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Abstract

In this work we introduce a novel set-based fault tolerant control scheme for linear systems under
Gaussian disturbances. In the proposed strategy, actuator faults are detected and diagnosed when
residual trajectories enter and remain in certain sets that are computed as probabilistic ultimate
bounds. After a fault is diagnosed, the control scheme is reconfigured to take into account the
corresponding actuator failure and preserve certain closed loop features. We show that our strategy
can detect and diagnose the different faults considered with an arbitrarily small probability of
misdetection.
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1. Introduction

The safe and efficient operation of automatic control systems in modern industries is essential
in view of the growing economic, environmental and safety demands. When faults occur in any
component of the system, its performance usually deteriorates and may even have catastrophic
consequences. Early detection of faults in the system and correct diagnosis of their origin, are
critical to make decisions to accommodate, or reconfigure, the system in order to adapt to the new
situation.

Since the introduction of the first techniques of diagnosis in the 1970s, many methods have
been proposed for detection and identification of faults. These can be found in books and survey
papers such as [6, 16, 2, 10, 4, 8, 7]. Most of these techniques are based on the use of observers that
provide “analytical redundancy”. These observers generate signals (commonly called “residuals”)
which act as indicators of the presence of faults. In healthy operation, residuals usually have small
values caused by disturbances and other uncertainties. When a fault occurs, their values grow
and the fault is detected provided that the residuals exceed certain “thresholds” chosen a priori
according to some assumptions about the system and external signals.

Some alternative approaches to the one of the current paper, which deal with different aspects
of the problem of actuator faults, can be found in [22, 19, 15, 23, 21]. In [22], a ‘virtual sensor’
and a ‘virtual actuator’ are designed for the reconfiguration of linear parameter varying systems
after faults, and stability of the reconfigured system is established using input to state stability
theory. The faulty system is assumed to be known, that is, no fault detection nor fault estimation
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capabilities are included. The work in [19] considers the use of a virtual sensor and a virtual
actuator for linear parameter varying systems with fault estimation formulated as a parameter
estimation problem. The authors of [15] provide a scheme that deals with actuator fault tolerant
control of systems with polytopic uncertainties, by using set-based diagnosis and virtual-actuator-
based reconfiguration. In addition, the manuscripts [23] and [21] present an active fault tolerant
control scheme for systems with dissimilar redundant actuation.”

A methodology related to the principle of diagnosis by residual and thresholds is based on
verifying that the residuals belong to certain sets representing state values that are consistent with
healthy or faulty situations [18, 9].

In this set-based fault diagnosis area, the last two authors of this paper have proposed in recent
years a new method based on the concepts of invariant sets and ultimate bounds [14, 20, 13, 5].
The main feature of this method is that it guarantees fault detection and diagnosis exploiting the
fact that the residuals converge to these sets and remain inside them indefinitely provided that
there are no changes in the fault situation. This methodology treats disturbances and other sources
of uncertainty in a deterministic way, assuming only that the disturbances are bounded, without
taking into account that they may follow some probabilistic distribution.

On the other hand, in many applications of control systems theory it is more appropriate
to represent disturbances by unbounded signals, such as Gaussian white noise. In these cases,
ultimate bounds and invariant sets cannot be obtained using traditional deterministic definitions
[3]. Motivated by this limitation, we have proposed in [11, 12] the novel concepts of probabilistic
ultimate bound and probabilistic invariant sets. These definitions extend the deterministic concepts
of invariance and ultimate boundedness to the stochastic case by considering that the state “belongs
in probability” to certain sets; thus they allow the treatment of stochastic disturbances with more
general distributions, including the ubiquitous Gaussian white noise.

A first approach for the usage of probabilistic sets for fault diagnosis was presented in [17].
However, that preliminary work did not consider a reconfiguration scheme.

In this paper, following the fault diagnosis and reconfiguration strategy based on deterministic
sets developed in [5], we extend the fault diagnosis mechanism presented in [17] and propose a
control reconfiguration scheme. In consequence, we propose an actuator fault tolerant control
strategy based on probabilistic ultimate bounds so that it is possible to consider the presence of
unbounded Gaussian white noise.

In the proposed scheme, faults are detected and diagnosed when the residuals remain for some
time in certain probabilistic sets. After a fault is diagnosed, the control scheme is reconfigured
to take into account the corresponding actuator failure and preserve certain closed loop features.
We show that our strategy can detect and diagnose the different faults in the different control
configurations with an arbitrarily small probability of misdetection.

The paper is organized as follows: Section 2 describes the deterministic scheme proposed in [5]
and it recalls the concepts of continuous time probabilistic ultimate bounds presented in [11, 12].
Then, Section 3 presents the proposed scheme and it explains its components. In Section 4, we
compute the probabilistic ultimate bounds obtained for each fault occurrence under each fault
configuration and then we develop a diagnosis technique and a reconfiguration scheme based on
these sets. Finally, Section 5 illustrates the results with a numerical example.
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2. Background

In this section we first revisit a deterministic fault tolerant control strategy on which our work
is based. Then, we recall the definition and some properties of Probabilistic Ultimate Bounds.

2.1. Fault Tolerant Control Based on Set Separation
The fault tolerant control strategy proposed in this work is inspired in the deterministic scheme

introduced in [5] which is depicted in Figure 1.

Figure 1: Scheme proposed in [5].

The scheme is formed by the plant (where the actuator faults can occur), a bank of observers,
a state–feedback controller, an exosystem or reference system and a fault detection and isolation
(FDI) module. This FDI module diagnoses the actuator faults and reconfigures the reference
system, the controller and the observer bank, accordingly. The reconfiguration process consists in
selecting the appropriate stabilizing controller from a bank of control laws.

The bank of observers provides a state estimation for the different fault situations. The con-
troller uses the state estimation from the observer that matches the diagnosed fault situation, and
a reference signal, generated by the exosystem, to be tracked by the plant trajectories.

The FDI module detects and isolates the current fault based on pre-computed invariant sets
towards which certain estimation errors, which are used as residuals, converge. These sets are
computed for each considered fault situation, and for each possible fault configuration.

A key property for the correct fault diagnosis in this scheme is the separation of the sets that
characterize the healthy operation from those that characterize each faulty situation.

The main limitation of the scheme as initially conceived in [5] is that the invariant sets depend
on the boundedness of the disturbances. In the case of unbounded noise, these sets do not exist.
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2.2. Probabilistic Ultimate Bounds

We consider a continuous-time LTI system given by the following stochastic differential equation

dx(t) = Ax(t)dt + dw(t) (1)

with x(t), w(t) ∈ R
n. We assume that A is a Hurwitz matrix, i.e., all its eigenvalues have strictly

negative real part, and that the disturbance vector w(t) is a stochastic process whose increments
are uncorrelated with zero mean values. In particular, we will assume a Gaussian distribution, in
which case the disturbance is a Wiener process.

In the remainder of this section we recall some of the concepts introduced and developed in our
previous work [11, 12].

Definition 1 (Probabilistic Ultimate Bounds [11, 12]). Let 0 < p ≤ 1 and let S ⊂ R
n. We say

that S is a probabilistic ultimate bound (PUB) with probability p for system (1) if for every initial
state x(t0) = x0 ∈ R

n there exists T = T (x0) ∈ R such that the probability Pr[x(t) ∈ S] ≥ p for
each t ≥ t0 + T .

When the disturbance w(t) is generated by a Gaussian process, a PUB with probability p for
system (1) can be computed as follows

• First, given the probability p, such that 0 < p < 1, we define n parameters p̃i ∈ (0, 1) such
that

n
∑

i=1

p̃i = 1− p.

• Then, we compute

bi ,
√

2[Σx]i,ierf
−1(1− p̃i); i = 1, . . . , n, (2)

where Σx is the solution of the Lyapunov equation

AΣx +ΣxA
T = −Σw, (3)

with Σwdt the incremental covariance matrix of w(t), and erf is the error function: erf(z) ,
2√
π

∫ z

0
e−ζ2

dζ.

Then, according to Theorem 16 in [12], any set of the form

S = {x : |xi| ≤ bi + ε; i = 1, . . . , n}

for any ε > 0, is a probabilistic ultimate bound for system (1) with probability p.
We observe that for the non Gaussian case, Eq.(2) is replaced by a different expression derived

from Chebyshev’s inequality (see details in [12]).

3. Proposed Scheme

In this section, we describe the fault tolerant control scheme. Following the idea of [5], Figure 2
shows our proposed scheme and its constitutive parts are explained in the following subsections.
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Figure 2: Proposed scheme.

In this scheme, a control strategy is designed to ensure that the plant tracks the dynamics of a
reference system under all considered actuator fault scenarios. This control uses a single observer
that provides state estimates to implement a state feedback law. Indeed, the main structural
difference from the scheme of [5] is that the bank of (fixed-parameter) observers is replaced by
a single observer, adaptable to the diagnosed fault situation. The state of the observer and the
state of the reference system are compared by the FDI module to determine the possible presence
of faults. The FDI principle, to be described later, uses probabilistic ultimate bounds and their
properties to diagnose faults. Once a fault has been detected and isolated, a reconfiguration is
made by adjusting the reference system, the controller feedback gain, and the observer parameters,
to match the diagnosed fault situation. Then, the diagnosis process is restarted after certain time.

3.1. Plant Model

The plant is modeled by an LTI perturbed system described by

dxp(t) = Axp(t)dt+BPu(t)dt+ Fdw(t),

yp(t) = Cxp(t).
(4)

where xp(t) ∈ R
n is the system state, u(t) ∈ R

m is the control input, w(t) is a Wiener process
with incremental covariance matrix Σwdt, yp(t) ∈ R

s is the system output, and A, B, C and F are
constant matrices of suitable dimensions. Matrix P is used to model the occurrence of actuator
faults.

P , diag{P1, P2, · · · , Pm}, 0 ≤ Pk ≤ 1,

Here, Pk = 1 represents the absence of fault in the k-th actuator, whereas Pk = 0 models the k-th
actuator outage. Any value 0 < Pk < 1 represents a partial fault in the k–th actuator.

Thus, in the absence of faults, P is the identity matrix. We consider a finite number of possible
fault situations represented by P = P i for i = 0, . . . , q, with P i defined as follows:

P 0 = I,
P i = diag{P i

1, P
i
2, · · · , P i

m}. (5)

In the sequel we will assume that system (4) is stabilizable for all possible values of P = P i,
with i = 0, · · · , q, as defined in (5).
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In order to emphasize the current system fault situation (determined by matrix P = P i) we
will employ the following notation for the system dynamics:

dxp(t) = Axp(t)dt +BP iu(t)dt+ Fdw(t),

yp(t) = Cxp(t).
(6)

3.2. Exosystem for Reference Tracking

The reference system computes the input and state reference trajectories, ur(t) and xr(t).
Under the j–th fault situation (for j = 0, . . . , q), these reference trajectories satisfy the disturbance-
free model equations

dxr(t) = Axr(t)dt+BP jur(t)dt,

yr(t) = Cxr(t).
(7)

where the input
ur(t) = ūjr +∆ur(t) (8)

is computed by some control laws that ensure that yr(t) exponentially tracks the constant output
reference y0. The signal y0 is a reference value that we ultimately wish the plant output yp(t)
in (6) to track under every possible fault situation.

The input reference ur(t) is composed of a constant part ūjr and a varying part ∆ur(t).
We will assume that limt→∞ ur(t) exists and hence take ūjr

.
= limt→∞ ur(t); this then implies

limt→∞ ∆ur(t) = 0.

3.3. Plant State Observer

In order to obtain an estimation of the plant state, which will be used to implement the control
and to detect and isolate actuator faults, we propose an observer that is adapted to the diagnosed
fault situation. Namely, under the diagnosis of the j–th fault the observer dynamics is characterized
by

dxo(t) = Axo(t)dt+BP ju(t)dt+ L(yp(t)− Cxo(t))dt, (9)

for j = 0, . . . , q.

3.4. Feedback Control Laws

The proposed control input in (6) is based on the observer state (9) and the reference signals
(7), (8), and takes the form

u(t) = Kj(xo(t)− xr(t)) + ur(t), (10)

where Kj represents the state feedback gain designed for the j–th fault scenario (j = 0, . . . , q).

4. Main Result

In this section, the proposed actuator FDI and reconfiguration scheme is presented. Towards
that goal, we first derive the closed-loop dynamics of the scheme described in the previous section
and then we compute the probabilistic ultimate bounds obtained for each fault occurrence under
each fault configuration. The FDI mechanism, based on filtering some indicator functions of the
probabilistic ultimate bound sets, is then presented.
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4.1. Closed-loop Dynamics

In the sequel, we shall consider that the system is configured for the j–th fault situation but
the plant is under the occurrence of the i–th fault (i and j might be different from each other).

Defining the state estimate tracking error, which will be used as residual, as

eor(t) , xo(t)− xr(t), (11)

the control law (10) can be written as

u(t) = Kjeor(t) + ur(t). (12)

Also, we define the state estimation error as

epo(t) , xp(t)− xo(t). (13)

Considering the closed-loop system with Eq.(12), and using Eqs., (4), (7) and (9), the state
estimate tracking error dynamics eor(t) can be written as

deor(t) = dxo − dxr =

= (A+BP jKj)eor(t)dt+ LCepo(t)dt.
(14)

Similarly, using Eqs.(4) and (9), the state estimation error epo(t) dynamics can be written as

depo(t) = dxp − dxo =

= (A− LC)epo(t)dt+B(P i − P j)Kjeor(t)dt+

+B(P i − P j)ur(t)dt+ Fdw.

(15)

Then, combining Eqs.(14) and (15), and defining

e(t) ,

[

eor(t)
epo(t)

]

, (16)

the following system is obtained:

de(t) =

[

A+BP jKj LC
B(P i − P j)Kj A− LC

]

e(t)dt+

+

[

0
B(P i − P j)

]

ur(t)dt+

[

0
F

]

dw(t).

(17)

Remark 1. In order to ensure the stability of the closed-loop system (17) under every considered
fault situation and control configuration, the feedback control gains Kj and the observer matrix L
in (9) should be such that the closed-loop matrices

Ai,j
ℓ =

[

A+BP jKj LC
B(P i − P j)Kj A− LC

]

(18)

for i = 0, . . . , q and j = 0, . . . , q, are Hurwitz.
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4.2. PUB Computation

Assuming that the system is under the i–th fault situation (i ∈ {0, . . . , q}), and configured
assuming the j–th fault situation, Eq. (17) can be rewritten as

de(t) =
[

Ai,j
ℓ e(t) +Bi,j

ℓ ur(t)
]

dt+Gdw(t), (19)

with Ai,j
ℓ defined in Eq. (18) and with

Bi,j
ℓ ,

[

0
B(P i − P j)

]

, G ,

[

0
F

]

. (20)

Then, using the constant input reference term in (8) to define

ēi,j =

[

ēi,jor
ēi,jpo

]

, −(Ai,j
ℓ )−1Bi,j

ℓ ūjr, (21)

and considering the change of coordinates

ẽi,j(t) = e(t)− ēi,j ,

the system in (19), recalling that ur(t) = ūjr +∆ur(t), can be expressed as

dẽi,j(t) = Ai,j
ℓ ẽi,j(t)dt+Gdw(t) +Bi,j

ℓ ∆ur(t)dt. (22)

Notice that the last term goes to zero since limt→∞ ∆ur(t) = 0. Thus, it can be ignored for the
PUB computation.

According to Remark 1, matrix Ai,j
ℓ in (22) is Hurwitz and given that w(t) is a Wiener process

with incremental covariance Σwdt, we can use Theorem 16 in [12] to compute the ultimate bound,
for 0 < p < 1, as (see Section 2.2)

S̃i,j = {ẽi,j ∈ R
2n : |ẽi,jk | ≤ bi,jk + ε; k = 1, . . . , 2n} (23)

where

bi,jk ,

√

2[Σi,j
x ]k,kerf

−1(1− p̃k); k = 1, . . . , 2n (24)

with p̃k ∈ (0, 1) such that
2n
∑

k=1

p̃k = 1− p, (25)

and where Σi,j
x is the solution of Lyapunov’s equation.

Ai,j
ℓ Σi,j

x + Σi,j
x (Ai,j

ℓ )T = −GΣwG
T .

In the original coordinates, e(t), the set S̃i,j becomes

Si,j = {e ∈ R
2n : |ek − ēi,jk | ≤ bi,jk + ε; k = 1, . . . , 2n}, (26)

which represents the PUB for system (17) under the i–th fault situation considering the j–th
configuration.
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4.3. Fault Diagnosis

The basic idea to detect the occurrence of a fault is to check if the error e(t) evolves inside a
PUB set Si,j . However, only the component eor(t) (i.e., the state estimate tracking error) can be
measured. Thus, we will be interested in the following PUB sets:

Si,j
or = {eor ∈ R

n : |eor − ēi,jor | � bi,jor + ε̄}, (27)

where ε̄ , [ε, . . . , ε]T , and the symbol “�” denotes the elementwise inequality, and according to
Eq.(24),

bi,jor ,

[

bi,j1 , . . . , bi,jn

]T

(28)

Then, the fault diagnosis strategy is based on verifying the convergence of the residual eor(t)
to the PUB sets Si,j

or . The following lemma establishes a basic property of these sets.

Lemma 1. Given a configuration j ∈ {0, . . . , q}, we assume that the system is in the i–th fault
situation from time tif . Then, given p ∈ (0, 1), there exists T > 0 such that the probability

Pr[eor(t) ∈ Si,j
or ] ≥ p, ∀t ≥ tif + T .

Proof. Si,j is a PUB with probability p, then for every initial state e(tif ) = e0 ∈ R
2n, there exists

T = T (e0) such that the probability

Pr[e(t) ∈ Si,j ] ≥ p, ∀t ≥ tif + T.

On the other hand, if e(t) ∈ Si,j then eor(t) ∈ Si,j
or , and hence

Pr[eor(t) ∈ Si,j
or ] ≥ Pr[e(t) ∈ Si,j ] ≥ p, ∀t ≥ tif + T.

In a deterministic context, assuming that the ultimate bound sets are disjoint, the fact that
eor(t) converges to S

i,j
or implies that the i–th fault has occurred. This is in fact the idea used in [5]

to perform the fault diagnosis.
However, in the probabilistic case, eor(t) may reach a set without the occurrence of the corre-

sponding fault. Also, eor(t) may leave the corresponding PUB set with certain probability. Thus,
to decide that a fault has occurred we need to check that the residual belongs to the corresponding
set most of the time (i.e., in an ‘average’ sense, according to the probability p of the PUB set).

In order to take into account this remark, the fault diagnosis strategy relies on filtering the indi-
cator functions of each set. The following theorem shows that this idea can reduce the probability
of errors in the fault detection to an arbitrary small value.

Theorem 1. Suppose the closed-loop system is under a configuration j ∈ {0, . . . , q}, and the
plant is under the i–th fault situation from time tif . Assume the PUB sets are disjoint, that is,

Si,j
or ∩ Sk,j

or = ∅, for i 6= k, and we define

dk,j(t) , 1
S

k,j
or

(eor(t)); k = 0, . . . , q, (29)

where 1S is the indicator function of set S. In addition, we consider the low–pass filters defined
by the differential equations

ḋk,jf (t) = −λ
[

dk,jf (t)− dk,j(t)
]

; k = 0, . . . , q. (30)
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with initial states dk,jf (tif ) ∈ [0, 1].
Then, if the PUB probability p > p∗ and the filter parameter λ > 0 is sufficiently small, given

δ̂ > 0, there exists T̂ i,j > 0 such that

Pr[di,jf (t) < dk,jf (t)] < δ̂ ∀t > T̂ i,j,

where p∗ ≈ 0.8133 is the solution of

sup
γ>0

[

1− 2e−γ − 2γ(1− p)
]

= 0. (31)

Proof. Given 1 t0 >> tif , for every τ ≥ t0, eor(τ) is a uniformly ergodic stationary Gaussian

process. Let Ci,j , R
n\Si,j

or be the complement of Si,j
or and take t1 ≥ t0. Then, it results that

1

t

∫ t1+t

t1

1Ci,j (eor(τ))dτ
p→

t→∞
E[1Ci,j (eor(t1))]

uniformly in t1. In particular, given δ > 0, and ǫ > 0, there exists T > 0 independent of t1 such
that ∀ t > T ,

Pr

[

1

t

∫ t1+t

t1

[

1− di,j(τ)
]

dτ ≥ E[1Ci,j (eor(t1))] + ǫ

]

< δ,

where we used the fact that 1Ci,j (eor(τ)) = 1− di,j(τ).
Since E[1Ci,j(eor(t1))] = Pr[eor(t1) /∈ Si,j

or ] = 1 − Pr[eor(t1) ∈ Si,j
or ] ≤ 1 − p (Lemma 1 and

footnote 1), then, for every t > T ,

Pr

[

1

t

∫ t1+t

t1

[

1− di,j(τ)
]

dτ ≥ 1− p+ ǫ

]

< δ,

Then, given λ > 0,

Pr

[

λ

∫ t1+t

t1

[

1− di,j(τ)
]

dτ ≥ λt(1− p+ ǫ)

]

< δ. (32)

Notice that, provided that τ < t+ t1, it results that 0 < e−λ(t+t1−τ) < 1. Also, since di,j ∈ {0, 1}
it results that [1− di,j(τ)] ≥ 0, ∀τ . Thus, from Eq.(32) we obtain

Pr

[

λ

∫ t1+t

t1

[

1− di,j(τ)
]

e−λ(t+t1−τ)dτ > λt(1 − p+ ǫ)

]

< δ (33)

On the other hand, solving Eq.(30) with k = i, we obtain

di,jf (t1 + t) = e−λtdi,jf (t1) + λ

∫ t1+t

t1

e−λ(t+t1−τ)di,j(τ)dτ =

= e−λtdi,jf (t1) + (1− e−λt)− λ

∫ t1+t

t1

e−λ(t+t1−τ)[1− di,j(τ)]dτ.

1In particular t0 has to be such that t0 − ti
f

is greater than the time such that eor(t) is in the set S
i,j
or with

probability greater than or equal to p, according to Lemma 1 (such a time is a function of the initial state eor(tif )—cf.

Definition 1).
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Using the above in Eq.(33) and the fact that di,jf (tif ) ≥ 0 ⇒ di,jf (t1) ≥ 0, it results that

Pr
[

di,jf (t1 + t) < 1− e−λt − λt(1 − p+ ǫ)
]

< δ (34)

for every t > T . Now, solving Eq.(30) with k 6= i, and taking into account that dk,jf (tif ) ≤ 1 ⇒
dk,jf (t1) ≤ 1 and Si,j

or ∩ Sk,j
or = ∅ ⇒ dk,j(τ) ≤ 1− di,j(τ), it follows that

dk,jf (t1 + t) = e−λtdk,jf (t1) + λ

∫ t1+t

t1

e−λ(t+t1−τ)dk,j(τ)dτ

≤ e−λt + λ

∫ t1+t

t1

e−λ(t+t1−τ)[1− di,j(τ)]dτ

≤ e−λt + λ

∫ t1+t

t1

[1− di,j(τ)]dτ

Taking into account the last inequality and Eq.(32), it results that

Pr
[

dk,jf (t1 + t) > e−λt + λt(1− p+ ǫ)
]

< δ. (35)

From Eqs.(34)–(35) and simple probabilistic properties 2 we obtain

Pr
[

di,jf (t1 + t)− dk,jf (t1 + t) < 1− 2e−λt − 2λt(1− p+ ǫ)
]

< 2δ,

for any t1 ≥ t0 and for every t > T .
Notice that a condition α(t1 + t) > β(t) for every t1 ≥ t0 and for every t > T implies that

α(t0 + t) > supτ>T β(τ) for every t ≥ Ts , arg supτ>T β(τ), and, hence Pr[α(t1 + t) < β(t)] ≥
Pr[α(t0 + t) < supτ>T β(τ)]. Using this reasoning on the last inequality, it follows that

Pr

[

di,jf (t0 + t)− dk,jf (t0 + t) < sup
τ>T

[1− 2e−λτ − 2λτ(1 − p+ ǫ)]

]

< 2δ,

for every t ≥ T i,j
s . Let γ , λτ ,

Pr

[

di,jf (t0 + t)− dk,jf (t0 + t) < sup
γ>λT

[1− 2e−γ − 2γ(1− p+ ǫ)]

]

< 2δ. (36)

Let p∗ be the solution of (31) and compute γ∗ ≈ 1.6783 such that 1 − 2e−γ∗ − 2γ∗(1 − p∗) = 0.

Thus, assuming that p and λ were chosen such that p > p∗ + ǫ and λ < γ∗

T
, the supremum in

Eq.(36) results greater than zero and then

Pr
[

di,jf (t0 + t) < dk,jf (t0 + t)
]

< 2δ, ∀t > T i,j
s .

and the proof concludes taking T̂ i,j = t0 + T i,j
s and δ̂ = 2δ.

2Given two random variables x ∈ R, y ∈ R, and two real numbers a, b, the events {(x, y) : x < a}, {(x, y) : y > b}
and {(x, y) : x+ b < y + a} satisfy {x+ b < y + a} ⊂ {x < a} ∪ {y > b}. Then Pr [x+ b < y + a] ≤ Pr [x < a] +
Pr [y > b] .
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Theorem 1 shows that if the system is configured to match the j-th fault situation and at
time tif the i–th fault occurs, then, by applying first order filters on the indicator functions of the

different sets, after some time T̂ i,j, the filtered signal corresponding to the i–th fault situation has
an arbitrarily small probability of becoming smaller than any other filtered signal.

Then, we can detect the i–th fault according to i = argmaxk d
k,j
f (t), with an arbitrary small

probability of misdetection.
According to this idea, the proposed detection scheme is depicted in Fig. 3.

Figure 3: Proposed detection scheme.

Once the fault is detected, we must reconfigure the control as it is explained below.

4.4. Reconfiguration Scheme

In the normal operation mode (healthy or faulty) we should have j = argmaxk d
k,j
f (t), i.e., the

detected fault situation is equal to the current fault situation.
When this situation changes, i.e., when j 6= i = argmaxk d

k,j
f (t), we shall reconfigure the

scheme by taking j = i. After this reconfiguration step, we know that for certain time we cannot
rely on the diagnosis module (Theorem 1 only ensures the correct fault detection with arbitrarily
small probability of misdetection after some time T̂ i,j). Thus, under the detection of the i–th fault
situation at time tid we proceed as follows:

• We reconfigure the control, observer and reference system according to the new fault situation
by setting j = i.

• We wait for some time until the residual eor(t) arrives to the set Si,i
or , where it should remain

(with probability p) provided the fault situation does not change again.

• We restart the filter states according to di,if (t) = 1 and dk,if (t) = 0 for k 6= i so they start
filtering from a state consistent with the detected current fault situation.

• We restart the diagnosis module comparing again the filter states.

Remark 2. Notice that we only ask that the different configurations under the different fault situ-
ations are stable, i.e., that the closed loop matrices Ai,j

ℓ in (18) are Hurwitz. This condition alone
does not ensure the stability of the switched system that results after the occurrence of arbitrary
sequences of faults and reconfigurations. However, if we assume that a new change in the fault

12



situation can only occur after the state arrives to the corresponding ultimate bound set, and that
the subsequent reconfiguration only takes place after the state arrives to the new ultimate bound
set, then a switching sequence that makes the system unstable cannot occur. This is, the state
will always move (with probability) between the computed ultimate bound sets for the different fault
situations and configurations.

While the last remark tells that, in practice, the configuration remains stable, the following
theorem provides a formal proof that the trajectory converges (in probability) to a bounded region.

Theorem 2. Consider the system (19). Assume that matrices Ai,j
ℓ are Hurwitz and that the input

reference signal ur(t) is bounded. Assume also that the switching intervals are bounded from below

by a T > 0 large enough such that ‖eAi,j

ℓ
t‖ < 1 for all t ≥ T and for all i, j. Then, given an

arbitrary probability 0 < p < 1, a bounded PUB S with probability p can be found for system (19).

Proof. Let τ1, τ2, · · · , τj , τj+1, · · · be an arbitrary switching sequence with τ1 ≥ t0+T , from which
we build the following sequence

tk+1 =

{

τj if τj is such that tk + T ≤ τj < tk + 2T

tk + T otherwise

Notice that the sequence tk contains the switching sequence τj , but it also can have more points
so that

T ≤ tk+1 − tk < 2T (37)

Let t ∈ (tk, tk+1]. Since there are no switching occurrences in that interval, the solution of
Eq.(19) can be written as

e(t) = eA
i,j

ℓ
(t−tk)e(tk) +

∫ t

tk

eA
i,j

ℓ
(t−τ)Bi,j

ℓ ur(τ)dτ +

∫ t

tk

eA
i,j

ℓ
(t−τ)Gdw(τ) (38)

Taken expectations at both sides of the solution, we get

E[e(t)] = E

[

eA
i,j

ℓ
(t−tk)e(tk) +

∫ t

tk

eA
i,j

ℓ
(t−τ)Bi,j

ℓ ur(τ)dτ +

∫ t

tk

eA
i,j

ℓ
(t−τ)Gdw(τ)

]

= eA
i,j

ℓ
(t−tk)E[e(tk)] +

∫ t

tk

eA
i,j

ℓ
(t−τ)Bi,j

ℓ ur(τ)dτ

where the third term is null since the process w(t) has zero mean.
Taking norm 2 on both sides of the last equation, we obtain,

‖E[e(t)]‖ =

∥

∥

∥

∥

eA
i,j

ℓ
(t−tk)E[e(tk)] +

∫ t

tk

eA
i,j

ℓ
(t−τ)Bi,j

ℓ ur(τ)dτ

∥

∥

∥

∥

≤
∥

∥

∥
eA

i,j

ℓ
(t−tk)

∥

∥

∥
‖E[e(tk)]‖+

∫ t

tk

∥

∥

∥
eA

i,j

ℓ
(t−τ)Bi,j

ℓ

∥

∥

∥
‖ur(τ)‖ dτ (39)

Let us define
γ , max

i,j
sup
τ≥T

‖eAi,j

ℓ
τ‖; υ , max

i,j
sup
τ≥0

‖eAi,j

ℓ
τ‖ (40)
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and notice that, by assumption, the fact that τ ≥ T implies ‖eAi,j

ℓ
τ‖ < 1 and then γ < 1. Also,

since Ai,j
ℓ are Hurwitz matrices, υ is bounded by some constant.

Define also

η , max
i,j

sup
t≥0

∫ t

0

∥

∥

∥
eA

i,j

ℓ
τBi,j

ℓ

∥

∥

∥
ūrdτ (41)

where ūr is an upper bound for the bounded signal ‖ur(τ)‖ for all τ ≥ t0. Notice that η is bounded
due to the fact that Ai,j

ℓ are Hurwitz matrices.
Using Eqs.(40)–(41) in inequality (39) for t = tk+1 we obtain,

‖E[e(tk+1)]‖ ≤ γ‖E[e(tk)]‖ + η (42)

Then the sequence ‖E[e(tk)]‖ is bounded from above by a monotonic sequence that converges to
η

1−γ
. Hence, we have

lim
k→∞

‖E[e(tk+1)]‖ ≤ η

1− γ
(43)

and then, given ε > 0 there exists Kε such that

‖E[e(tk)]‖ ≤ η

1− γ
+ ε, ∀k ≥ Kε. (44)

Using now Eqs.(41) and (44) in inequality (39), we obtain

‖E[e(t)]‖ ≤
∥

∥

∥
eA

i,j

ℓ
(t−tk)

∥

∥

∥

(

η

1− γ
+ ε

)

+ η ≤ υ

(

η

1− γ
+ ε

)

+ η , µε (45)

for all t > tk with k ≥ Kε, where we used the fact that
∥

∥

∥
eA

i,j

ℓ
t
∥

∥

∥
≤ υ for t ≥ 0 according to Eq.(40).

Notice that tk+1 − tk < 2T in Eq.(37) implies that tk < t0 + 2kT . Then, defining

Tε , t0 + 2KεT (46)

the condition t ≥ Tε implies that t > tk with k = Kε, and

‖E[e(t)]‖ ≤ µε (47)

for all t ≥ Tε.
The covariance of e(t) in Eq.(38) is defined as Σe(t) = E[(e(t)− E[e(t)])(e(t) − E[e(t)])T ].

Notice that the term
∫ t

tk
eA

i,j

ℓ
(t−τ)Bi,j

ℓ ur(τ)dτ of Eq.(38) is deterministic, so it does not con-

tribute to the covariance, which can be then computed as Σe(t) = Σz(t) = E[(z(t)−E[z(t)])(z(t)−
E[z(t)])T ] with

z(t) = eA
i,j

ℓ
(t−tk)z(tk) +

∫ t

tk

eA
i,j

ℓ
(t−τ)Gdw(τ)

and z(tk) = e(tk). This last expression is the solution of a linear stochastic differential equation
whose variance, following Eq.(6.9) of [1], is given by

Σz(t) = eA
i,j

ℓ
(t−tk)Σz(tk)e

A
i,j

ℓ

T
(t−tk) +

∫ t

tk

eA
i,j

ℓ
(t−τ)GΣwG

T eA
i,j

ℓ

T
(t−τ)dτ
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and then,

Σe(t) = eA
i,j

ℓ
(t−tk)Σe(tk)e

A
i,j

ℓ

T
(t−tk) +

∫ t

tk

eA
i,j

ℓ
(t−τ)GΣwG

T eA
i,j

ℓ

T
(t−τ)dτ

Taking norm 2 on both sides, it results

‖Σe(t)‖ ≤
∥

∥

∥
eA

i,j

ℓ
(t−tk)Σe(tk)e

A
i,j

ℓ

T
(t−tk)

∥

∥

∥
+

∥

∥

∥

∥

∫ t

tk

eA
i,j

ℓ
(t−τ)GΣwG

T eA
i,j

ℓ

T
(t−τ)dτ

∥

∥

∥

∥

≤
∥

∥

∥
eA

i,j

ℓ
(t−tk)

∥

∥

∥

2

‖Σe(tk)‖+
∫ t

tk

∥

∥

∥
eA

i,j

ℓ
(t−τ)GΣwG

T eA
i,j

ℓ

T
(t−τ)

∥

∥

∥
dτ

≤
∥

∥

∥
eA

i,j

ℓ
(t−tk)

∥

∥

∥

2

‖Σe(tk)‖+ δ (48)

where

δ , max
i,j

sup
t≥0

∫ t

0

∥

∥

∥
eA

i,j

ℓ
τGΣwG

T eA
i,j

ℓ

T
τ
∥

∥

∥
dτ (49)

Using Ineq.(48) for t = tk+1 we obtain

‖Σe(tk+1)‖ ≤
∥

∥

∥
eA

i,j

ℓ
(tk+1−tk)

∥

∥

∥

2

‖Σe(tk)‖+ δ ≤ γ2 ‖Σe(tk)‖+ δ (50)

If we consider that the initial state e(t0) is deterministic (i.e. Σe(t0) = 0), the last equation
says that the sequence ‖Σe(tk)‖ is bounded from above by a monotonically growing sequence that
converges to the value δ

1−γ2 . Thus,

‖Σe(tk)‖ ≤ δ

1− γ2
(51)

for all k ≥ 0, and then, using Eq.(48) again we obtain

‖Σe(t)‖ ≤
∥

∥

∥
eA

i,j

ℓ
(t−tk)

∥

∥

∥

2

‖Σe(tk)‖+ δ ≤ υ2
δ

1− γ2
+ δ , σ2 (52)

showing that the covariance of e(t) is bounded by σ2 for all t ≥ t0.
Let ei(t) be the i–th component of e(t). Recalling that ‖E[e(t)]‖ ≤ µε for t ≥ Tε and ‖Σe(t)‖ ≤

σ2, and that e(t) is 2n dimensional (cf.(16)), we have

|E[ei(t)]| ≤ µε, ∀t ≥ Tε

and
[Σe(t)]i,i ≤ ‖Σe(t)‖∞ ≤ ‖Σe(t)‖

√
2n ≤ σ2

√
2n

Then, for t ≥ Tε, given p̃i such that 0 < p̃i < 1, we obtain

Pr

[

|ei(t)| ≥ µε + σ 4

√

2n

p̃2i

]

≤ Pr

[

|ei(t)| ≥ |E[ei(t)]|+
√

[Σe(t)]i,i

√

1

p̃i

]

≤ Pr

[

|ei(t)− E[ei(t)]| ≥
√

[Σe(t)]i,i
p̃i

]

≤ p̃i
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where we used Chebyshev inequality in the last step.
Taking 0 < p̃i < 1 for i = 1, · · · , 2n such that

∑2n
i=1 p̃i = 1− p, we define the region

S =

{

e : |ei| ≤ µε + σ 4

√

2n

p̃2i
; i = 1, · · · , 2n

}

(53)

and we notice that

Pr[e(t) ∈ S] = 1− Pr[e(t) /∈ S] ≥ 1−
2n
∑

i=1

Pr

[

|ei(t)| ≥ µε + σ 4

√

2n

p̃2i

]

≥ 1−
2n
∑

i=1

p̃i = p

for t ≥ Tε, showing that the bounded set S is a PUB with probability p for system (19).

The last theorem proves that the trajectories converge in probability to a bounded region
provided that the minimum interval T between successive switching times, as computed in the
theorem, is satisfied.

5. Examples

5.1. Aircraft Control

The following example, taken from [24], represents a bank-angle control system for a jet trans-
port aircraft flying at the speed of 0.8 Mach, and the attitude of 40,000 ft. There are two manip-
ulated variables: the aileron position and the rudder position.

The state-space representation for this model can be written as in Eq.(4) with the following
system matrices:

A =









−0.6358 1 0 0
−0.9389 0 1 0
−0.5116 0 0 1
−0.0037 0 0 0









, B =









0 0
1.1476 10.7290
−2.0036 2.3169
13.7264 10.2370









, C =









1
0
0
0









T

and F =









2
1.1476
−2.0036
−13.7264









.

The fault scenarios are represented by the following matrices:

P 0 =

[

1 0
0 1

]

, P 1 =

[

0 0
0 1

]

, and P 2 =

[

1 0
0 0

]

,

where P 0 models that both actuators are operational, and P 1 and P 2 model faults in the aileron
and the rudder, respectively.

The state observer is designed according to Eq.(9) with

L =
[

13.3642 70.0611 153.4884 119.9963
]T
.

The feedback control gainsKj for each fault scenario (Eq.(10) are designed using the LQR method-
ology, resulting:

K1 =

[

−0.0833 0.0021 0.1427 0.1531
0.0105 −0.0208 −0.0212 −0.0126

]

,
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K2 =

[

0 0 0 0
0.0223 −0.0085 −0.0400 −0.0579

]

, and

K3 =

[

−0.1075 0.0249 0.1745 0.1704
0 0 0 0

]

.

It can be verified by direct calculation that Remark 1 holds with these control and observer
matrices.

For the reference system we designed a linear quadratic integral (LQI) control law so that the
output tracks a constant reference y0(t) = 1. The usage of this LQI controller on the system of
Eq.(7) provides the input reference signals:

ūr,0 = [0.0648, 0.0873]T , ūr,1 = [0.0885, 0.0004]T , and ūr,2 = [−0.0003, 0.1260]T ,

for each fault configuration scenario.
Then, the PUB sets Si,j

or = {eor ∈ R
4 : |eor − ēi,jor | � bi,jor + ε̄}, where ε̄ , [ε, . . . , ε]T , were

computed for a probability p = 0.813 and a noise incremental covariance Σwdt = 10−5dt. We take
p̃k = (1−p− δ)/4 for k = 1, . . . , 4, and p̃k = δ/4, for k = 5, . . . , 8, with a very small value for δ (we
chose δ = 10−4). Hence, Eq.(25) is satisfied and we obtain a small size for Si,j

or in the directions of
the measured variables (the first n = 4 components of the 2n combined state vector (16)).

Thus, using Eq.(21), Eq.(24), and (28) the following values for ēi,jor and bi,jor were obtained:

ē0,0or =
[

0 0 0 0
]T
, b̄0,0or =

[

0.1003 0.0995 0.1010 0.0610
]T
,

ē1,0or =
[

0.4349 0.2517 0.3492 −0.0244
]T
, b̄1,0or =

[

0.2875 0.2772 0.1979 0.0967
]T
,

ē2,0or =
[

−0.2557 −0.1480 −0.2053 0.0144
]T
, b̄2,0or =

[

0.1320 0.1263 0.1272 0.0723
]T
,

for the healthy configuration,

ē0,1or =
[

−0.3564 −0.2124 −0.3923 −0.0480
]T
, b̄0,1or =

[

0.1705 0.1655 0.1805 0.0738
]T
,

ē1,1or =
[

0 0 0 0
]T
, b̄1,1or =

[

0.1705 0.1655 0.1805 0.0738
]T
,

ē2,1or =
[

−35.306 −21.043 −38.866 −4.7549
]T
, b̄2,1or =

[

1.4400 0.9002 1.5828 0.2394
]T
,

for the first actuator fault, and

ē0,2or =
[

0.3113 0.1836 0.2063 0.0129
]T
, b̄0,2or =

[

0.1274 0.1280 0.0996 0.0719
]T
,

ē1,2or =
[

33.7494 19.9005 22.3642 1.4026
]T
, b̄1,2or =

[

1.4393 0.8875 0.9417 0.1342
]T
,

ē2,2or =
[

0 0 0 0
]T
, b̄2,2or =

[

0.1274 0.1280 0.0996 0.0719
]T
,

for the fault in the second actuator configuration. It can be verified that the resulting PUB sets
for the different configurations are disjoint, thus satisfying the assumption of Theorem 1.

In order to implement the diagnosis scheme of Fig.3, we designed the filters (30) using the
parameter λ = 0.1.

In order to test our scheme, the system was simulated for 1000 seconds, varying the fault
situation between the 3 fault scenarios, as shown with the dashed line in Fig. 4. In the same figure,
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Figure 4: Actual fault situation (dashed line) and the corresponding detection (solid line).

the solid line shows the output of the diagnosis block, which correctly detects the fault after a
lapse of time that is of the order of the filter response time.

For the same fault sequence, Figure 5 shows the plant output when the reconfiguration scheme
is applied. It can be seen that the reference signal is correctly tracked in all the situations (except
for some short transients due to the time required for correct fault diagnosis). The effectiveness
of the proposed methodology becomes evident when this signal is compared with that of Figure 6,
which shows the plant output under the same fault sequence when no reconfiguration is made.
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Figure 5: Plant output with reconfiguration.
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Figure 6: Plant output without reconfiguration.

5.2. Autonomous Vehicle Control

We consider a nonlinear model of a car moving in a plane. The car is impulsed by four
independent motors, whose torque can be controlled. The car has also a steering wheel that can
be manipulated in the range ψ ∈ (−π/4, π/4). The model considers that the wheels can slip (with
a large friction coefficient).

The overall model has 7 degrees of freedom: the displacement in x and y coordinates, the vehicle
angle θ with respect to the x axis, and the angular position of the four wheels. The total order
is then 14 (considering positions and velocities). The measured variables are the wheel angular
speeds, and the deviation and the angle with respect to the x axis: y(t), and θ(t).

The control goal is that the car moves at a constant speed vx = 1m/s following a straight
line representing the x axis (i.e., y(t) = 0). Thus, the total order of the model was reduced to 9,
since nor the angle of the wheels neither the position x(t) play any role in the controlled system.
Thus, the reduced order plant state, input and output dimensions are n = 9, m = 5, and s = 6,
respectively.

A Matlab function containing the nonlinear state equations of the car can be downloaded from
http://www.fceia.unr.edu.ar/~kofman/files/car/carStateEqs.m. This function is used in-
side a Simulink model containing the car model that can be downloaded from http://www.fceia.

unr.edu.ar/~kofman/files/car/car.mdl.
In the model, the input noise is a scalar Wiener process with incremental covariance Σwdt = 1dt,

that enters the plant through the input affected by a matrix G, so the plant model has the form

dx(t) = f(x(t))dt + g(x)(u(t)dt+Gdw(t))

with G = [0.1, 0.1, 0.1, 0.1, 0.05]T .
We consider that only two motors can fail at the same time, so we have a total of 11 fault

situations (4 corresponding to individual actuator faults, 6 corresponding to all the possible com-
binations of two actuators with simultaneous faults, and the healthy situation).
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In order to build the exosystem, and to design the observer, the controllers and to compute the
PUBs, the plant model was linearized (using Matlab’s command linmod), obtaining the following
system matrices:

A =





























0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 −2 0 0 0.15 0.15 0.15 0.15
0 1.2 0 −2 0 0 0 0 0
0 0 0 0 −10.88 −0.36 0.36 −0.36 0.36
0 0 20 0 −12 −6.34 0 0 0
0 0 20 0 12 0 −6.34 0 0
0 0 20 0 −12 0 0 −6.34 0
0 0 20 0 12 0 0 0 −6.34





























B =





























0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0.6
0 0 0 0 2.4
0.2 0 0 0 0
0 0.2 0 0 0
0 0 0.2 0 0
0 0 0 0.2 0





























C =

















1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

















The model of Eq.(4) is completed with F = BG.
The different components of the control reconfiguration scheme were designed as follows:

• The exosystem is the linearized version of the nonlinear plant with different controllers for
each fault situation designed using an LQI technique. The design ensures stability under
the 11 possible configurations. In addition, it ensures that the output yr(t) converges to the
reference constant output y0 corresponding to y(t) = 0 mts and vx(t) = 1 m/s.

• The state observer was designed with a Luenberger structure using pole placement.

• The feedback control gains Kj were designed using LQR on the linearized model for the
11 possible configurations. For the LQR design, in all cases, we chose Q = 100I9×9 and
R = I5×5. The resulting feedback gains ensure that the closed–loop system is stable under the
occurrence of any fault situation while the scheme is in any of the 11 possible configurations.

The calculation of the PUBs for the 11 possible configurations under the 11 possible fault occur-
rences for a probability p = 0.99, satisfies the set separation assumption of Theorem 1. For the
filters in Eq.(30), we used the parameter λ = 1.

A Matlab script performing the design of the exosystem, controllers, observer, and the compu-
tation of the different PUBs can be downloaded from http://www.fceia.unr.edu.ar/~kofman/

files/car/car_script.m.
In order to evaluate the proposed fault tolerant strategy we simulated the complete scheme

using the nonlinear model for the plant with the sequence of faults depicted in Figure 7. This
sequence corresponds to an initial healthy situation, then there is a fault (at t = 50 secs) in the
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third actuator (forward left motor) that is recovered at time t = 300 secs. At time t = 500 secs
there is a fault in the second actuator (rear right motor) and at time t = 700 the first actuator
(rear left motor) also fails (the fault situation i = 5 denotes the simultaneous fault of the first and
the second actuator). At time t = 900 the second actuator recovers so there is only a fault in the
first actuator.
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Figure 7: Fault sequence (dashed line) and the corresponding detection (solid line).

Figure 7 also shows that all the faults are correctly detected. In all cases, the detection takes
from 5 to 8 seconds. In summary, the whole scheme works as predicted and the output is correctly
tracked as shown in Figure 8.
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Figure 8: Output trajectories with reconfiguration: y position (blue line) and vx speed (red line).
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In order to demonstrate the advantages of the proposed scheme, we simulated the system again
under the same sequence of faults but without reconfiguration. The corresponding trajectories are
shown in Figure 9, where a significant tracking error can be noticed.
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Figure 9: Output trajectories without reconfiguration: y position (blue line) and vx speed (red line).

This example shows that the methodology is robust and it can work even when the model of the
plant does not coincide with the model used to design and implement the exosystem, observer and
controllers. The mismatch between the plant and its model can have two effects: the closed loop
system may result unstable or, if it is stable, the PUBs computed may not coincide with the actual
ones, which can affect the diagnosis strategy. The first problem can be avoided by using a robust
controller. The second problem can be mitigated by using a large probability p ≈ 1 so that the
computed PUB sets are large and they can contain the real but unknown PUB sets corresponding
to the real plant (using a smaller probability).

6. Conclusions

We have presented a fault diagnosis strategy with reconfiguration of the control law based on
the computation of probabilistic ultimate bound sets. The use of these sets allows for unbounded
disturbances such as Gaussian white noise to be considered, a fact that is not possible under
deterministic set-based schemes.

We showed that the proposed strategy guarantees the correct diagnosis of actuator faults with
arbitrarily small probability of error.

To the best of our knowledge, this novel scheme constitutes the first link between deterministic
set-based fault diagnosis approaches and probabilistic strategies.

Future work is aimed at extending the results to discrete-time control schemes.
The results can be also extended to consider the presence of other component faults; for ex-

ample, sensor faults. In this case, the faults can typically be modeled as yp = QjCxp, instead of
the second equation in (4), where the matrix Qj models the sensor fault (in an analogous manner

22



as P i modeling an actuator fault in Eq.(6)). In that case, the corresponding observer (9) is built
using QjC instead of C in the last term. Assuming that the resulting PUB sets are disjoint (as
in Theorem 1), in particular that the PUB sets characterizing actuator faults are separated from
those characterizing sensor faults, then the same results of the paper can be applied.
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