i
q̇j

]
, ẍij ,

[
ẍi
ẍj

]
, u̇ij ,

[
u̇ij
u̇ji

]
the backward step is given by the equations

q̇ij = ẋij + h · ẍij = Aij · qij + uij + h · (Aij · q̇ij + u̇ij)

qij + h · q̇ij = xij + h · ẋij +
h2

2
· ẍij =

= xij + h · (Aij · qij + uij) +
h2

2
· (Aij · q̇ij + u̇ij)

(17)

Notice that the first equation says that both quantized state slopes q̇ij

are equal to the corresponding first state derivatives ẋij at time t + h. The
second equation says that the quantized states qij are equal to the states xij

at time t+ h.
Here, h is computed as the maximum step size on Eq.(17) such that

|qi − xi| ≤ ∆Qi and |qj − xj| ≤ ∆Qj. To obtain that value, a procedure
similar to that of mLIQSS1 and LIQSS2 algorithms is used. Initially, a
step until final time tf is tested. If under that condition the inequalities
mentioned before are not met, the step is reduced. This reduction of the
step is performed by estimating h as the time it would take QSS2 method,
in a linear system, to take a step, i.e., h = sqrt(abs(∆Qi/ẍi)). Finally, if
the inequalities are still not met, the step h is reduced by iterating using the
following expression: h = h · sqrt(∆Qi/abs(qi − xi)). These reductions are
performed with both variables, i and j, and then using the smallest of the
steps calculated, so that both inequalities are met.

Thus, given an integration step h and the information of the states xi and
xj, their quantized sates, and their corresponding slopes, can be computed
by Eq.(17).
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Then, the resulting algorithm for mLIQSS2 is identical to that of LIQSS2
until the point at which we update a quantized state and we now need to
check if an oscillation between two variables may occur. Thus, after line 15
of Algorithm 5, the modified method continues as follows:

Algorithm 6: mLIQSS2.

16 for each j ∈ [1, n] such that (i 6=j and Aij ·Aji 6= 0)
17 e = t− txj // elapsed time since last xj update

18 xj = xj + ẋj · e+ 0.5 · ẍj · e2 // update j-th state value

19 uj,j = uj,j + e · u̇j,j // affine coefficient projection

20 e = t− tqj // elapsed time since last qj update

21 q−j = qj + e · q̇j // store previous value of qj projected

22 ẋ−j = ẋj // store previous value of dxj /dt

23 uj,i = uj,j −Aj,i · q−i // affine coefficient

24 ẋ+j = Aj,i · qi +Aj,j · q−j + uj,i // next j-th state der . est .

25 u̇j,i = u̇j,j −Aj,j · q−i // affine coefficient

26 ẍ+j = Aj,i · q̇i +Aj,j · q̇j + u̇j,i // next j-th state 2nd der . est .

27 if(|ẋj − ẋ+j | > |ẋj + ẋ+j |/2 or |ẍj − ẍ+j | > |ẍj + ẍ+j |/2) // update in qi

=> significant change in dxj /dt or ddxj /dt

28 q+j = xj − sign(ẍ+j ) ·∆Qj // update qj in future xj ’s

direction

29 q̇+j = (Aj,i · (qi + h · q̇i) +Aj,j · q+j + uj,i + h · u̇j,i)/(1− h ·Aj,j)

30 ui,j = ui,i −Ai,j · q−j // affine coefficient

31 ẋ+i = Ai,i · qi +Ai,j · q+j + ui,j // next i-th state der . est .

32 u̇i,j = u̇i,i −Ai,j · q̇−j // affine coefficient

33 ẍ+i = Ai,i · q̇i +Ai,j · q̇+j + u̇i,j // next i-th state 2nd der . est .

34 if(|ẋi − ẋ+i | > |ẋi + ẋ+i |/2 or |ẍi − ẍ+i | > |ẍi + ẍ+i |/2) // update in

qj => significant change in dxi /dt or ddxi /dt

35 // presence of oscillations

36 h = MAX_2ND_ORDER_STEP_SIZE(xi, xj , ẍi, ẍj)
37 [qi, q̇i, qj , q̇j ] = 2ND_ORDER_step(xi, xj , h)
38 tqj = t // last qj update

39 tj = min(τ > t) subject to xj(τ) = qj(τ) or
|qj(τ)− xj(τ)| = 2∆Qj // compute next j-th quantized

state

40 for each k ∈ [1, n] such that ẋk depends on qj
41 e = t− txk // elapsed time since last xk update

42 // update k-th state value and its derivatives

43 xk = xk + ẋk · e+ 0.5 · ẍk · e2
44 ẋ−k = ẋk // store previous value of dxk /dt

45 ẋk = fj(q(t), t) // recompute state derivative

46 ẍk = ḟk(q(t), t) // recompute state second derivative

47 tk = min(τ > t) subject to xk(τ) = qk(τ) or
|qk(τ)− xk(τ)| = 2∆Qj // compute next k-th quantized

state change

48 Ak,j = (ẋk − ẋ−k )/(qj − q−j ) // Jacobian
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49 txk = t // last xk update

50 end for
51 // update linear approximation coefficient

52 Aj,j = (ẋj − ẋ−j )/(qj − q−j ) // Jacobian diagonal entry

53 uj,j = ẋj −Aj,j · qj // affine coefficient

54 txj = t // last xj update

55 end if
56 end if
57 end for
58 for each j ∈ [1, n] such that ẋj depends on qi
59 e = t− txj // elapsed time since last xj update

60 // update j-th state value and its derivatives

61 xj = xj + ẋj · e+ 0.5 · ẍj · e2
62 ẋ−j = ẋj // store previous value of dxj /dt

63 ẋj = fj(q(t), t) // recompute state derivative

64 ẍj = ḟj(q(t), t) // recompute state second derivative

65 tj = min(τ > t) subject to xj(τ) = qj or |qj − xj(τ)| = 2∆Qj //

compute next j-th quantized state change

66 Aj,i = (ẋj − ẋ−j )/(qi − q−i ) // Jacobian

67 txj = t // last xj update

68 end for
69 // update linear approximation coefficients

70 Ai,i = (ẋi − ẋ−i )/(qi − q−i ) // Jacobian diagonal entry

71 ui,i = ẋi −Ai,i · qi // affine coefficient

72 txi = t // last xi update

73 end while

Compared with LIQSS2, the modified algorithm adds the calculation of
a simultaneous step on states xi and xj (lines 36–37), but these calculations
only take place under the prediction of oscillations. In other case, the algo-
rithm only has a few additional calculations to predict significant changes in
the state derivatives, what requires estimating them (lines 24, 26, 31 and 33)
and estimating also the complete Jacobian matrix (lines 48, 52, 66 and 70)
as well as the different affine coefficients.

3.6 Properties of modified LIQSS methods

Like the original algorithms, the modified versions of LIQSS1 and LIQSS2
ensure that the difference between each state xi and the corresponding quan-
tized state qi are bounded by 2∆Qi. Thus, the new algorithms provide an
analytic solution of Eq.(2), that, defining ∆x(t) , q(t)−x(t), can be rewrit-
ten as

ẋ(t) = f(x(t) + ∆x(t), t) (18)

Notice that the original system of Eq.(1) only differs from the approxima-
tion of Eq.(18) by the presence of a bounded perturbation term ∆x(t), with
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each component of this perturbation being bounded as |∆xi(t)| ≤ 2∆Qi.
Since the original properties of LIQSS1 and LIQSS2 are based on the

presence of these bounded perturbations, the modified algorithms satisfy
exactly the same properties:

� Convergence: Assuming that f(x, t) is Lipschitz in x and piecewise
continuous in t, then, the approximate solution of Eq.(18) goes to the
analytical solution of Eq.(1) when the quantum in all variables ∆Qi

goes to zero [4].

� Practical Stability. Assuming that the analytical solution of Eq.(1)
is asymptotically stable around an equilibrium point, the usage of a
quantum small enough ensures that the approximate solution of Eq.(18)
finishes inside an arbitrary small region around that equilibrium point
[4].

� Global Error Bound. In a Linear Time Invariant case, i.e., when

ẋ(t) = Ax(t) + Bu(t) (19)

provided that matrix A is Hurwitz (i.e., the LTI system is asymptoti-
cally stable), the maximum error committed in a simulation is bounded
by

|e(t)| � |V||Real(Λ)−1Λ||V−1|∆Q

where Λ = V−1AV is the Jordan canonical decomposition of A, ∆Q
is the vector of quanta, the symbol ‘| · |’ computes the elementwise ab-
solute value of a matrix or vector, and ‘�’ represents a componentwise
inequality.

3.7 Implementation of Modified LIQSS methods

The modified algorithms where implemented in the Stand Alone QSS Solver
[7]. For that purpose, the pseudo codes of Algorithms 4 and 6 were pro-
grammed as plain C functions of the QSS solver. The corresponding codes are
available at https://sourceforge.net/projects/qssengine/.

In our implementation, the value of h according to Eq.(14) is found using
iterations, as they are faster than finding the analytical solution. Anyway,
those iterations do not attempt to find the exact value, but a sufficiently
large value for h verifying the inequalities of Eq.(13). For that purpose, we
first check if the inequalities are accomplished using h = tf − t, where tf
is the final time of the simulation. If it is not the case, we try with a step
size with value h = ∆Qi/|ẋi| (this is the step size QSS1 would calculate).
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If this step size does not verify the inequalities, then we reduce h using a
linear approximation of the dependence of |qi − xi| on h. If it still fails, the
algorithm just perform a single LIQSS1 step.

The improved LIQSS2 and mLIQSS2 use a very similar approach.

4 Examples and Results

This section shows simulation results, comparing the performance of the
modified algorithms with that of their former versions and classic solvers
(DOPRI and DASSL).

In order to perform this comparison, we run a set of experiments on
different models according to the conditions described below:

� The simulations were performed on an AMD A4-3300 APU@2.5GHz
PC under Ubuntu OS.

� In all cases, we measured the CPU time, the number of scalar function
evaluations and the relative error, computed as:

err =

√∑
(out[k]− outREF [k])2∑

outREF [k]2
(20)

where the reference solution outREF [k] was obtained using DASSL with
a very small error tolerance (10−9).

4.1 1D Advection-Reaction-Diffusion (ADR) problem

Advection-diffusion equations provide the basis for describing heat and mass
transfer phenomena as well as processes of continuum mechanics, where the
physical quantity of interest could be temperature in heat conduction or con-
centration of some chemical substance. In several applications these phenom-
ena occur in presence of chemical reactions, leading to the ADR equation, a
problem frequently found in many areas of environmental sciences as well as
in mechanical engineering.

ADR problems discretized with the method of lines lead to large stiff
systems of ODEs where the use of LIQSS methods have shown important
advantages over classic discrete time algorithms [15].

The following set of ODEs, taken from [15], corresponds to the spatial
discretization of a 1D ADR problem:

dui
dt

= −a · ui − ui−1

∆x
+ d · ui+1 − 2 · ui + ui−1

∆x2
+ r · (u2i − u3i )
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for i = 1, . . . , N − 1 and

duN
dt

= −a · uN − uN−1

∆x
+ d · 2 · uN−1 − 2 · uN

∆x2
+ r · (u2N − u3N)

where N = 1000 is the number of grid points, and ∆x = 10
N

.
We consider parameters a = 1, d = 0.001, r = 1000, and initial conditions

ui(x, t = 0) =

{
1 if i ∈ [1, N/5]

0 otherwise

We simulated this system until a final time tf = 10 using DASSL and
DOPRI classic solvers as well as the original and the modified versions of
LIQSS2. A result of these simulations is shown in Fig. 3. In all cases, we
simulated using two different tolerance settings. The results are reported in
Table 2.

Figure 3: 1D ADR problem simulation results.

As it was already reported in [15], LIQSS2 overperforms DOPRI and
DASSL. However, the modified version of LIQSS2 presented in this work is
more than two times faster than the original one, extending the previously
reported advantages. That way, for the standard tolerance of 10−3 mLIQSS2
is almost 50 times faster than DOPRI and about 2000 times faster than
DASSL. When a more stringent tolerance is used (10−5) the advantages be-
comes less noticeable. This is due to the fact that mLIQSS2 is only second
order accurate while DASSL and DOPRI are fifth order algorithms.
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Integration Relative Function fi CPU
Method Error Evaluations [mseg]

D
A
S
S
L

tol = 1 · 10−3 8.28 · 10−2 539, 685 42, 870

tol = 1 · 10−5 4.95 · 10−4 35, 186 31, 237

D
O
P
R
I tol = 1 · 10−3 8.86 · 10−4 36, 184 1, 032

tol = 1 · 10−5 1.69 · 10−4 41, 890 1, 289

o
ld

L
IQ

S
S
2 ∆Qi = 1 · 10−3 1.59 · 10−3 405, 104 55

∆Qi = 1 · 10−5 4.35 · 10−5 2, 764, 382 362

m
L
IQ

S
S
2 ∆Qi = 1 · 10−3 2.82 · 10−3 140, 812 22

∆Qi = 1 · 10−5 1.98 · 10−5 1, 084, 484 157

Table 2: 1D Advection-Reaction-Diffusion problem results comparison.

In this case, the advantage of mLIQSS2 over the original LIQSS2 is not
due to the structure of the Jacobian matrix. The reason is that mLIQSS2
uses not only the future state value but also the future state slope to compute
the quantized state trajectory.

4.2 Interleaved Ćuk Converter

The simulation of switching power converters is another case where LIQSS
methods have important advantages over classic numerical integration algo-
rithms. Here, the efficient treatment of discontinuities and stiffness is the
main reason of the advantages [16]. However, as it was reported in the cited
reference, when large entries appear at both sides of the main diagonal of
the Jacobian matrix, LIQSS methods fail due to the appearance of fast os-
cillations between pairs of variables. An example of this occurs in the Ćuk
Converter.

In order to verify that the modified LIQSS algorithms solve this prob-
lem, we simulated the circuit corresponding to a four-stage Ćuk interleaved
converter shown in Fig.4.

The state equations of the j–th stage of the power electronic converter
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Figure 4: Four-stage Ćuk interleaved converter circuit.

can be written as follows:

diLj
1

dt
=
U − uCj

1
− iDj ·RSj

L1

diLj
2

dt
=
− uC2 − iDj ·RSj

L2

duCj
1

dt
=
iDj − iLj

2

C1

with

iDj =
(iLj

1
+ iLj

2
) ·RSj − uCj

1

RSj +RDj

whereRSj andRDj are the resistances of switches and diodes correspondingly,
which can all take one of two values, whether RON or ROFF depending on
their state. Finally, the output voltage obeys to the following equation:

duC2

dt
=

N∑
j=1

iLj
2
− uC2

Ro

C2

The model was simulated with the following set of parameters:
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� Input source voltage: U = 24V

� Capacities: C1 = 10−4F and C2 = 10−4F

� Inductances L1 = 10−4Hy and L2 = 10−4Hy

� Load resistance: Ro = 10Ω

� Switch and diode On-state resistance: RON = 10−5Ω

� Switch and diode On-state resistance: ROFF = 105Ω

� Switch control signal period: T = 10−4sec

� Switch control signal duty cycle: DC = 0.25

The system was simulated until a final time tf = 0.02sec, and the results are
shown in Fig.5.

The performance comparison of the different algorithms is reported in
Table 3 for two different tolerance settings. DOPRI results were not reported
as the system is too stiff and it failed to provide results in a reasonable CPU
time. Additional results obtained with the first order accurate methods,
LIQSS1 and mLIQSS1, can be found in [6].

Integration Relative Function fi CPU
Method Error Evaluations [mseg]

D
A
S
S
L

tol = 1 · 10−3 1.74 · 10−2 5, 697, 757 285

tol = 1 · 10−5 1.52 · 10−4 7, 056, 634 390

o
ld

L
IQ

S
S
2 ∆Qi = 1 · 10−3 1.96 · 10−3 216, 086, 632 33, 747

∆Qi = 1 · 10−5 3.10 · 10−5 335, 675, 912 49, 069

m
L
IQ

S
S
2 ∆Qi = 1 · 10−3 1.23 · 10−3 341, 928 60

∆Qi = 1 · 10−5 1.64 · 10−5 2, 021, 402 349

Table 3: 4-Stage Interleaved Ćuk converter results comparison.

Here we can see that, as expected, LIQSS2 shows a very poor perfor-
mance. However, mLIQSS2 is faster and more accurate than DASSL for both
error tolerances. Moreover, for the standard tolerance of 10−3, mLIQSS2 is
more than four times faster and ten times more accurate. Then, for a toler-
ance of 10−5 mLIQSS2 is still faster and more accurate but, as in the previous
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(a) Output voltage. (b) Output voltage detail.

(c) Currents i
Lj
2
. (d) Currents i

Lj
2

detail.

Figure 5: Four-stage Ćuk converter simulation results.

example, the difference is less noticeable. Again, the reason is that the tol-
erance of 10−5 is not appropriate for a second order accurate algorithm.

In order to check how the computational costs grow with the circuit com-
plexity, we also simulated the model varying the size from 4 to 32 stages.
In order to perform a fair comparison, we set the tolerance of each solver so
that the measured error are the same. The results are shown in Fig.6. There,
mLIQSS2 CPU times grow about linearly with the number of stages, while
DASSL times grow more than quadratically.
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Figure 6: Simulation Time comparison: Four-stage Ćuk interleaved converter
for tolerances 1 · 10−3 and 1 · 10−5.

4.3 Tyson model: Cdc2 and cyclin interactions

Another application where LIQSS methods exhibit advantages over classic
discrete time algorithms is that of certain biological models [17]. However,
in some of these models, the Jacobian matrix contains large entries at both
sides of the main diagonal and LIQSS methods provoke spurious oscillations.
A case where this happens is the classic Tyson model of cdc2 and cyclin
interactions, presented in [18], that represents the creation and degradation
of cyclin in a cell.

In order to verify that mLIQSS algorithms work in this case, we consid-
ered a model composed of 100 individual cells starting from different initial
conditions.
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The equations for a single cell are the following ones:

dC2

dt
= k6 ·M − k8 · [P ] · C2 + k9 · CP

dCP

dt
= −k3 · CP · Y + k8 · [P ] · C2− k9 · CP

dpM

dt
= k3 · CP · Y − pM · F (M) + k5 · [P ] ·M

dM

dt
= pM · F (M)− k5 · [P ] ·M − k6 ·M

dY

dt
= k1 · [aa]− k2 · Y − k3 · CP · Y

dY P

dt
= k6 ·M − k7 · Y P

where [P ] and amino acids [aa] concentrations are assumed to be constant.
There are six state variables : the concentrations of cc2 (C2), cdc2-p (CP ),
preMPF = P-cyclin-cdc2-P (pM), active MPF = P-cyclin-cdc2 (M), cyclin
(Y ) and cyclin-P (Y P ). F (M) is a function that describes the autocatalytic
feedback of active MPF on its own production. All constants definitions
k1,...,9 and further explanations can be found in [18].

As in the previous cases, the system was simulated with error tolerances of
10−3 and 10−5, until a final time tf = 50 using the different solvers. DOPRI
results were not reported because it failed to complete the simulations due
to the model stiffness.

The results are reported in Table 4. Output results of these simulations
are shown in Fig. 7.

From Table 4, we can see that both modified algorithms mLIQSS1 and
mLIQSS2 are significantly faster than their original versions. Moreover, for
the error tolerance 10−3, mLIQSS2 is more than 25 times faster than DASSL
obtaining a similar error. Then, with the error tolerance 10−5, mLIQSS2 is
still faster obtaining also better accuracy. As expected, the original LIQSS2
algorithm was very slow.

Regarding mLIQSS1, as it is only first order accurate, it only obtains
decent results for large error tolerances. Anyway, using a standard error
tolerance of 10−3, it is still as fast as DASSL.

5 Conclusions

A modification for the first and second order accurate Linearly Implicit Quan-
tized State System Methods was proposed, allowing them to efficiently simu-
late stiff systems with more general structures than those having large entries
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Figure 7: Tyson model simulation results.

Integration Relative Function fi CPU
Method Error Evaluations [mseg]

D
A
S
S
L

tol = 1 · 10−3 3.34 · 10−3 44, 062, 800 1, 648

tol = 1 · 10−5 5.18 · 10−4 28, 478, 400 2, 257

o
ld

L
IQ

S
S
1 ∆Qi = 1 · 10−3 7.44 · 10−3 43, 127, 543 5, 704

∆Qi = 1 · 10−5 2.11 · 10−5 134, 002, 162 20, 741

m
L
IQ

S
S
1 ∆Qi = 1 · 10−3 7.10 · 10−3 8, 672, 317 1, 704

∆Qi = 1 · 10−5 1.00 · 10−5 56, 204, 686 11, 112

o
ld

L
IQ

S
S
2 ∆Qi = 1 · 10−3 6.17 · 10−3 55, 720, 144 9, 945

∆Qi = 1 · 10−5 1.36 · 10−5 64, 628, 190 11, 376

m
L
IQ

S
S
2 ∆Qi = 1 · 10−3 7.53 · 10−3 185, 970 42

∆Qi = 1 · 10−5 1.21 · 10−5 1, 471, 838 320

Table 4: 100 cells - Cdc2 and cyclin interactions results comparison.

restricted to one side of the main diagonal of the Jacobian matrix. In the
case of the second order algorithm, the modification also included computing
the quantized state slope according to the future values of the state slope,
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what allowed to obtain better results even in cases with simpler structures.
Both mLIQSS algorithms were implemented in the Stand Alone QSS

Solver and tested in the simulation of some stiff systems comparing their
performance with that of their original versions and those of classic solvers.
The performance analysis showed that, in those cases, mLIQSS methods do
not suffer the appearance of spurious oscillations exhibited by the original
LIQSS algorithms. Consequently, the new algorithms are significantly faster
than their predecessors and they exhibit advantages over classic algorithms
like DASSL and DOPRI.

Besides the advantages demonstrated in the cases of study, the proposed
methods have a remarkable feature of mixing LIQSS and discrete time im-
plicit algorithms. When they predict that LIQSS may lead to oscillations on
a certain sub-model, they apply backward steps on the corresponding state
variables. That way, mLIQSS algorithms constitute the first approach to
effectively combine Quantized State and classic discrete time ODE solvers.

Regarding potential applications, QSS algorithms are particularly effi-
cient to simulate models with frequent discontinuities (like Power Electronics
Models) as well as large sparse models. Thus, we expect that mLIQSS ideas
lead to the efficient simulation of Power Electronic circuits where LIQSS fail:
the already mentioned Ćuk converter, the different Z source topologies (that
have a similar structure to that of the Ćuk), as well as more general switching
converters under the presence of parasitic inductances and capacitances.

The main limitation of mLIQSS1 and mLIQSS2 is that they are only
first and second order accurate respectively, so they are not efficient under
low tolerance settings. Thus, we are currently working on developing higher
order versions.

Besides extending mLIQSS to higher orders, future research should study
the performance of this approach in a wider variety of applications.

The models of the different examples presented here are part of the dis-
tribution of the Stand Alone QSS Solver, that can be downloaded from
https://sourceforge.net/projects/qssengine/.
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