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Abstract

Robust asymptotic stability (asymptotic attractivity and ǫ-δ stability) of equi-
librium regions under robust model predictive control (RMPC) strategies was
extensively studied in the last decades making use of Lyapunov theory in most
cases. However, in spite of its potential application benefits, the problem of
finite-time convergence under fixed prediction horizon has not received - with
some few exceptions - much attention in the literature.

Considering the importance in several applications of having finite-time con-
vergence results in the context of fixed horizon MPC controllers and the lack
of studies on this matter, this work presents a new set-based robust MPC for
which, in addition to traditional stability guarantees, finite-time convergence to
a target set is proved and moreover, an upper bound on the time necessary to
reach that set is provided.

It is remarkable that the results apply to general nonlinear systems and only
require some weak assumptions on the model, cost function and target set.

Keywords: Predictive Control; Robust Control; Discrete-Time Systems;
Optimal Control Application.

1. Introduction

The main features of Model Predictive Control (MPC) - which make it the
most employed advanced control technique in process industries - are the ex-
plicit consideration of the model, the optimal computation of the control moves,
and its ability to handle, easily and effectively, hard constraints on control and
states. MPC theoretical background has been widely investigated in the last
two decades, showing how this technique is capable to provide stability, robust-
ness, constraint satisfaction and tractable computation for linear and nonlinear
systems [1]. Researchers achieved a consensus on that Lyapunov theory [2] is



the most suitable framework to prove asymptotic stability (asymptotic attrac-
tivity and ǫ-δ stability) of certain equilibrium points [3]. To this aim, different
stabilizing formulations can be found in literature: MPC with terminal equal-
ity constraint ; MPC with terminal cost ; or MPC with terminal inequality con-
straint . All these formulations - despite the possible use of terminal invariant
sets for stability proposes - are devoted to steer the system (not in finite time)
to a single equilibrium point of interest. In [4, 5], the desired equilibrium point
is generalized to an entire equilibrium set, but this set does not include tran-
sient states (i.e., it is not possible in general to go from one point to any other
without leaving the set).

Set invariance theory ([6, 7, 8, 9, 10]) is a very useful tool for analyzing
dynamical systems subject to constraints allowing the extension of stability
concepts from equilibrium points to equilibrium state space regions (i.e. invari-
ant sets). In [1], for instance, a Lyapunov function for asymptotic stability of
general invariant sets is defined, although no controller formulations are pre-
sented to explicitly account for it. In this context, set-based MPC strategies
[11] represent a different concept in the field of MPC strategies, since a general
invariant set is considered as control objective; i.e., once the system reaches this
set, no further control actions are injected to it, meaning that the system is
kept in open-loop inside the invariant set. This strategy is particularly suitable
for those applications characterized by the execution of a certain task inside the
target region: switching to another simpler control strategy; leaving the sys-
tem in open-loop, provided that an equilibrium in the region is strongly stable;
persistently exciting the system with an appropriated input signal to collect
input-output data for identification ([11, 12, 13]); etc. All these potential ap-
plications, however, need finite-time convergence guarantees to ensure that the
second task (which is performed inside the target region) will certainly begin.

Despite the importance of finite-time convergence, both in practice and the-
ory, only some (few) works regarding this result - in the context of fixed control
horizon formulation - can be found in the MPC literature: in [14] it is shown
that, if the MPC stage cost function is bounded from below by a K-function,
then finite-time convergence to a certain terminal set can be ensured. In [15],
in the context of min-max MPC, the authors propose an unconventional cost
function, based on the idea of distance to a set, to show that finite-time con-
vergence can be ensured by means of an assumption similar to the one of [14].
Other works show similar results through hard assumptions. For instance, the
results in [16] are obtained making use of strong assumptions on the cost func-
tion and model system. Similarly, finite time convergence is achieved in [17]
with practical certainty.

In contrast, this work presents a general set-based robust MPC formulation
applicable to nonlinear disturbed systems that guarantees finite-time conver-
gence to an invariant target set under mild assumptions. Moreover, the work
provides an upper bound for the time of convergence to the target set that only
depends on the initial state.
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1.1. Notation

We denote, by N the set of natural numbers, by I the set of integer numbers,
by I≥0 the set of non-negative integers, and by IN :M the set of integers in the
interval [N,M ]. Given any real number x ∈ R, the floor of x is defined by
⌊x⌋

.
= max{n ∈ I : n ≤ x}. The Euclidean distance between two points x, y

on R
n is represented by d(x, y). An open ball with center in x ∈ R

n and ratio
ε > 0 is denoted as Bε(x)

.
= {y ∈ R

n : d(x, y) < ε}. Let γ ∈ R be a constant
and let Ω ⊂ R

n be a set; then, γΩ
.
= {γx : x ∈ Ω} is a scaled set of Ω. A

point x ∈ Ω is an interior point of Ω if the there exists ε > 0 such that the open
ball Bε(x) ⊂ Ω. The interior of Ω is the set of all its interior points and it is
denoted by Ω◦. If Ω is a closed set, its boundary is denoted by ∂Ω, and it is
defined as ∂Ω

.
= Ω \Ω◦. The distance from a point x ∈ R

n to a set Ω is defined
as dΩ(x)

.
= inf{d(x, y) : y ∈ Ω}. Notice that dΩ(·) is a convex and continuous

function, and dΩ(x) ≥ 0 for all x ∈ R
n, while dΩ(x) = 0 if and only if x ∈ Ω. A

function α : R≥0 → R≥0 is a K-function if it is continuous, strictly increasing
and α(0) = 0.

2. Plant model and control scheme

This section introduces the model of the plant and the robust MPC scheme.

2.1. Plant model

Consider a discrete time disturbed system described by the following time-
invariant model

x(k + 1) = F (x(k), u(k), w(k)), x(0) = x0, (1)

where x(k) ∈ X ⊂ R
n is the system state at the k–th sample time, x0 is the

initial state, u(k) ∈ U ⊂ R
m is the current control input and w(k) ∈ W ⊂ R

p

is the current disturbance. We assume that set X is closed, set U is compact,
and both sets contain the origin in their interior. Furthermore, we assume that
W is compact and convex, and it contains the origin in its interior. We also
assume that function F : X × U ×W → X is continuous on Z

.
= X × U ×W

and F (0, 0, 0) = 0.

2.2. Robust MPC scheme with fixed control horizon

For a given (fixed) horizon N ∈ N, and a given compact and convex set
Ω ⊆ X, that contains the origin in its interior, the following (set-dependent)
cost function is proposed:

VN (x,Ω;u)
.
= max

w∈WN

N−1∑

j=0

L(x(j), u(j); Ω), (2)

where x = x(0) is the current state; x(j+1) = F (x(j), u(j), w(j)), for j ∈ I0:N−1;
u

.
= {u(0), · · · , u(N − 1)} is an input sequence; and w

.
= {w(0), · · · , w(N − 1)}
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is a disturbance realization. Furthermore, it is assumed that L(·) ≥ 0, and
L(x, ·, ·) = 0 when x ∈ Ω. Ω is the target set where we want the closed-loop
system to converge to in finite-time.

Let

XN = {x ∈ X | x(j) ∈ X,u(j) ∈ U, j = 0, 1, ..N−1 and x(N) ∈ Ω, ∀w ∈ WN},

be the initially feasible region. Then, for all x ∈ XN we can denote by UN (x) the
set of control sequences, u, satisfying the state and control constraints (x(j) ∈
X,u(j) ∈ U , for j ∈ I0:N−1), together with a terminal constraint of the form
x(N) ∈ Ω, for every admissible disturbance sequence w ∈ WN , when the initial
state is x. By Definition 1, for all i ≥ 0, the set Ci(Ω, U) denotes the set of
states x such that Ui(x) 6= ∅. At each time instant k, the Robust MPC control
law is derived from the solution of the following optimization problem:

PN (x,Ω) : V 0(x,Ω)
.
= min{VN (x,Ω;u) | u ∈ UN (x)} (3)

where Ω and the initial sate x ∈ X are the optimization parameters and the
sequence u is the optimization variable.

Associated to the optimal control sequence u0(x)
.
= {u0(0;x), u0(1;x), . . . , u0(N−

1;x)} there is a bundle of optimal state trajectories {x0(x,w)}, where each tra-
jectory corresponds to an admissible disturbance realization w:

x0(x,w)
.
= {x0(0;x,w), x0(1;x,w), . . . , x0(N ;x,w)} ∈ {x0(x,w)}. (4)

By definition of PN (x,Ω), x0(N ;x,w) ∈ Ω for each admisible w. The control
law, derived from the application of a receding horizon control policy (RHC) is
given by κMPC(x) = u0(0;x), where u0(0;x) is the first element of the solution
sequence u0(x). This way, the closed-loop system under the Robust MPC law
is described as:

x(k + 1) = F (x(k), κMPC(x(k)), w(k)). (5)

and the optimal cost function is given by:

V 0
N (x,Ω) = VN (x,Ω,u0(x)). (6)

3. Convergence analysis

3.1. Some previous results

In [14] and [18] the finite-time convergence to Ω, for the nominal case, W =
{0}, is ensured by imposing the following conditions to the stage cost: (i) there
exits a K-function ℓ(·) such that L(x, u; Ω) ≥ ℓ(‖(x, u)‖) for all x 6∈ Ω and for all
u ∈ U ; and (ii) L(x, hL(x); Ω) = 0 for all x ∈ Ω, where hL(·) is a local control
law imposed once the state enters the target set Ω. Furthermore, Ω is assumed
to be an invariant set for x(k + 1) = F (x(k), hL(x(k)), 0), which establishes an
undesired dependence of Ω on the arbitrary control law hL(x).
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However, given that Ω is assumed to contain the origin in its (non empty)
interior, assumptions (i) and (ii) imply that function L(·) is discontinuous on the
boundary of Ω, which is a strong assumption that can produce some problems.

The way this formulation ensures finite-time convergence is summarized as
follows. By usual procedures in MPC stability theory, the optimal cost function,
V 0
N (x,Ω) = VN (x,Ω;u0), is shown to satisfy

V 0
N (x(k + 1),Ω)− V 0

N (x(k),Ω) ≤ −L(x(k), κMPC(x(k)); Ω), ∀x(k) 6∈ Ω,

Given that for all x 6∈ Ω there is r > 0 such that ‖x‖ > r, by assumption (i), it
follows that

L(x, u; Ω) ≥ ℓ(‖(x, u)‖) ≥ ℓ(‖x‖) ≥ ℓ(r), ∀x 6∈ Ω,

and then

V 0
N (x(k + 1),Ω)− V 0

N (x(k),Ω) ≤ −ℓ(r). (7)

This means that at each step there is a cost drop of at least ℓ(r) > 0, for
x 6∈ Ω, which is much stronger than the usual radial cost drop where the drop
magnitude depends on the distance to Ω. That way, the finite-time convergence
to Ω is achieved.

The main drawback of the proposal in [14] and [18] is clearly the strong
assumption (i), which leads to a discontinuous stage cost. The use of discontin-
uous stage costs is a major obstacle for implementation [15] when using standard
solvers for linear, quadratic, semi-definite or other smooth, convex nonlinear pro-
gramming problems. To overcome this drawback, [15] proposes - in the context
of robust linear MPC, i.e., with W 6= {0} - the following stage cost:

L(x, u; Ω)
.
= min

y∈Ω
‖Q(x− y)‖p + ‖R(u− hL(x))‖p,

with Q ∈ R
n×n and R ∈ R

m×m being weighting matrices and ‖‖p being a
particular norm. The system is given by x(k + 1) = Ax(k) + Bu(k) + w(k)
with w(k) ∈ W , and the local control law hL(x) is a fixed linear feedback
gain K ∈ R

m×n. The set Ω is here a disturbance invariant set for x(k + 1) =
Ax(k) +BKx(k) +w(k), and again, it depends on K, as it is usual in the dual
MPC context.

This cost is continuous, and, in fact, it does not meet condition (i). How-
ever, this formulation ensures finite-time convergence by assuming the following
control law:

{

κMPC(x) if x ∈ X \ O∞,

hL(x) if x ∈ O∞,

where O∞ is the the maximal disturbance invariant set (MDIS). If it is assumed
that Ω ⊂ O◦

∞, then the minimal disturbance invariant set (mDIS) F∞ ⊂ O∞

is asymptotically stable for the closed-loop system with the control law defined
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above. In addition, if F∞ ⊂ Ω◦, there is a finite time convergence to the
set Ω. This way, the real target set is given by F∞, and so, the finite-time
convergence to Ω is trivially achieved by the asymptotic convergence to F∞ and
the assumption F∞ ⊂ Ω◦.

Remark 1. As a particular case, if the nominal scenario is considered (W =
{0}), then set mDIS is given by F∞ = {0}, and classical attractivity of the origin
is achieved. So, any set including the origin in its interior - as the proposed Ω
- will trivially be finite-time attractive.

Other works devoted to achieve finite-time convergence in the context of
dual-mode model predictive control are [19] and [20]. However, these approaches
consider a variable-horizon MPC formulation, which constitutes a different sce-
nario to the one considered in this work.

Before introducing our main results, we give below some previous definitions.

3.2. Controllable set definitions and properties

The next definitions and properties will be referred to system (1), and the
corresponding state, input and disturbance constraints.

Definition 1. (One-step disturbance controllable set) Given two sets Ω ⊂
X and ∆ ⊂ U , the one step disturbance controllable set to Ω corresponding to
∆, C(Ω,∆), is the set of all x ∈ X for which there exists u ∈ ∆ such that
F (x, u, w) ∈ Ω, for all w ∈ W , i.e.,

C(Ω,∆)
.
= {x ∈ X : ∃ u ∈ ∆ such that F (x, u, w) ∈ Ω, ∀w ∈ W}.

In other words, C(Ω,∆) is the set of states in X for which an admissible
control input in set ∆ exists, that guarantees that the system will be driven to
Ω in one step, independently of the (bounded) disturbance effect.

This concept can be generalized to the N -step disturbance controllable set
CN (Ω,∆), for any N ∈ N, by applying the above definition recursively, i.e.,
Cn(Ω,∆)

.
= C(Cn−1(Ω,∆),∆), for n = 1, · · · , N , with C0(Ω,∆)

.
= Ω.

Definition 2. (Disturbance γ-control invariant set, Dγ-CIS) Given γ ∈
(0, 1], the set Ω ⊆ X is a disturbance γ-control invariant set if for all x ∈ Ω there
exists an input u ∈ U such that F (x, u, w) ∈ γΩ, for all w ∈ W . Associated
to the Dγ-CIS Ω, is the corresponding input set Π(Ω)

.
= {u ∈ U : ∃ x ∈

Ω such that F (x, u, w) ∈ γΩ, ∀w ∈ W}.

This set Ω is such that once the system enters it, there exists an admissible
control input, belonging to Π(Ω), that is able to keep the system inside the set,
independently of the (bounded) disturbance effect. When γ = 1, the latter set
is simply denoted as disturbance control invariant set (DCIS).

From [21], it is known that every Dγ−CIS, Ω, is by definition such that
Ω ⊆ C(Ω, U). We shall need later a slightly stronger geometric condition telling
that Ω is in the interior of C(Ω, U). The property below establishes it.
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Property 1. Let Ω ⊂ X◦ be a closed and convex Dγ-CIS, with γ < 1, contain-
ing the origin as an interior point, with the corresponding input set Π(Ω) ⊆ U .
Then, Ω ⊆ C(Ω,Π(Ω))◦.

The proof of Property 1 can be found in the Appendix.
The idea in the next subsection is to show that if set Ω is selected to be

a Dγ−CIS for the open-loop system and its associated input set Π(Ω) is also
considered in the stage cost, then a finite-time convergence to Ω can be ensured,
with no further assumption on the controller formulation.

3.3. Main result

Consider the following set-based (in both, state and input sets) stage cost
for a particular realization of the disturbance:

L(x, u; Ω) = dΩ(x) + dΠ(Ω)(u), (8)

where the function dΩ(x) is the euclidean distance from the state x to the set
Ω, and dΠ(Ω)(u) is the euclidean distance from the control u to the set Π(Ω).
Ω is assumed to be a compact and convex Dγ−CIS for the open-loop system
(1), with γ < 1, and containing the origin as an interior point (in such a way
that Property 1 holds). Furthermore, the corresponding input set is denoted as
Π(Ω).

Remark 2. Note that according to this formulation, the control objective is
considered to be reached once the system enters Ω, and no further implicit ob-
jectives are considered. However, the interesting point is that the system will
not be completely in open-loop, since the controller will act every time the state
goes outside Ω, by the effect of an unknown strong disturbance.

The next Lemma establishes the asymptotic convergence of the closed loop
derived from Problem (3), to Ω, when the stage cost is given by (8)1.

Lemma 1. Let x = x(0) ∈ CN (Ω, U). Consider the Robust MPC formulation
PN (x,Ω), (3), with the stage cost (8). Then, the closed-loop system x(k + 1) =
F (x(k), κMPC(x(k)), w(k)) satisfies

V 0
N (x(k + 1),Ω)− V 0

N (x(k),Ω) ≤ −dΩ(x(k))− dΠ(Ω)(u(k)),

for all k ≥ 0, and so lim
k→∞

dΩ(x(k)) = 0 and lim
k→∞

dΠ(Ω)(u(k)) = 0.

Proof: Let x ∈ CN (Ω, U), at a given time k. Suppose that the optimal cost
function is given by

V 0
N (x,Ω) = max

w∈WN

N−1∑

j=0

dΩ(x
0(j;x)) + dΠ(Ω)(u

0(j;x)), (9)

1As it is known, convergence is the main condition to ensure stability by means of Lyapunov
classical methods.
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where u0(j;x), for j ∈ I0:N−1, is the optimal input trajectory, and x0(j;x) is
the corresponding optimal state trajectory that belongs to a bundle of optimal
states {x0(j;x,w)}, one for each admissible disturbance realization w ∈ W .

Let x+ = x0(1;x) be the successor state of x under the closed-loop sys-
tem, so that x+ ∈ {x0(1;x,w)} and {x0(N ;x,w)} ⊂ Ω. One feasible so-
lution to Problem PN (x+,Ω) at time k + 1 is given by the sequence û

.
=

{
u0(1;x), · · · , u0(N − 1;x), û

}
, where û is a control action belonging to Π(Ω),

such that x̂
.
= F (x0(N ;x), û, w) ∈ Ω for all w ∈ W (at least one input û ∈ Π(Ω)

exists since x0(N ;x) ∈ {x0(N ;x,w)} ⊂ Ω, and Ω is a Dγ−CIS). Since the cost
function takes into account the worst case scenario at any time, the correspond-
ing feasible cost function of Problem PN (x+,Ω) can be written as

VN (x+,Ω; û) = V 0
N (x,Ω) + dΩ(x̂) + dΠ(Ω)(û)− dΩ(x)− dΠ(Ω)(u

0(0;x)),

where dΩ(x̂) = 0 and dΠ(Ω)(û) = 0. Furthermore, by optimality is V 0
N (x+,Ω) ≤

VN (x+,Ω; û), which implies that

V 0
N (x+,Ω)− V 0

N (x,Ω) ≤ −dΩ(x)− dΠ(Ω)(u
0(0;x)).

In other words, for any time k ∈ I≥0, the optimal cost function satisfies V 0
N (x(k+

1),Ω)−V 0
N (x(k),Ω)≤−dΩ(x(k))−dΠ(Ω)(u(k)) and, given that V 0

N (·) is positive,
then it results that lim

k→∞
dΩ(x(k)) = 0 and lim

k→∞
dΠ(Ω)(u(k)) = 0.

Before presenting the main result of this work, the following lemma - which
is a particular property of the proposed set-based stage cost (8) - is introduced.

Lemma 2. Consider the MPC formulation PN (x,Ω), (3), with the stage cost
(8), and the control law, κMPC(·). If x ∈ C(Ω,Π(Ω)) then F (x, κMPC(x), w) ∈
Ω, for all w ∈ W .

Proof: Let x(0) = x ∈ C(Ω,Π(Ω)), so there is a control action u(0) ∈ Π(Ω)
such that

x(1) = F (x(0), u(0), w(0)) ∈ Ω, ∀ w(0) ∈ W

From the disturbance γ−invariance of the target set Ω, there exist control ac-
tions u(k) ∈ Π(Ω), k = 1, . . . , N − 1, for which x(k) ∈ γΩ ⊆ Ω, for k =
2, . . . , N − 1, and for all w(k) ∈ W , k = 1, 2, . . . , N − 1. The use of such a
control sequence produces the cost

VN (x,Ω,u) = dΩ(x(0)) + dΠ(Ω)(u(0))
︸ ︷︷ ︸

=0

+ max
w∈WN−1

N−1∑

j=1

(dΩ(x(j)) + dΠ(Ω)(u(j)))

︸ ︷︷ ︸

=0

= dΩ(x(0))

8



while any control action that leaves x(1) outside Ω produces a cost greater than
dΩ(x(0)). Thus, the MPC will drive the state to the target set in one step.

The result of the above Lemma is basically due to the fact that a control
within the set Π(Ω) does not add positive cost to the stage cost (8) and it
can drive the state to the set Ω from C(Ω,Π(Ω)), and C(Ω,Π(Ω)) \ Ω 6= ∅ by
Property 1. Furthermore, this is possible due to the continuity of System (1)
and the contractivity of the target set Ω.

To illustrate the role of set Π(Ω) in the MPC formulation, Figures 1 and
2 show the closed-loop state evolution corresponding to two different starting
point. The controller is given by the Robust MPC (Problem P(Ω, x)) with the
stage cost (8), and the simulations were made in a nominal scenario, W = {0},
for clarity. The controller is stopped when the state enters the target set Ω.
Note that when the initial state x(0) ∈ C(Ω,Π(Ω)) (Fig. 1) the controller steers
the state inside Ω in one time step, as Lemma 2 claims. On the other hand, if
the initial state is in x(0) ∈ C(Ω, U) \ C(Ω,Π(Ω)) - even when it is possible to
reach it in only one time step, by the one step set definition - the MPC controller
reaches Ω in two time steps (Fig. 2). The crucial point that this counterexample
highlights is that the use of the set C(Ω, U) in the stage cost (8) may lead to the
loss of the finite-time convergence property. The model and MPC parameters
of this scenario simulations are described in the appendix.

Figure 1: Closed-loop state evolution, starting at C(Ω,Π(Ω)).

In the following theorem, the main result of this note is presented, where
both, the finite-time convergence and an upper bound for this time is estab-
lished.

Theorem 1. Consider the MPC formulation PN (x,Ω), (3), with the stage cost
(8). Then, for any x = x(0) ∈ CN (Ω, U), Ω is locally reached in finite-time by
the system x(k+1) = F (x(k), κMPC(x(k)), w(k)). Moreover, the system reaches

9



Figure 2: Closed-loop state evolution, starting at C(Ω, U) \ C(Ω,Π(Ω)). The state does not
reach the target set Ω in one step.

Ω in at most ⌊K⌋ steps, with 2

K =
V 0
N (x,Ω)

min
x∈∂C(Ω,Π(Ω))

dΩ(x)
+ 1. (10)

Proof: The proof proceeds by contradiction. Let consider an initial state x(0) ∈

CN (Ω, U) \ C(Ω,Π(Ω)) and a scalar m such that m >
V 0
N (x(0),Ω)
min

x∈∂C(Ω,Π(Ω))
dΩ(x) = K − 1,

and assume that x(k) 6∈ C(Ω,Π(Ω)), for any k = 1, 2, ...,m. Then

−dΩ(x(k)) ≤ − min
x∈∂C(Ω,Π(Ω))

dΩ(x) < 0, k = 0, 1, ...,m. (11)

Moreover, from Lemma 1, it follows that V 0
N (x(k + 1),Ω) − V 0

N (x(k),Ω) ≤
−dΩ(x(k)), which implies that

V 0
N (x(k + 1),Ω)− V 0

N (x(k),Ω) ≤ − min
x∈∂C(Ω,Π(Ω))

dΩ(x) < 0, (12)

for k = 0, 1, ...,m. Summing up the terms of latter inequality from k = 0 to m,
it follows that

V 0
N (x(m),Ω)− V 0

N (x(0),Ω) ≤ −m min
x∈∂C(Ω,Π(Ω))

dΩ(x), (13)

2Note that K is well defined since, by Property 1, Ω ⊂ C(Ω,Π(Ω))◦, and so
min

x∈∂C(Ω,Π(Ω))
dΩ(x) 6= 0.
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which means that

V 0
N (x(m),Ω) ≤ −m min

x∈∂C(Ω,Π(Ω))
dΩ(x) + V 0

N (x(0),Ω) < 0 (14)

This latter inequality represents a contradiction and, so, x(k) must be inside
C(Ω,Π(Ω)) for some k ≤ K − 1. Furthermore, Lemma 2 ensures that x(k) ∈ Ω
for some k ≤ K, which concludes the proof.

Remark 3. Note that the only requirement for the target set in the latter result
is that Ω needs to be a γ-invariant set, with 0 < γ < 1. So, if one has a
desired equilibrium set-point xsp, it is possible to select Ω as Ω̂ ⊕ xsp, where Ω̂
is an arbitrary small γ-invariant set (large enough to ensure that Property 1
still holds), with an arbitrary small value of γ. In this case, Ω approximates
the equilibrium set-point, and the set-point tracking problem is (approximately)
recovered.

4. Simulation results

Although the main contribution of the work is of theoretical nature, this sec-
tion introduces simple simulation results to illustrate the way finite–time con-
vergence is achieved. The selected system to test the controller is the double in-
tegrator d2y(t)/dt2 = u(t), which comes from a simple mass in one-dimensional
space y, under the effect of a time-varying force input u. By means of a dis-
cretization (with a sampling time of T = 1sec) the following discrete-time sys-
tem is obtained:

x(k + 1) = Ax(k) +Bu(k),

where A =

[
1 1
0 1

]

, B =

[
0.5
1

]

,

x = [x1, x2]
T , with x1, x2 being the position and velocity of the mass, respec-

tively. The inputs an state constraints are given by U = {u ∈ R : ‖u‖∞ ≤ 4},
X = {(x1, x2) ∈ R

2 : ‖x1‖∞ ≤ 15, ‖x2‖∞ ≤ 12}. For the sake of simplicity,
only the nominal case will be considered as the goal is to show the finite-time
convergence, a property that is independent of the controller robustness.

The MPC controller is derived from Problem (3), with the stage cost given
by (8), where Ω is an arbitrary γ-invariant set (see Figure 3), with γ < 1, and
Π(Ω) is its corresponding input set according to Definition 2. The simulations,
running along 10 time steps, start at four different initial states outside the
target set Ω: x01 = [−7, − 7]T , x02 = [7, 7]T , x03 = [−15, 11]T and x04 =
[15, − 11]T .

The following remarks can be made after the trajectories shown in Figures
3 and 4:

11



• The controlled system reaches the target set in a number of steps signifi-
cantly smaller than the upper bound computed by (10), which is greater
than 50 in all the cases.

• Given that Ω is a γ-invariant set, with γ < 1, it is contained in the interior
of C(Ω,Π(Ω)).

• The state of the system does not converges to the origin, but to an arbi-
trary point in the steady state set Xss (in black, in Figure 3), given that
no penalization is made once it enters Ω.

• Every time the controlled system enters C(Ω,Π(Ω)), the set Ω is reached
after one step, as claimed in Lemma 2.

• For the initial state x01 = [−7, −7]T (or x03 = [7, 7]T ), the system enters
C(Ω, U), at time step 3. Then, although it can reach Ω in the next time
step according to the open-loop dynamics, it does not do it because it is
not the optimal path. This is another case reinforcing the counterexample
of subsection 3.3.

• The costs are null once the system enters Ω, as it can be seen in Figure 4.

Figure 3: Closed-loop state evolution toward the set Ω.

Remark 4. The sets used in the algorithm (γ-invariant set Ω and its corre-
sponding input set Φ(Ω)) are obtained offline with a computational complexity
depending on the form of the dynamic function involved in the model ([8, 9, 10]).

12



0 1 2 3 4 5 6 7 8 9 10

Sampled time

0

100

200

300

400
M

P
C

 C
o

s
t

x01

x02

Figure 4: MPC costs for the different starting states.

Regarding online calculations, the cost function measures distances between sets
and points. Except for the calculation of these distances (whose complexity de-
pends on the shape of the sets), the proposed algorithm is not more computa-
tionally expensive than any other traditional MPC strategy.

5. Conclusions

In this work, a new and simple robust MPC formulation based on a nonlinear
model of the system has been presented. This formulation ensures robust finite-
time convergence to a given state space region under a fixed prediction horizon.
The necessary conditions to ensure this property have been studied in detail and
an upper bound on the convergence time is provided. In spite of its simplicity,
the result increases the applicability of two-stage MPC controllers, in which a
second stage controls the system once it reaches - under the first stage controller
- some particular objective region.

6. Appendix

6.1. Proof of property 1:

Before presenting the proof of Property 1, it is necessary to introduce the
next property, which states the closed nature of the controllable set CN (Ω, U)
when Ω is closed.

Property 2. ([22]) Let Ω ⊂ R
n be a closed set and let CN (Ω, U) be the N step

disturbance controllable set to Ω for system (1). Then, CN (Ω, U) is a closed set.

Proof: Consider a sequence {xk}k∈I≥0
⊂ C(Ω, U) converging to x̄. Proving that

C(Ω, U) is closed is equivalent to show that x̄ ∈ C(Ω, U). Indeed, by definition
of C(Ω, U), there exists a corresponding sequence {uk} ⊂ U such that

F (xk, uk, wk) ∈ Ω, ∀wk ∈ W, k ∈ I≥0. (15)
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By the compactness of U , the sequence {uk} admits a subsequence {u′
k} ⊂ U

which converges to ū ∈ U . Let us consider the subsequence {x′
k} ⊂ C(Ω, U)

corresponding to the subsequence {u′
k}. Clearly, x

′
k → x̄.

Therefore, since x′
k → x̄, and u′

k → ū, by continuity of the function F we
have that

F (x′
k, u

′
k, wk) → F (x̄, ū, wk), ∀wk ∈ W

Since the sequence {F (x′
k, u

′
k, wk)} ⊂ Ω, and Ω is closed, then F (x̄, ū, wk) ∈ Ω

for each wk ∈ W , which means that x̄ ∈ C(Ω, U), and so C(Ω, U) is closed. The
fact that CN (Ω, U) is closed follows by induction concluding the proof.

Now, the proof of Property 1 is presented:
Proof: By the result in [21], we know that Ω is not only contained in C(Ω, U),
but also Ω ⊆ C(Ω,Π(Ω)). It remains to show that every point of Ω is an interior
point of C(Ω,Π(Ω)). Let a state x̄ ∈ Ω. Given that by hypothesis Ω is a
Dγ−CIS, then there exists ū ∈ Π(Ω) such that F (x̄, ū, w) ∈ γΩ, for all w ∈ W .
Furthermore, since γ < 1, and Ω contains the origin in its interior, it follows
that γΩ ⊂ Ω◦. Then,

ε
.
= inf{d(y, z) : y ∈ ∂Ω, z ∈ γΩ} (16)

is such that ε > 0, being ∂Ω the boundary of Ω.
Since F is continuous at x̄, there exits δ > 0 such that for all x ∈ Bδ(x̄) it

follows that

d(F (x, ū, w), F (x̄, ū, w)) < ε, ∀w ∈ W. (17)

Since F (x̄, ū, w) ∈ γΩ and d(F (x, ū, w), F (x̄, ū, w)) < ε, for all w ∈ W , and
given that Ω is closed and convex, it follows, from (16), that F (x, ū, w) ∈ Ω for
all w ∈ W , and then x ∈ C(Ω,Π(Ω)), since C(Ω,Π(Ω)) is closed by Property 2.
So Bδ(x̄) ⊂ C(Ω,Π(Ω)), i.e. Ω ⊆ C(Ω,Π(Ω))◦.

6.2. Simulation parameters in Subsection 3.3

The simulations shown in Figures 1 and 2 correspond to a second order
stable linear system, x(k+1) = Ax(k) +Bu(k), similar to the one presented in
[11], with

A =

[
0.7476 −0.4984
0.0356 1.0680

]

, B =

[
0.3
−0.4

]

. (18)

The system constraints are given by X =
{
x ∈ R

2 : ‖x‖∞ ≤ 10
}

and U =
{u ∈ R : ‖u‖∞ ≤ 4}. The horizon of the MPC controller P(Ω, x), (3), with the
stage cost (8), is given by N = 7, being Ω a Dγ−CIS (W = {0}) with γ = 0.65,
and its corresponding input set Π(Ω) = {u ∈ R : ‖u‖∞ ≤ 3}.
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