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Abstract

This work introduces a novel methodology for transforming a large set of connec-
tions into the corresponding set of equations as required by the flattening stage
of the compilation process of object oriented models. The proposed methodol-
ogy uses a compact representation of the connections in the form of a Set–Based
Graph, in which different sets of vertices and different sets of edges are formed
exploiting the presence of regular structures. Using this compact representation,
a novel algorithm is proposed to find the connected components of the Set–Based
Graph. This algorithm, under certain restrictions, has the remarkable property
of achieving constant computational costs with respect to the number of vertices
and edges contained in each set. That way, under the mentioned restrictions,
the proposed methodology can transform a large set of connections into the
corresponding set of equations within a time that is independent on the size of
the arrays contained in the model.

Besides describing the new algorithm and studying its computational cost,
the work describes its implementation in a Modelica compiler and shows its
application in different examples.

Keywords: Large Scale Models, Connected Components, Set–Based Graphs,
Modelica

1. Introduction

Finding the connected components of an undirected graphs is a classic prob-
lem of Graph Theory that is employed in several application domains. Simple
algorithms that solve this problem in linear time with the number of vertices
have been known since several decades ago [12]. Also, parallel algorithms that
can solve the problem in logarithmic time have been known for long time [11].

One particular problem that requires finding the connected components of
a graph is found in the first stage of the compilation process that transforms
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an object oriented model [10] into executable simulation code. There, different
sub-models are related by connectors that can contain two type of variables:
those of effort type and those of flow type. Then, the connections must be
replaced by equations expressing that all the connected variables of effort type
are equal while the sum of the connected variables of flow type is equal to zero.

While finding the connected components in linear time may be affordable in
several situations, there are models that are the result of the coupling of thou-
sands of small sub-models where the cost can become prohibitive. Moreover,
even if the problem is solved in a reasonable amount of time, the resulting sys-
tem of equations can be so large that it is intractable by the subsequent stages
of the compilation process.

Fortunately, large models often contain several repetitive connections that
are the result of using for statements and this is a fact that can be exploited
to reduce the computational cost of the different compilation stages [3, 16, 7, 4,
19, 5, 15, 1, 17]. However, the possibility of exploiting the presence of repetitive
or regular structures at each stage requires that the previous stages had kept
a compact representation. While there are some experimental implementations
that in some particular cases can keep a compact representation during the
whole compilation process [4], there is not yet a general solution.

Regarding the flattening stage, a general solution would require to find the
sets of connected connectors which may be part of multidimensional arrays,
solving the problem without actually expanding those arrays into individual
connectors. This problem is equivalent to that of finding the connected com-
ponents of an undirected graph while keeping some sets of vertices and edges
grouped together, which constitutes the main goal of the present work.

The problem of manipulating large graphs grouping vertices and edges into
sets to produce compact systems of equations was recently proposed with the
introduction of Set–Based Graphs [20]. There, a compact solution for the prob-
lems of maximum matching and finding strongly connected components in di-
rected graph for equation sorting was proposed and implemented as part of the
prototype ModelicaCC compiler [4]. A more recent use of Set–Based Graphs
was reported in [13], where the authors present a methodology that automati-
cally obtains the compact code for computing the sparse Jacobian matrix of a
differential algebraic equation model.

In this work, we use the same tool (Set-Based Graphs) and propose a gen-
eral methodology for replacing connections by equations. For that purpose, we
design an algorithm for finding connected components in undirected graphs.
We show that, under certain assumptions, the computational cost of the algo-
rithm becomes independent on the size of the sets of vertices and edges (i.e.,
the algorithm has a constant computational cost with the number of vertices
and edges). In consequence, the cost of generating the set of equations in the
flattening stage results independent on the size of the arrays of connectors.

Besides introducing and analyzing the methodology, we also describe its im-
plementation in ModelicaCC. In addition, we analyze three examples (including
a multidimensional one) showing the efficiency of the novel procedure and com-
paring its performance with that of OpenModelica.
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The paper is organized as follows. After this introduction we briefly present
a problem that motivates the work. Then, Section 2 introduces some concepts
and previous works that are used as the basis of the proposed methodology
and in Section 3 the novel Set-Based Graph algorithm for finding connected
components is presented and the details of its prototype implementation in
ModelicaCC are discussed. The new methodology for replacing connections by
equations is then described in Section 4. Finally, Section 5 introduces some
examples and Section 6 concludes the article.

1.1. Motivation

This work was motivated by a problem that appears in Modelica compil-
ers. Modelica models can be represented by the coupling of several sub-models
where the coupling is usually made using connectors. That way, the equations
representing the structure of the circuit of Figure 1 can be represented by the
piece of code in Listing 1.

Figure 1: RC network

Listing 1: Modelica Connections

connect(S.p,R [1].p);
connect(S.n,G.p);
for i in 1:N-1 loop

connect(R[i].n, R[i+1].p);
end for;
for i in 1:N loop

connect(C[i].p, R[i].n);
connect(C[i].n, G.p);

end for;

The connectors (S.p, S.n, etc) have two types of variables: effort variables
that are equal to each other after being connected and flow variables whose
sum is zero for all connected connectors. Thus, the resulting equations for the
structure of Listing 1 would be that of Listing 2

Listing 2: Modelica Equations

S.p.effort=R[1]. p.effort;
S.p.flow+R[1]. p.flow =0;
S.n.effort=G.p.effort;
S.n.flow+G.p.flow+sum(C.n.flow)=0;
for i in 1:N-1 loop

R[i]. n.effort=R[i+1]. p.effort;
C[i]. p.effort=R[i]. n.effort;
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R[i]. n.flow+R[i+1]. p.flow+C[i]. p.flow =0;
end for;
C[N]. p.effort=R[N]. n.effort;
R[N]. n.flow+C[N]. p.flow =0;

The translation from connections to equations requires finding connected
components in a graph where the vertices represent the connectors (S.p, S.n,
etc.) and the edges are defined by the presence of connections (connect state-
ments) between the corresponding connectors.

Modelica compilers solve this problem by first expanding the for statements
and the arrays of connectors and then finding the connected components and
producing the equations as part of a process known as flattening. The result of
this process in a model like that of Listing 1 is a large piece of code without the
for statements of Listing 2. In addition, the cost of producing that code is at
least linear with the size of the arrays involved (N in the above example).

When N is large (starting typically from 104 or 105) the computational costs
become huge, and the length of the code produced may become intractable for
the successive stages of the compilation process. Thus, we expect that the
algorithms developed in this work provide a general solution for this problem
as well as for other problems that require a compact and efficient connected
components analysis in presence of some repetitive or regular structures.

2. Background

In this section we present some previous results and tools that are used along
the rest of the paper.

2.1. Modelica and Equation-Based Object-Oriented Modeling Languages

In an effort to unify the different modeling languages used by the different
modeling and simulation tools, a consortium of software companies and research
groups proposed an open unified object oriented modeling language called Mod-
elica [10, 8], that in the last two decades was progressively adopted by different
modeling and simulation tools.

Modelica allows the representation of continuous time, discrete time, discrete
event and hybrid systems. Elementary Modelica models are described by sets
of differential and algebraic equations that can be combined with algorithms
specifying discrete evolutions. These elementary models can be connected to
other models to compose more complex models, facilitating the construction of
multi–domain models.

Modelica models can be built and simulated using different software tools.
OpenModelica [9] is the most complete open source package, while Dymola [6]
and Wolfram System Modeler are the most used commercial tools. There are
also some prototype tools oriented to different problems, such as JModelica [2]
(for optimization problems) and ModelicaCC.

The simulation of Modelica models requires a previous compilation, that
transforms the object oriented model description into a piece of code (usually
in C language) containing a set of ordinary differential equations (ODE) or
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differential algebraic equations (DAE) that can be solved by an appropriate
ODE or DAE solver. The compilation process is usually divided in several
stages: flattening, alias removal, index reduction, equation sorting, and final
code generation.

All Modelica compilers by default expand the arrays and unroll the for loop

cycles in the first step of the compilation process. In consequence, in presence
of large arrays, the computational cost of the compilation and the length of the
produced code can become huge and the tools are unable to simulate systems
with more that about 105 state variables. While there are some experimental
implementations that avoid expanding and unrolling [4, 14], there is not yet a
general solution.

2.2. Connected Components in Undirected Graphs

Finding the connected components of an undirected graph is a simple prob-
lem for which there are hundreds of algorithms. Linear time algorithms have
been known since a long time ago [12], and there are also several parallel algo-
rithms that can reduce the costs to logarithmic time. Among them, we shall
briefly describe that of [11], which has certain features in common with the
algorithm that constitutes the main result of this work.

This algorithm represents the connected components using a vector D of
length n (the number of vertices in the graph) such that D(i) contains the
smallest numbered vertex in the connected component to which i belongs. A
version of this procedure is described in Algorithm 1, where we consider that a
graph G = (V,E) is given with a set of vertices V = {1, 2, . . . , n} and a set of
edges E = {e1, . . . , em} with ek = {i, j} where i, j ∈ V .

Algorithm 1 Connected Components of [11]

1: function Connect(V,E) . All the steps are performed in parallel for all
i ∈ V

2: D(i)← i for all i ∈ V .
3: for it1 = 1 : log2(n) do
4: C(i) ← minj (D(j)|{C(i), D(j)} ∈ E ∧D(j) 6= D(i)), if none then

D(i), for all i ∈ V
5: C(i) ← minj (C(j)|D(j) = i ∧ C(j) 6= i), if none then D(i), for all

i ∈ V
6: D(i)← C(i) for all i ∈ V .
7: for it2 = 1 : log2(n) do
8: C(i)← C(C(i)) for all i ∈ V .
9: end for

10: D(i)← min(C(i), D(C(i))) for all i ∈ V .
11: end for
12: return D
13: end function

The details and the explanation of this algorithm is given in [11]. The
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algorithm we shall develop will use a very similar idea to represent the connected
components (with a more general idea of the vertex numbering) and we shall also
use an auxiliary vector like C(i) with a similar idea for merging the components
in step 4 and applying the map into itself like in step 8 until all the members
of a component point to the same root vertex.

2.3. Set–Based Graphs
The algorithms presented in this work are based on the use of Set-Based

Graphs (SB-Graphs), first defined in [20]. SB-Graphs are regular graphs in
which the vertices and edges are grouped in sets allowing sometimes a compact
representation. We introduced next the main definitions.

Definition 1 (Set–Vertex). A Set–Vertex is a set of vertices V =
{v1, v2, . . . , vn}.
Definition 2 (Set–Edge). Given two Set–Vertices, V a and V b, with V a∩V b =
∅, a Set–Edge connecting V a and V b is a set of non repeated edges E[{V a, V b}] =
{e1, e2, . . . , en} where each edge is a set of two vertices ei = {vak ∈ V a, vbl ∈ V b}.
Definition 3 (Set–Based Graph). A Set–Based Graph is a pair G = (V,E)
where

� V = {V 1, . . . , V n} is a set of disjoint set–vertices (i.e., i 6= j =⇒ V i ∩
V j = ∅).

� E = {E1, . . . , Em} is a set of set–edges connecting set–vertices of V, i.e.,
Ei = E[{V a, V b}] with Va ∈ V and Vb ∈ V. In addition, given two set
edges Ei, Ej ∈ E with i 6= j, such that Ei = E[{V a, V b}] and Ej =
E[{V c, V d}], then V a ∪ V b ∪ V c ∪ V d 6= V a ∪ V b. This is, two different
set–edges in E cannot connect the same set–vertices.

As in regular graphs, we can define bipartite Set–Based Graph and directed
Set–Based Graphs. An algorithm for matching in bipartite Set–Based Graph
and an algorithm for finding the strongly connected components of a directed
Set–based Graph were recently presented in [20].

An SB-Graph G = (V,E) defines an equivalent regular graph G = (V,E)
where V =

⋃
V i ∈ V and E =

⋃
Ei ∈ E. Thus, a SB–Graph contains the same

information than a regular graph. However, SB-Graphs can have a compact
representation of that information provided that every set–edge and every set-
vertex is defined by intension.

3. Connected Components in Set–Based Graphs

This section introduces a novel algorithm that finds the connected compo-
nents of a Set–Based Graph. We first introduce a simple but inefficient algorithm
for finding the connected components of ordinary graphs. Then we show that
this algorithm, in the context of Set–Based Graphs, can be implemented using
compact operations on some sets and maps leading to computational costs that,
under certain circumstances, become independent on the number of vertices and
edges.
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3.1. An Inefficient Algorithm for Regular Graphs

We present first an algorithm for computing the connected components in
a ordinary graph G = (V,E). The proposed algorithm finds a collection of
connected components represented in a similar way to that Algorithm 1. In
particular:

� We assume that there exists a total ordering between all individual ver-
tices (they could be represented by integer numbers, by arrays of integer
numbers, etc).

� Each connected component is represented by one of its vertices vk ∈ V ,
which is the smallest vertex of the connected component.

� There is a map Dmap : V → V such that Dmap(vr) = vk implies that the
vertex vr ∈ V is part of the connected component represented by vk.

� Since the representative Dmap(vr) is the minimum vertex on the connected
component, then Dmap(vr) ≤ vr for all vr ∈ V .

Making use of this representation, Algorithm 2 finds the connected compo-
nents represented by Dmap of an arbitrary graph G = (V,E).

The algorithm works as follows. It starts assuming that all vertices are
disconnected so they represent their own connected component. Then, it iterates
until the image of Dmap becomes constant, meaning that no further components
can be connected.

During each iteration a new map Cmap is computed by adding connections
between components. For each component represented by vr, the algorithm
takes into account all the edges connecting vertices of this component. Among
all these edges, it takes the one that connects to certain vertex vb with the
least representative vk = Dmap(vb) (it could happen that vk = vr if there is no
connection from the component represented by vr to any component represented
by a smaller vertex). Then, if the representative vk is smaller than vr, the
algorithm connects both components by making Cmap(vr) = vk. In that case,
it also reconnects all the vertices that were connected to vr such that they are
now connected to vk.

Although it could be easily proved that the procedure is correct, it is possibly
one of the less efficient algorithms one can imagine to find connected components
in a graph. Its computational cost appears to grow at least quadratically with
the number of vertices and edges. However, we shall see next that in the context
of Set–Based Graph this algorithm can be implemented in a way that the costs
become independent on the size of the different sets involved.

A key feature of the algorithm above that will allow this simplification is that
in each iteration Cmap is computed as a function of the complete map Dmap and
vice-versa. That way, both maps can be entirely computed from each other in
simple steps.
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Algorithm 2 Connected Components

1: function Connect(V,E)
2: Dmap ← Identitymap : V → V . All vertices are initially disconnected
3: Iold ← ∅ . Previous image set of Dmap

4: while Iold 6= Image(Dmap) do
5: Cmap ← Dmap . New map of connected components
6: for all vr ∈ Image(Dmap) do . Component represented by vr
7: if ∃{vr, vs} ∈ E then . vr is not an isolated vertex
8: vk ← min(Dmap(vb) : ({va, vb} ∈ E ∧Dmap(va) = vr)) .

Minimum component connected to the component represented by vr
9: if vk < vr then

10: Cmap(vr)← vk . Connect components represented by vr
and vk

11: Cmap(va) ← Cmap ◦ Cmap(va) = Cmap(vr) = vk for all
va : Cmap(va) = vr . All components represented by vr are now
represented by vk

12: end if
13: end if
14: end for
15: Iold ← Image(Dmap) . Image of the previously connected

components
16: Dmap ← Cmap . New map of connected components
17: end while
18: return Dmap

19: end function

3.2. Set–Based Graph Algorithm

The goal of using Set–Based Graph is to exploit the presence of repeating
regular structures along the graph, representing the different sets by intension.
While the definitions of SB–Graphs do not explicitly establish this, we pro-
pose next a simple way of representing the set edges that allows the intensive
treatment of the graph.

Let Eh be a set-edge connecting V i and V j . We shall characterize this set–
edge using two maps that relate the individual edges ehk ∈ E with the vertices
it connects vir = maph,i(ehk) and vjs = maph,j(ehk). This is, the set edge is
compactly defined as

Eh =
⋃
k

{vir = maph,i(ehk), vjs = maph,j(ehk)}.

Thus, provided that there is a compact expression for these maps and that the
set-vertices are represented by intension, the complete SB–Graph has a compact
representation.

Using this representation of an SB–Graph, the previous algorithm can be
reformulated as proposed in Algorithm 3.
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Algorithm 3 Connected Components with SB–Graphs

1: function ConnectSBG(V,E)
2: V ←

⋃
V i ∈ V . Set of all vertices

3: (E1
map, E

2
map)← edgeMaps(E) . First and second maps from edges to

vertices
4: Dmap ← Identitymap : V → V . All vertices are initially disconnected
5: Iold ← ∅ . Previous image set of Dmap

6: while Iold 6= Image(Dmap) do
7: ER1

map ← Dmap ◦ E1
map . First map from edges to connected

components
8: ER2

map ← Dmap ◦ E2
map . Second map from edges to connected

components
9: C1

map ← minAdjMap(ER1
map, ER2

map) . Map from components to
least components via E2

map

10: C2
map ← minAdjMap(ER2

map, ER1
map) . Map from components to

least components via E1
map

11: Cmap ← min(Dmap, C
1
map, C

2
map) . Map from components to least

components
12: Iold ← Image(Dmap) . Image of the previously connected

components
13: Dmap ← (Cmap)∞ . New map of connected components
14: end while
15: return Dmap

16: end function

In this new algorithm, we made use of the following functions and notation:

� Function edgeMaps(E) returns two maps: a map of first connections E1
map :

E → V and a map of second connections E2
map : E → V , defined as follows.

For each set–edge Eh ∈ E connecting set vertices V i, V j , the maps E1,2
map

satisfy

E1
map(ehk) = maph,i(ehk)∀ehk ∈ Eh

E2
map(ehk) = maph,j(ehk)∀ehk ∈ Eh

Notice that for each set edge, there are two possible definitions of E1
map

and E2
map, according to which one is associated with i and which one with

j (the set–edges are non–directed).

� Function minAdjMap(map1,map2) computes a map map3 such that

map3(v) = min(map2(e) : map1(e) = v) (1)

In the context of this algorithm, v is a representative vertex and e is an
edge. Thus, for all edges such that map1(e) = v, the function takes the
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one for which map2(e) is minimum and defines map3(v) = map2(e). That
way, map3(v) is the least representative vertex connected via map2 to a
vertex represented by v.

In the algorithm, the function is invoked twice with the inverted arguments
in order to find the least representative connected to a component via both
maps.

� The notation (Cmap)∞ is the result of applying Cmap on itself until arriving
to a fixed point.

The algorithm is almost identical to the previous one, except that the iter-
ation of Cmap on itself (step 11 in Algorithm 2) is now performed at the end
of the cycle. The convergence of this new iteration is ensured by the fact that
Cmap is always less or equal than the identity map and that its domain is finite
(V ).

3.3. About the Computational Costs

We shall see in the next section that, under certain assumptions on the
definition of the maps, all the steps involved in this new algorithm can be
computed by intension (including the infinite iteration of Cmap on itself). Then,
the computational cost of each iteration of the algorithm (steps 6–14) becomes
independent on the size of the sets.

Regarding the number of iterations that are actually needed until all com-
ponents are connected, the following result establishes an upper bound.

Lemma 1. The numbers of iterations required to find all connected components
is at most 2 log2(N), where N is the number of vertices in the largest connected
component.

Proof. Suppose that after certain number of iterations k, a component repre-
sented by vr contains one or more connections to other components represented
by vs1 , vs2 , etc. Suppose also that during the next iteration the component
represented by vr is not connected to any of those components.

If that occurs is because vr < vsi (otherwise it would be connected to the
component represented by the minimum vsi). In addition, the components
represented by vsi will be connected in that iteration to some components rep-
resented by vtj < vr (otherwise, they would be connected to the component
represented by vr). Then, in the following iteration, vr will have connections to
components represented by vtj < vr and it will be connected to the least vtj .

Thus, every component containing connections to other components is al-
ways connected after a maximum of two iterations. It means that after two
iterations the number of different components that will be part of the same
connected component is reduced at least to the half and they will be reduced
to a single component after at most 2 log2(N) iterations.

This lemma tells that the number of iterations (and so the computational
costs) of the algorithm may actually depend on the size of the sets. However,
in several cases it does not:
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1. When the structure is such that each connected component can only have a
bounded number of vertices (independently of the size of the set-vertices).

2. When the latter condition is not accomplished by some connected com-
ponents, but each connected component can be split in two components:
the first one verifying the previous condition and the second one having
all its vertices disconnected among them but connected to some vertices
of the first component.

3. When the second component of the previous case has edges among its
vertices forming an ordered path (vr1 − vr2 − vr3 − . . . − vrp) with vr1 <
vr2 < vr3 < . . . < vrp .

The independence of the computational costs with the size of the sets in the
first case is ensured by Lemma 1.

In the second case, the fact that the large set of edges has only connections
to the small set of edges implies that in at most two iterations the edges of the
large set will be connected to the edges of the small set (the reason for that can
be found in the proof of Lemma 1). After that, the number of components is
reduced to a quantity that is independent on the size of the sets and so is the
number of additional iterations.

In the third case, a set of connections of the form vr1−vr2−vr3−. . .−vrp with
vr1 < vr2 < vr3 < . . . < vrp produces that all the components get connected in
a single iteration of the algorithm (unless they are first connected to the small
set of components). Then, in either situation, the case reduces to the situation
analyzed in the previous case.

In conclusion, the only situation in which a large number of iterations would
be required is under the presence of a large connected component resulting from
a large non–ordered set of connections. Yet, that would be only possible when
the maps that define the set edges have some irregular definition.

3.4. Algorithm Implementation

Algorithm 3 was implemented as part of the ModelicaCC 1 compiler, a tool
that provides an environment to developed and tested novel algorithms involved
in the different compilation stages of large scale Modelica models. For this im-
plementation, we developed a C++ SBGraph library that contains all the required
data structures, including the concepts of Interval, Set, Map, and SBGraph,
and the different operations involving them. We describe next their main fea-
tures.

3.4.1. Intervals

A uni-dimensional interval is represented by three natural numbers:
Interval.start, Interval.step, and Interval.end. For instance, the se-

1Implementation source code can be found at: https://github.com/CIFASIS/modelicacc/
releases/tag/v3.0
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quence [3, 5, 7, . . . , 199] is compactly represented by start=3, step=2, and
end=199 (we shall simply denote it by [3 : 2 : 199]).

A general interval of dimension d (denoted as MultiInterval) is represented
by a list containing d intervals. For instance, the sequence

[(1; 1), (1; 2), . . . , (1; 100), (4; 1), (4; 2), . . . , (4; 100), . . . , (1000; 1), (1000; 2), . . . , (1000; 100)]

is represented by a a list containing two intervals described as:
Interval.start = 1, Interval.step = 1, Interval.end = 100 and
Interval.start = 1, Interval.step = 3, Interval.end = 1000. We shall
denote it by [1 : 1 : 100]× [1 : 3 : 1000].

On these intervals we defined some basic functions and operations used by
the higher level class that defines sets.

3.4.2. Sets

A set is defined as list of atomic sets represented by intervals of the same di-
mension. This is, Set.AtomSets(1) contains the first interval, Set.AtomSets(2)
contains the second interval, etc. For instance, the set

S = {2, 4, 6, . . . , 100} ∪ {101, 102, . . . , 200}

is represented by the union of two atomic sets represented by the intervals:
[2 : 2 : 100] and [101 : 1 : 200] and we shall denote it as S = {[2 : 2 :
100]} ∪ {[101 : 1 : 200]}.

On the set class, we defined some functions and operators, including the
basic operations setUnion, setIntersection, and setMinus. All the opera-
tions are computed by intension using only the start, step and end values of
the underlying intervals, and the result is another set represented by intervals.
That way, the cost of the operations is independent on the size of the intervals
involved.

Notice that the set representation is not canonical, so the same set can have
alternative representations as the union of different atomic sets. Thus, in order
to check is two sets A and B are equal, we actually check if A \B = B \A = ∅.

3.4.3. Maps

A one dimensional linear map is defined by two rational numbers:
linearMap.gain (which cannot be negative) and linearMap.offset. Simi-
larly, a general d–dimensional linear map is defined by two lists of length d
linearMap.gain(1 : d), and linearMap.offset(1 : d).

A Map is then defined by a list of disjoint sets Map.domain(1 : M) and a list
of linear maps Map.linearMap(1 : M), where all the sets and linear maps have
the same dimension. For instance, a map like

i =


j + 3 for j ∈ {1, 2, . . . , 100}
100 for j ∈ {101, 103, . . . , 199}
j/2 for j ∈ {102, 104, . . . , 200}

is defined by
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� Map.domain(1)={1 : 1 : 100}, Map.linearMap(1).gain=1,
Map.linearMap(1).offset=3

� Map.domain(2)={101 : 2 : 199}, Map.linearMap(2).gain=0,
Map.linearMap(2).offset=100

� Map.domain(3)={102 : 2 : 200}, Map.linearMap(1).gain=1/2,
Map.linearMap(1).offset=0

A restriction in the definition of a map is that every domain and its correspon-
dent linear map must be such that the resulting image in each dimension is
composed by natural numbers. Thus, when a gain is not an integer number, the
corresponding domain and offset cannot be arbitrary. Otherwise, if the gain is
integer, the offset must be integer too.

On these maps we also implemented several functions and operators. Among
them, we mention the following ones:

� imageMap computes the set that is the image of a given set through a given
map. Similarly, preImageMap computes the preimage set.

� compMaps computes the new map that results from composing two maps
(map3 = map1 ◦map2).

� minMap computes the minimum map between two maps, i.e., map3(v) =
min(map1(v),map2(v)), which can result equal to map1 in some subdo-
main, and equal to map2 in the remaining subdomain.

This function requires establishing an ordering between the elements. For
one dimensional sets the ordering is that of the natural numbers. For
higher dimensional sets, the order between two elements is established at
the first dimension in which they differ. This is, we say that v < w if
v1 < w1 or v1 = w1 ∧ v2 < w2, etc.

� minAdjMap: Given two maps map1 and map2 with the same domain, this
function computes a new map map3 according to Eq.(1). The computation
of the new function is based on the following observation:

– If map1 is bijective, then map3 can be computed as map2 ◦map−11 .

– If map1 is constant, then map3 can be computed as map3(v) =
min(map2(e)) for all e in the domain of the maps.

Then, the function is implemented computing on each sub-domain and on
each dimension of map1 according to the previous observation.

� mapInf: Consider a map map1 with the following restrictions:

– All its linear maps have gains (in all the dimensions) that can only
take the values 1 and 0.

– If a gain is 1, the corresponding offset cannot be positive.
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On this map, this function computes a new map map2 that is the result of
composing map1 with itself until reaching convergence. The computations
are performed without actually iterating on map1. Instead, it computes
the fixed points of the iteration and the maps to those fixed points.

The implementation is based on the following observations:

– A domain where the map has gain 1 and offset 0 remains unchanged
after each iteration.

– If all domains have gain 0, then the iteration converges after at most
N steps where N is the number of domains.

– If a domain has gain 1 and offset -1, then after some iterations of the
map it will take a value outside the domain (interval.start− 1 in
fact). Thus we can just replace the gain by 0 and the offset pointing
to interval.start− 1.

– If a domain has gain 1 and offset -2, we shall have two arrival points
after leaving the domain. So we can split the interval in two intervals
with gain 0 and different offset. For larger negative offset values the
idea is the same.

3.4.4. Set–Based Graphs

Set–Based Graphs are implemented using the Boost Graph Library [18] defin-
ing the corresponding SetVertex and SetEdge data structures as Vertex and
Edge properties of the graph implementation. That way, the graph is defined
by a list of n SetVertexes and m SetEdges.

Every set-edge contains a domain set (representing edges) and two maps,
SetEdge.map1 and SetEdge.map2, that compute the vertices connected by each
edge in the domain set. For instance, the edge e ∈SetEdge.domain connects
the vertices v1 =SetEdge.map1(e) and v2 =SetEdge.map2(e).

On this class, we implemented the function connectComp that computes the
connected components of a given SB-Graph. This function returns a map Dmap

as explained in Section 3.2.

3.4.5. Implementation Restrictions

While Algorithm 2 is general, the implementation described above imposes
the following restrictions on the set–based graphs:

1. Every individual vertex is represented by an array of natural numbers of
dimension d.

2. Every set-vertex is a union of a finite number of atomic sets represented
by intervals of dimension d. Recall that every interval in each dimension
is defined by three natural numbers: start, step, and end.

3. The maps that define the set edges maph,i : Nd → Nd are piecewise linear.
Each map has a finite number of domains with a corresponding linear
affine function. In every domain, the function acting in each dimension is
characterized by two rational numbers: the gain and the offset.
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4. The implementation of the mapInf function imposes a further restriction
to the maps: In a given domain and dimension, if maph,i and maph,j have
both nonzero gains, then the gains must be the same. Otherwise, function
minAdjMap might return a map with some gain that is not 1 or 0 and, if
that map turns to be greater than the identity, then mapInf cannot be
applied.

The last restriction can be easily avoided with a more general implementation
of mapInf considering gains different from 1 and 0.

4. Efficient Connection Flattening

In this section we describe the methodology that, making use of the al-
gorithm introduced in Section 3, allows replacing connections by equations in
object oriented models.

4.1. General Procedure

In order to automatically obtain a code like that of Listing 2 given a set of
connections like those of Listing 1, we propose the following procedure:

1. Build a SB Graph:

� Associate a set-vertex to each array of connectors. For the example
of Listing 1 the arrays of connectors are S.p, S.n, G.p, R[1 : N ].p,
R[1 : N ].n, C[1 : N ].p, and R[1 : N ].n. Then, each array is associated
to a set-vertex where each individual vertex can be represented in this
case by a natural number (because the problem is one-dimensional).

The association between individual connectors and vertices can be
represented by a function v = vertex(x) denoting that vertex v is
associated to connector x.

� Associate a set-edge to each set of connections between every pair of
set vertices. In the example some set edges would be

– E1 = E1[S.p,R.p], characterized by map1
1(e11) = vertex(S.p) and

map1
2(e11) = vertex(R[1].p).

– E2 = E2[R.n,R.p], characterized by map2
1(e2i ) = vertex(R[i].n)

and map2
2(e2i ) = vertex(R[i + 1].p) for i = 1, . . . , N − 1.

– E3 = E3[C.n,G.p], characterized by map3
1(e3i ) = vertex(C[i].n)

and map3
2(e3i ) = vertex(G.p) for i = 1, . . . , N .

2. Find the connected components of the SB–Graph using Algorithm 3.

3. Given the map Dmap representing the sets of connected components, write
the corresponding equations. A possible way of doing it is using Algo-
rithm 4.
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Algorithm 4 Code Generation Procedure

1: function WriteCode(Dmap)
2: Ik ← split(Image[Dmap]) . Split image set into atomic sets
3: for all Ik ⊆ Image[Dmap] do

4: D̂k ← D−1map(Ik) \Dmap(Dk) . Set of vertices connected to Ik

5: D̂k
j ← split(D̂k) . Split domain vertices into atomic sets. The fact

that D̂k
j and Ik are atomic sets implies that Dmap has the same expression

for all i ∈ Dk
j .

6: for all Dk
j ⊆ D̂k do

7: Code← Code+“for i in interval(D̂k
j ) loop”

8: Code← Code+“ ef[i] = ef[Dmap(i)];”
9: Code← Code+“end for;”

10: end for
11: Code← Code+“ for i in interval(Ik) loop”
12: Code← Code+“ fl[i]”
13: for all Dk

j ⊆ D̂k do

14: Code← Code+“+ sum(fl[i1], for i1 in interval(D̂k
j )) ”

15: end for
16: Code← Code+“= 0; ” . End of line with sum of flows equal to 0.
17: Code← Code+“end for;”
18: end for
19: return Code
20: end function

Algorithm 4 first splits the domain and image sets of Dmap into atomic sets,
i.e., sets that can be represented by simple intervals and where Dmap has a simple
expression of the type a · i + b. Then, it generates the effort equations inside
for loop statements that traverse the domain intervals and replace Dmap by its
expression in the index at the right hand side of each equation. That way, the
compact code produced generates an equation for each element of the domain
saying that the corresponding effort is equal to that of its representative in the
connected component.

Then, it proceeds in a similar way with the flow equation, but this time the
for loop statements traverse the image of Dmap (i.e., the representatives of each
connected component) generating an equation for each connected component
that contains the sum of the flows of all its elements.

In presence of multidimensional arrays the indices i and i1 are simply re-
placed by multidimensional expressions like i, j, k.

Algorithm 4 writes a model in terms of global flow and effort arrays (fl and
ef, respectively). These arrays must be then replaced by the actual names of
the connector variables.
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4.2. Analysis of the Restrictions

The restrictions described in Sec.3.4.5 about the implementation and the
conditions enumerated after Lemma 1 establish the circumstances under which
the algorithm effectively achieves a constant cost with respect to the number of
vertices and edges. While these conditions may be quite restrictive in general,
in the context of replacing connections by equations in object oriented models
they are almost invariantly satisfied:

� The connectors in a model are always instantiated as scalar or arrays with
different dimensions. We can represent all of them using arrays of vertices
with the maximum dimension found. That way the first two restrictions
of Sec.3.4.5 are always satisfied.

� The third restriction is satisfied provided that:

– In presence of nested for loop statements, the interval of the itera-
tors are independent on each other. This is, we cannot write for i

in 1:N loop; for j in 1:i loop since in that case the domain of
the maps defining the set edges would not be an interval.

– The connections have linear affine operations with each index. This
is, we can only have expressions like connect(v[a*i+b, c*j+d],

w[e*i+f, g*j+h]) where i and j are the nested iterators and a,

b, c, d, e, f, g, h are rational constants.

� The fourth restriction is satisfied provided that a and e in the previous
item are different only if one of them is zero (and the same for c and g).

Regarding the conditions listed after Lemma 1 under which the algorithm
performs a limited number of iterations, they are automatically satisfied under
the assumption that the maps are piece-wise linear since in that case any large
set of connected connectors will keep a strict ordering.

5. Examples and Results

We introduce next three examples where we applied the presented method-
ology implemented in the ModelicaCC prototype compiler.

We compared the CPU time taken by the flattening process of our imple-
mentation with that of the algorithm used by OpenModelica. Furthermore, in
order to corroborate that the flattened model generated by ModelicaCC is cor-
rect, we simulated it using OpenModelica and compared the results with those
of the original model checking that the difference between the state trajectories
of both models was negligible.

In all the models, and for the different size settings, we used the following
experimental pipeline:

1. Generate a flattened Modelica model using the algorithm implemented in
ModelicaCC.
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2. Generate a flattened Modelica model using OpenModelica (using the -s
flag) and then compare the flattened model generation time of both tools.

3. Compile the generated model in step 1 with OpenModelica to obtain an
executable model.

4. Compile the original model with OpenModelica to obtain an executable
model.

5. Simulate both models with a small tolerance (10−10) and compute the
difference between both simulation results using the Normalized Mean
Square Error metric on all state variables (this sanity check was only
done in small sized models).

We run the experiments with an Intel i9 core with 32 GB of RAM memory
running Ubuntu 20.04 OS2.

5.1. Simple RC Network

We consider first the example of Listing 1 with N = 100. In this example,
ModelicaCC associates the original Modelica connectors with the corresponding
vertices in the resulting SBG as shown in Table 1. The SBG is represented in
Figure 2.

Connector Vertex

C[i].n i
C[i].p i+ 100
G.p 201
R[i].n i+ 201
R[i].p i+ 301
S.n 402
S.p 403

Table 1: SB Graph vertices and connectors association for the RC network (for i ∈ [1 : 1 :
100]).

Then, using Algorithm 3, the map Dmap results as follows:

2All the models presented in this article and a complete description on how to apply
the flatter algorithm can be found at: https://github.com/CIFASIS/modelicacc/tree/v3.0/

test/mccprograms/flatter
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C.n 
 {[1:1:100]} G.p 

 {[201:1:201]}

E4 
 map1: [({[403:1:502]}, [x - 402])]
 map2: [({[403:1:502]}, [201])] }

S.n 
 {[402:1:402]}

E5 
 map1: [({[3:1:3]}, [402])]
 map2: [({[3:1:3]}, [201])]

R.n 
 {[202:1:301]}

R.p 
 {[302:1:401]}

E2 
 map1: [({[5:1:103]}, [x + 197])]
 map2: [({[5:1:103]}, [x + 298])]

S.p 
 {[403:1:403]}

E3 
 map1: [({[1:1:1]}, [403])]
 map2: [({[1:1:1]}, [302])]

C.p 
 {[101:1:200]}

E1 
 map1: [({[203:1:302]}, [x - 102])]
 map2: [({[203:1:302]}, [x - 1])]

Figure 2: RC network generated graph.

Dmap(i) =



i if i ∈ {1 : 1 : 1}
1 if i ∈ {2 : 1 : 100}
i if i ∈ {101 : 1 : 199}
i if i ∈ {200 : 1 : 200}
1 if i ∈ {201 : 1 : 201}
i− 101 if i ∈ {202 : 1 : 300}
i− 101 if i ∈ {301 : 1 : 301}
302 if i ∈ {302 : 1 : 302}
i− 202 if i ∈ {303 : 1 : 401}
1 if i ∈ {402 : 1 : 402}
302 if i ∈ {403 : 1 : 403}

which can be easily verified to be correct. For instance, the fact that Dmap(i) =
1 for 2 ≤ i ≤ 100, for i = 201 and for i = 402 implies that the vertex 1
represents the connected component formed by those values of i. Recalling the
association between connectors and vertices in Table 1, the vertex associated to
connector C[1].n is the representative of the connected components formed by
C[i].n (1 ≤ i ≤ 100), G.p and S.n.

We then changed the size of the model from N = 100 to N = 20000 mea-
suring the CPU time taken by ModelicaCC and OpenModelica to produce the
flattened model. Table 2 reports the results showing that, as expected, Model-
icaCC has constant computational costs while in OpenModelica the CPU time
grows more than linearly for large values of N .
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SBG Implementation OpenModelica

Size Flattening Time Flattening Time
[msec] [msec]

100 26 107
200 27 153
500 27 395
1000 26 696
2000 25 1235
5000 27 3905
10000 27 9390
20000 25 25481

Table 2: Simple RC Network results with different size of parameter N

Listing 3 exhibits part of the flattened model produced by ModelicaCC for
N = 100. It can be seen that it preserves the repetitive structures generating a
compact model.

Listing 3: Generated Equations for RC Network model with N

model RC
...

equation
...
for i in 1:1:99 loop

C_p_i[i]+R_p_i[i+1]+ R_n_i[i] = 0;
end for;
C_p_i [100]+ R_n_i [100] = 0;
C_n_v [1] = G_p_v;
C_n_v [1] = S_n_v;
for i in 1:1:99 loop

C_n_v [1] = C_n_v[i+1];
end for;
C_n_i [1]+ G_p_i+S_n_i+sum(C_n_i [2:1:100]) = 0;
R_p_v [1] = S_p_v;
R_p_i [1]+ S_p_i = 0;
C_p_v [100] = R_n_v [100];
for i in 1:1:99 loop

C_p_v[i] = R_p_v[i+1];
C_p_v[i] = R_n_v[i];

end for;
end RC;

5.2. RC Network with Recursive Connection

For the same system of Figure 1, we rewrote the model connections as de-
scribed in Listing 4.

Listing 4: Modelica connections

connect(S.p,R [1].p);
connect(S.n,G.p);
connect(C[1]. n,G.p);
for i in 1:N-1 loop

connect(R[i].n, R[i+1].p);
connect(C[i+1].n, C[i].n); // recursive connection
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end for;
for i in 1:N loop

connect(C[i].p, R[i].n);
end for;

ModelicaCC associated the connectors and SBG vertices as in the previous
case (Table 1) but now the algorithm finds the following map of connected
components:

Dmap(i) =



1 if i ∈ {1 : 1 : 1}
1 if i ∈ {2 : 1 : 2}
1 if i ∈ {3 : 1 : 99}
1 if i ∈ {100 : 1 : 100}
i if i ∈ {100 : 1 : 199}
i if i ∈ {200 : 1 : 200}
1 if i ∈ {201 : 1 : 201}
i− 101 if i ∈ {202 : 1 : 300}
i− 101 if i ∈ {301 : 1 : 301}
302 if i ∈ {302 : 1 : 302}
i− 202 if i ∈ {303 : 1 : 401}
1 if i ∈ {402 : 1 : 402}
302 if i ∈ {403 : 1 : 403}

The map, as expected, is exactly the same as before, but it is now described
using more sub-intervals. This is caused by the usage of the mapInf function
that solves the recursive connection on C.n without iterating.

Like in the previous case, we changed the size of the model from N = 100 to
N = 20000 measuring the CPU time taken by ModelicaCC and OpenModelica
to produce the flattened model. Table 3 reports the results that are very similar
to the previous ones.

SBG Implementation OpenModelica

Size Flattening Time Flattening Time
[msec] [msec]

100 47 104
200 48 163
500 47 370
1000 48 633
2000 47 1250
5000 49 4180
10000 47 9450
20000 49 26927

Table 3: Recursive RC Network system results with different size of parameter N
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Listing 5 exhibits part of the flattened model produced by ModelicaCC for
N = 100. The fact that the intervals are more partitioned than before produces
a slightly longer piece of code.

Listing 5: Generated Equations for RC Network

model RecursiveRC
...

equation
...
C_n_v [1] = G_p_v;
C_n_v [1] = C_n_v [2];
C_n_v [1] = S_n_v;
C_n_v [1] = C_n_v [100];
for i in 1:1:97 loop

C_n_v [1] = C_n_v[i+2];
end for;
C_n_i [1]+ G_p_i+sum(C_n_i [3:1:99])+C_n_i [2]+ S_n_i+C_n_i [100] = 0;
for i in 1:1:99 loop

C_p_i[i]+R_n_i[i]+R_p_i[i+1] = 0;
end for;
C_p_i [100]+ R_n_i [100] = 0;
R_p_v [1] = S_p_v;
R_p_i [1]+ S_p_i = 0;
C_p_v [100] = R_n_v [100];
for i in 1:1:99 loop

C_p_v[i] = R_n_v[i];
C_p_v[i] = R_p_v[i+1];

end for;
end RecursiveRC;

5.3. A Two-Dimensional RC Network

The third example consists of a 2D network formed by N ×M cells with
4 connectors each (left, right, up and down connectors), a ground component
with one connector and a source component with two connectors. The network
is connected as it is shown in Figure 3a and expressed in Listing 6. Each
cell internally contains two capacitors and two resistors connected as shown in
Figure 3b and described in Listing 7.

(a) 2D Network (b) 2D Network Cell

Listing 6: Modelica connections

for i in 1:N-1,j in 1:M-1 loop
connect(Cell[i,j].r, Cell[i,j +1].l);
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connect(Cell[i,j].d, Cell[i+1,j].u);
end for;
for i in 1:N loop

connect(Cell[i,M].r, Cell[i,1].l);
end for;
for j in 1:M loop

connect(Cell [1,j]. u,S.p);
connect(Cell[N,j]. d,S.n);

end for;

Listing 7: Modelica connections for each cell

connect(R1.n, C1.p);
connect(R2.n, C2.p);
connect(R2.n, C1.p);
connect(R1.p, l);
connect(C1.n, r);
connect(R2.p, u);
connect(C2.n, d);

For this model, with N = M = 100, ModelicaCC constructs the SBG asso-
ciating connectors and vertices as shown in Table 4.

Connector Vertex

Cell[i, j].C2.n (i, j)
Cell[i, j].C2.p (i+ 100, j + 100)
Cell[i, j].C1.n (i+ 200, j + 200)
Cell[i, j].C1.p (i+ 300, j + 300)
Cell[i, j].d (i+ 400, j + 400)
Cell[i, j].l (i+ 500, j + 500)
Cell[i, j].r (i+ 600, j + 600)
Cell[i, j].R2.n (i+ 700, j + 700)
Cell[i, j].R2.p (i+ 800, j + 800)
Cell[i, j].R1.n (i+ 900, j + 900)
Cell[i, j].R1.p (i+ 1000, j + 1000)
Cell[i, j].u (i+ 1100, j + 1100)
G.p (1202, 1202)
S.n (1203, 1203)
S.p (1204, 1204)
−Cell[i, j].d (i+ 1203, j + 1203)
−Cell[i, j].l (i+ 1303, j + 1303)
−Cell[i, j].r (i+ 1403, j + 1403)
−Cell[i, j].u (i+ 1503, j + 1503)

Table 4: SB Graph vertices and connectors association for the 2D network.

On the resulting graph, the proposed algorithm finds the connected compo-
nents represented by the following map:
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Dmap(i, j) =



(i, j) if (i, j) ∈ {[1 : 1 : 100]× [1 : 1 : 100]}
(i, j) if (i, j) ∈ {[101 : 1 : 200]× [101 : 1 : 200]}
(i, j) if (i, j) ∈ {[201 : 1 : 300]× [201 : 1 : 300]}
(i− 200, j − 200] if (i, j) ∈ {[301 : 1 : 400]× [301 : 1 : 400]}
(i, j) if (i, j) ∈ {[401 : 1 : 499]× [401 : 1 : 499]}
(i, j) if (i, j) ∈ {[401 : 1 : 499]× [500 : 1 : 500]}
(500, 401) if (i, j) ∈ {[500 : 1 : 500]× [401 : 1 : 401]}
(500, 401) if (i, j) ∈ {[500 : 1 : 500]× [402 : 1 : 500]}
(i, j) if (i, j) ∈ {[501 : 1 : 599]× [502 : 1 : 600]}
(i, j + 501) if (i, j) ∈ {[501 : 1 : 600]× [501 : 1 : 501]}
(i, j) if (i, j) ∈ {[600 : 1 : 600]× [502 : 1 : 600]}
(i− 100, j − 99) if (i, j) ∈ {[601 : 1 : 699]× [601 : 1 : 699]}
(i− 100, j + 501) if (i, j) ∈ {[601 : 1 : 700]× [700 : 1 : 700]}
(i, j) if (i, j) ∈ {[700 : 1 : 700]× [601 : 1 : 609]}
(i− 600, j − 600) if (i, j) ∈ {[701 : 1 : 800]× [701 : 1 : 800]}
(i, j) if (i, j) ∈ {[801 : 1 : 900]× [801 : 1 : 900]}
(i− 800, j − 800) if (i, j) ∈ {[901 : 1 : 1000]× [901 : 1 : 1000]}
(i, j) if (i, j) ∈ {[1001 : 1 : 1100]× [1001 : 1 : 1100]}
(1101, 1101) if (i, j) ∈ {[1101 : 1 : 1101]× [1101 : 1 : 1101]}
(1101, 1101) if (i, j) ∈ {[1101 : 1 : 1101]× [1102 : 1 : 1200]}
(i− 701, j − 700) if (i, j) ∈ {[1102 : 1 : 1200]× [1101 : 1 : 1199]}
(i, j) if (i, j) ∈ {[1102 : 1 : 1200]× [1200 : 1 : 1200]}
(500, 401) if (i, j) ∈ {[1202 : 1 : 1202]× [1202 : 1 : 1202]}
(1101, 1101) if (i, j) ∈ {[1203 : 1 : 1203]× [1203 : 1 : 1203]}
(i− 203, j − 203) if (i, j) ∈ {[1204 : 1 : 1303]× [1204 : 1 : 1303]}
(i− 1103, j − 1103) if (i, j) ∈ {[1304 : 1 : 1403]× [1304 : 1 : 1403]}
(i− 603, j − 603) if (i, j) ∈ {[1404 : 1 : 1503]× [1404 : 1 : 1503]}
(i− 1503, j − 1503) if (i, j) ∈ {[1504 : 1 : 1603]× [1504 : 1 : 1603]}

that can be also verified to be correct. Like in the previous examples, we
changed the values of N and M and measured the flattening time taken by Mod-
elicaCC and OpenModelica. As expected, the SBG based approach achieved a
constant time.

Listing 8 shows part of the flattened model produced by ModelicaCC for
N = M = 100.

Listing 8: Generated Equations for 2D Network

model N2D
...

equation
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SBG Implementation OpenModelica

Size Flattening Time Flattening Time
[msec] [msec]

10x10 38 191
20x20 38 705
50x50 37 5210

100x100 38 18812
200x200 37 70810

Table 5: Two-Dimensional Network results with different grid size parameter N

...
for i in 1:1:99,j in 1:1:99 loop

Cell_d_i[i,j]+ Cell_u_i[i+1,j] = 0;
end for;
Cell_u_v [1,1] = S_p_v;
for i in 1:1:1,j in 1:1:99 loop

Cell_u_v [1,1] = Cell_u_v [1,j+1];
end for;
Cell_u_i [1,1]+ S_p_i+sum(Cell_u_i [1:1:1, 2:1:100]) = 0;
Cell_d_v [100,1] = S_n_v;
for i in 1:1:1,j in 1:1:99 loop

Cell_d_v [100,1] = Cell_d_v [100,j+1];
end for;
Cell_d_i [100,1]+ S_n_i+sum(Cell_d_i [100:1:100, 2:1:100]) = 0;
for i in 1:1:100,j in 1:1:100 loop

Cell_R1_p_i[i,j ]+(- Cell_l_i[i,j]) = 0;
end for;
for i in 1:1:100,j in 1:1:100 loop

Cell_C1_n_i[i,j ]+(- Cell_r_i[i,j]) = 0;
end for;
for i in 1:1:100,j in 1:1:100 loop

Cell_R2_p_i[i,j ]+(- Cell_u_i[i,j]) = 0;
end for;
for i in 1:1:100,j in 1:1:100 loop

Cell_C2_n_i[i,j ]+(- Cell_d_i[i,j]) = 0;
end for;
for i in 1:1:99,j in 1:1:99 loop

Cell_l_i[i,j +1]+ Cell_r_i[i,j] = 0;
end for;
for i in 1:1:100,j in 1:1:1 loop

Cell_l_v[i,1] = Cell_r_v[i,100 ];
end for;
for i in 1:1:100,j in 1:1:1 loop

Cell_l_i[i,1]+ Cell_r_i[i,100] = 0;
end for;
for i in 1:1:100,j in 1:1:100 loop

Cell_C2_p_i[i,j]+ Cell_R2_n_i[i,j]+ Cell_C1_p_i[i,j]+ Cell_R1_n_i[i,j] =
0;

end for;
for i in 1:1:99,j in 1:1:1 loop

Cell_u_i[i+1,100] = 0;
end for;
for i in 1:1:99,j in 1:1:1 loop

Cell_d_i[i,100] = 0;
end for;
for i in 1:1:1,j in 1:1:99 loop

Cell_l_i [100,j+1] = 0;
end for;
for i in 1:1:1,j in 1:1:99 loop

Cell_r_i [100,j] = 0;
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end for;
G_p_i = 0;
for i in 1:1:100,j in 1:1:100 loop

Cell_C2_p_v[i,j] = Cell_R2_n_v[i,j];
Cell_C2_p_v[i,j] = Cell_C1_p_v[i,j];
Cell_C2_p_v[i,j] = Cell_R1_n_v[i,j];

end for;
for i in 1:1:99,j in 1:1:99 loop

Cell_l_v[i,j+1] = Cell_r_v[i,j];
end for;
for i in 1:1:100,j in 1:1:100 loop

Cell_C2_n_v[i,j] = Cell_d_v[i,j];
end for;
for i in 1:1:100,j in 1:1:100 loop

Cell_R2_p_v[i,j] = Cell_u_v[i,j];
end for;
for i in 1:1:100,j in 1:1:100 loop

Cell_C1_n_v[i,j] = Cell_r_v[i,j];
end for;
for i in 1:1:100,j in 1:1:100 loop

Cell_R1_p_v[i,j] = Cell_l_v[i,j];
end for;
for i in 1:1:99,j in 1:1:99 loop

Cell_d_v[i,j] = Cell_u_v[i+1,j];
end for;

end N2D;

6. Conclusions and Future Research

We presented a novel methodology for replacing large sets of connections
by the corresponding equations in object-oriented modeling languages. The
procedure makes use of a new algorithm for finding connected components in
undirected graphs that, under certain regularity assumptions, has constant com-
putational costs with the number of vertices and edges. This is achieved using
the concept of Set-Based Graphs and, to the best of our knowledge, constitutes
the first algorithm of this type.

We described also the implementation of the proposed methodology as part
of flattening stage of the ModelicaCC compiler. In addition, we demonstrated
the usefulness and the functionality of the algorithm through three examples of
large scale graphs, including a two-dimensional case.

We believe this work opens several future lines of work and research. We
are currently working on developing more algorithms of this type (using SB-
Graphs with maps) for other problems related to Modelica compilation: finding
maximum matching in bipartite graphs and strongly connected components
(directed graphs). Some algorithms for these problems were already proposed
using SB-Graphs in [20], but those algorithms only worked for particular cases
and we believe that they can be generalized exploiting some concepts developed
in this work such as using maps for representing set-edges.

Besides these new problems, there are several issues related to the algorithm
presented here that should be taken into account in the future. Among them,
it would be important to establish some bounds on the cost of every step of the
algorithm with respect to the number of different linear maps that are used to
describe each map. In addition, we need to find less restrictive conditions under
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which the algorithm actually has a constant cost with respect to the size of the
sets.

Another important goal is that of implementing the methodology in a more
robust and complete Modelica compiler such as OpenModelica [9] imposing also
less restrictive conditions on the set representation. The current implementation
only allows the use of diagonal linear affine maps which may limit the usability
of the methodology in some practical cases.

Finally, we believe that this algorithm can be effectively applied in other
fields beyond object oriented models. Any problem leading to analysis on a
large graph containing some regular connections is in principle a good candidate
to be solved using SB-Graphs.
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265–272. Linköping University Electronic Press, 2015.

[17] Gerald Schweiger, Henrik Nilsson, Josef Schoeggl, Wolfgang Birk, and Al-
fred Posch. Modeling and simulation of large-scale systems: A systematic
comparison of modeling paradigms. Applied Mathematics and Computa-
tion, 365:124713, 2020.

28



[18] Jeremy Siek, Andrew Lumsdaine, and Lie-Quan Lee. The boost graph li-
brary: user guide and reference manual. Addison-Wesley, 2002.

[19] Kristian Stav̊aker. Contributions to Simulation of Modelica Models on
Data-Parallel Multi-Core Architectures. PhD thesis, Linköping University
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[20] Pablo Zimmermann, Joaqúın Fernández, and Ernesto Kofman. Set-based
graph methods for fast equation sorting in large dae systems. In Proceed-
ings of the 9th International Workshop on Equation-based Object-oriented
Modeling Languages and Tools, pages 45–54, 2019.

29


