
Quantization Based Integration Methods for Delay

Differential Equations

Rodrigo Castroa,c, Ernesto Kofmanb,c, François E. Cellierd

aDepartamento de Computación. Universidad de Buenos Aires. Argentina
bDepartamento de Control. FCEIA. Universidad Nacional de Rosario. Argentina

cCIFASIS – CONICET. Argentina
dDepartment of Computer Science, ETH Zurich. Switzerland

Abstract

This paper introduces a new class of numerical delay differential equation
solvers based on state quantization instead of time slicing. The numerical
properties of these algorithms, i.e., stability and convergence, are discussed,
and a number of benchmark problems are being simulated and compared with
the state-of-the-art solutions to these problems as they have been previously
reported in the open literature.

Keywords: Delay differential equation, Numerical DDE solver, State
quantization, Quantized state system, PowerDEVS

1. Introduction

The numerical solution of models of dynamic systems has been of interest
for many years. Many physical systems can be approximated by sets of ordi-
nary differential equations (ODEs), and consequently, the digital simulation
of such models has caught the interest of engineers and applied mathemati-
cians since the invention of the digital computer. These efforts have been
summarized in many textbooks [4, 5, 8, 9, 12].

However, there are also a significant number of systems from both science
and engineering that require, in their models, the inclusion of delays [1]. In
spite of their importance, the numerical simulation of models described by
sets of delay differential equations (DDEs) has been covered by much fewer
publications, and also, the state of the art of software for dealing with such
models is much less highly developed.

Preprint submitted to Simulation Modelling Practice and Theory July 1, 2010

Good solvers for simulating DDE models were developed recently by
Shampine, Thompson, and co–workers. These include a numerical DDE
solver encoded in Matlab, called dde23 [17, 18]. They also include a numer-
ical DDE solver encoded in Fortran, called ddesolver [19]. Both solvers are
classical solvers in the sense that they are based on the classical time–slicing
algorithms used throughout the numerical ODE, DDE, and DAE (differential
algebraic equation) literature.

In this article, we wish to advance the state of the art of numerical DDE
solvers by introducing a new class of DDE solvers, called DQSS, that are
based on state quantization in place of time discretization. The solvers have
been implemented in a modeling and simulation environment called Pow-
erDEVS [3]. PowerDEVS simplifies significantly the use of these solvers.

Numerical ODE solvers based on quantized state systems (QSS) for non–
stiff systems were previously described in [5, 11]. Currently available are
non-stiff ODE solvers of orders 1..4 (QSS1, QSS2, QSS3, and QSS4).

A first–order accurate numerical ODE solver for stiff systems, called
BQSS (backward QSS), was previously described in [6]. A more formal dis-
cussion of the stability and convergence features of BQSS is currently in
preparation. A class of higher-order linearly implicit stiff system solvers has
meanwhile also been developed. This work has been reported in [13, 14]. Cur-
rently available are linearly implicit stiff ODE solvers of orders 1..3 (LIQSS1,
LIQSS2, and LIQSS3).

A first–order accurate numerical ODE solver for marginally stable sys-
tems, called CQSS (centered QSS), was previously described in [6]. The
CQSS method is symmetric and symplectic and preserves ρ–reversibility [7].

A discussion of discontinuity handling (root solving) in QSS solvers can
be found in [10].

QSS methods turn out to be very useful for the simulation of DDE models.
There are a number of reasons for this observation. QSS methods offer dense
output, and they preserve that information not only during the current step,
but even across the entire simulation. QSS trajectories consist in sequences of
polynomial segments. The coefficients of these polynomial segments change
only at event times, i.e., when a state variable changes its quantization level.
It suffices to store the event times and the polynomial coefficients valid dur-
ing the immediately following time interval until the subsequent event takes
place in order to reconstruct the trajectory precisely. This feature can be
exploited in the calculation (interpolation) of the delayed signals. The infor-
mation is maintained for each state variable separately, since QSS methods

2

are naturally asynchronous, i.e., each state variable is updated independently
from all others, whenever it crosses through the next quantization threshold.

The paper is organized as follows. After a brief introduction to state
quantization, the basic idea behind QSS methods is presented in Section
2 of the paper. Section 3 discusses the generalization of the QSS concept
to handling DDEs and explains the DQSS algorithms in detail. Section
4, together with the Appendices, discusses the numerical properties of the
DQSS algorithms, i.e., stability and convergence. Section 5 presents the
DQSS simulations of four separate DDE benchmark models found in the
open literature [18, 19].

1.1. Intuitive Idea

We shall follow a step by step procedure to solve a typical DDE example
from the literature [2] based on a state quantization approach. Assume we
wish to simulate the system:

ẋ(t) = x(t− 1) , t ≥ 0

x(t) = 1 , − 1 < t ≤ 0
(1)

for t ≥ 0, with initial history x(t) = 1. This is a first-order DDE containing
a single constant delay of τ = 1.

We shall consider the following quantization function:

Q(x) , floor[
x

∆Q
].∆Q (2)

where ∆Q is a parameter called quantum.
In Figure 1, the relationship of Eq. (2) is depicted for a quantum of

∆Q = 0.5.
Let us now approximate the original system of Eq. (1) as follows:

ẋ(t) = Q(x(t− 1)) , q(t− 1) , t ≥ 0

x(t) = 1 , − 1 < t ≤ 0
(3)

i.e., we replaced x(·) by q(·) , Q(x(·)) on the right hand side of the state
equation. The variable q(t) is called quantized variable.

Notice that Q(1) = 1 and hence q(t) = 1 for t ≤ 0. Thus, we can rewrite
Eq. (3) as follows:

3

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

x(t)

q(t)

Figure 1: Quantization function q(x) with quantum ∆Q = 0.5

ẋ(t) = q(t− 1) , t ≥ 0

q(t) = 1 , − 1 < t ≤ 0
(4)

The modified system of Eq. (4) can be analytically solved.
We shall go through the solving procedure following Figure 2, where we

plotted the solution x(t) (dotted line), the quantized variable q(t) (bold line),
and its delayed version q(t− 1) (dash-dotted line).

Let us start the procedure at t = t0 = 0 with x(0) = q(0) = 1. At this
point, we have ẋ(t = 0) = q(−1) = 1.

We may observe that ẋ(t) does not change until q(t− 1) changes. Then,
x(t) evolves for a while growing with a constant slope of 1. Then at time
t = t1 = 0.5, we have x(t = 0.5) = 1.5 and the quantized variable q(t)
experiences its first change assuming a value of q(t = 0.5) = 1.5. This
implies that ẋ(t) = q(t− 1) will remain unchanged until time t = 1.5.

At t = t2 = 1, we have x(t = 1) = 2 and consequently, q(t) changes
its value again to q(t = 1) = 2. Then at t = t3 = 1.5, the state reaches a
value of x(t = 1.5) = 2.5, and the quantized state changes its value also to
q(t = 1.5) = 2.5.

4

1.833

2.125

2.375

2.6

2.8

2.833

−1 −0.5 0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

x(t)

q(t)

q(t−1)

Figure 2: Solution of x(t) for a DDE approximated by Eq. (4)

At time t = 1.5, the state derivative ẋ(t) changes its value also, since
q(t) changed its value at t = 1.5 − 1 = 0.5). The new slope is ẋ(t > 1.5) =
q(0.5) = 1.5, and now x(t) grows faster.

After ∆Q

ẋ(t3)
= 0.5

1.5
units of time, i.e., at time t4 = t3 + 1

3
= 1.8333, the state

reaches a value of x(t4) = 3, and we have q(t4) = 3.
The state derivative ẋ(t) changes its value again at time t = t5 = 2, and

from that point on, we have ẋ(t) = 2, given that q(2 − 1 = 1) = 2. At time
t5, the state reaches a value of x(t5) = x(t4) + 1.5 · (t5 − t4) = 3.25.

From this state value x(t) = 3.25 and with the new slope ẋ(t) = 2, the
state reaches a value of x(t = 2.125) = 3.5 after 3.5−3.25

2
= 0.125 units of

time, i.e., at time t6 = 2 +0.125 = 2.125. Then, q(t) changes its value again,
and the calculations continue in the same manner.

We can distinguish between two types of changes. At certain points in
time: t1, t2, t3, t4, and t6, the quantized state q(t) changes its value. At other
points in time: t3 and t5, it is the state derivative ẋ(t) that changes its value.
At time t3, both types of changes occur simultaneously.

5

The observed behavior suggests that the approximated system of Eq. (4)
can be described using a discrete-event model.

Although the procedure for simulating the approximated system of Eq. (4)
is straightforward, it remains to be seen, how well the solution obtained in this
way approximates the solution of the original system of Eq. (1). Moreover,
although simulating this particular system was quite easy, we need to discuss
if and if so how the proposed approach can be generalized to tackling broader
classes of DDE systems.

In the next section, we shall introduce the Quantized State Systems
(QSS), a family of numerical integration methods that formalize and gen-
eralize the intuitive procedure presented in this section.

2. Quantization–based Integration

We shall first introduce the idea and main characteristics of QSS meth-
ods applied to Ordinary Differential Equations (ODE). Then, we shall show
that the systems approximated by QSS can be represented within the DEVS
(Discrete Event Specification System) formalism framework.

After that in Section 3, we shall return to DDEs and study the require-
ments that arise when we try to extend the application of QSS methods
from ODEs to DDEs. Whereas we can introduce the QSS methods for ODEs
informally as these have already been introduced formally in other publica-
tions [11], the requirements and limitations of QSS methods for DDEs shall
be introduced formally and rigorously in this paper.

2.1. QSS Methods for ODEs

Consider a set of time-invariant ODEs represented in their state-space
form:

ẋ(t) = f(x(t),u(t)) (5)

where x(t) ∈ ℜn is the state vector, and u(t) ∈ ℜw is a vector of known
piecewise constant input trajectories.

The first order accurate QSS method (QSS1) simulates an approximated
version of Eq. (5), which is called Quantized State System (QSS):

ẋ(t) = f(q(t),u(t)) (6)

where q(t) is a vector of quantized states resulting from the quantization of
the state variables xj(t).

6

Each component of q(t) follows a piecewise constant trajectory, related
with the corresponding component of x(t) by a hysteretic quantization func-
tion defined by:

qj(t) =

{

xj(t) if |qj(t−) − xj(t)| = ∆Qj

qj(t
−) otherwise

(7)

with qj(t0) = xj(t0). Then, qj(t) results in a piecewise constant approxi-
mation of xj(t) that changes its value only when both trajectories differ by
±∆Qj . The magnitude ∆Qj is called quantum. The relationship between
xj and qj is depicted in Figure 3 (left), which differs from the quantization
relationship presented in Fig.1 due to the introduction of hysteresis.

Figure 3: Quantization function with hysteresis (left) and hysteretic quantization with
hysteresis width ε = ∆Q (right)

In Figure 3 (right), we show an example of the quantization of an arbitrary
trajectory x(t) applying the relationship of Eq. (7). The introduction of
hysteresis in QSS1 avoids the appearance of infinitely fast oscillations that
would prevent the simulation form advancing [5].

The QSS1 method can simulate any system with the structure of Eq. (5),
offering the following properties:

• It preserves numerical stability (without involving any implicit formu-
lae). The quantization process can be treated as a bounded perturba-
tion on the original ODE, so the nonlinear stability can be studied by
means of Lyapunov functions [11].

• It offers a global error bound, which guarantees that the numerical so-
lution of a linear time–invariant analytically stable system will never

7

differ from its analytical solution by an amount larger than a com-
putable finite value [5].

• It is intrinsically asynchronous: the different states update their values
independently of each other at different time instants. This offers a
significant advantage in terms of performance when dealing with sparse
systems.

• It provides dense output, a feature particularly useful for asynchronous
methods.

• It is very efficient at simulating across heavily discontinuous models
due to the simplicity of the required root solving procedures when
dense output is available. Also, due to the asynchronous features of
the method, each discontinuity occurrence can be efficiently handled.

While classical numerical ODE solvers lead to discrete-time approxima-
tions, i.e., sets of difference equations, the QSS1 method does not. The
QSS approximation of Eq. (6) results in a discrete-event system that can be
modeled using the DEVS formalism [21, 22].

2.2. DEVS Formalism

A DEVS model processes an input event trajectory, and, based on that
trajectory and the initial state, produces an output event trajectory.

The behavior of an atomic DEVS model is formally defined by the struc-
ture:

M = (X, Y, S, δint, δext, λ, ta) (8)

where

• X is the input event set, i.e., the set of all possible input event values;

• Y is the output event set;

• S is the state value set;

• δint, δext, λ, and ta are functions that define the model dynamics.

8

Each possible state s ∈ S has a time advance function ta(s) : S → ℜ+
0

associated with it that indicates, how long the state will retain its current
value in absence of external input events. Assuming that the state s assumes
a value of s1 at time t1, the model undergoes an internal transition ta(s1)
time units later, i.e., at time t1 + ta(s1), changing the value of the state
to s2 = δint(s1). The function δint(s) : S → S is called internal transition
function. While the model undergoes an internal transition, it also produces
an output event y1 ∈ Y calculated with the output function λ : S → Y .
The functions δint, ta, and λ define the autonomous behavior of a DEVS
model. If an input event x1 ∈ X arrives while the state has been at a value
of s2 for e seconds, the model undergoes an external transition, changing
the value of the state instantaneously to s3 = δext(s2, e, x1). The function
δext(s, e, x) : S × ℜ+

0 × X → S is called external transition function. It is a
function of the previous state value s, of the elapsed time (the time spent
in that state already) e, and the value of the input event that triggered the
transition. During an external transition, no output event is produced.

Any system that undergoes a finite number of state changes within any
finite time interval can be modeled using an atomic DEVS model.

DEVS models can be coupled by interconnecting their inputs and outputs
in a block diagram fashion. Since the DEVS formalism is closed under cou-
pling, coupled DEVS models can be hierarchically coupled with other coupled
and/or atomic DEVS models to represent yet more complex systems.

2.3. QSS and DEVS

Figure 4 shows the block diagram representation of Eq. (6). In grey, the
figure shows the block diagram divided into two types of subsystems: The Fi

(static functions) and the HQI (hysteretic quantized integrator) blocks. The
Fi blocks correspond to the functions that compute the right hand side of
Eq. (6), while each HQI block is composed by an integrator and a hysteretic
quantization function.

Each Fi block has piecewise constant input trajectories, qj and uj, and
it computes a piecewise constant output trajectory, ẋj . Similarly, the HQI
blocks have piecewise constant input trajectories, ẋj , and calculate piecewise
constant output trajectories, qj .

Since piecewise constant trajectories can be represented as sequences of
events, and recalling that atomic DEVS models can represent any system
that receives and produces these types of sequences, each block in Fig.4 can
be represented by a DEVS atomic model.

9

Figure 4: Block diagram representation of a QSS. Arrow references: thin (single component
signal), bold (multiple component bus).

The DEVS models for static functions, Fi, and hysteretic quantized inte-
grators, HQI, are quite simple and have been specified in [5].

Then, coupling the corresponding DEVS atomic models of Fi and HQI in
accordance with the block diagram of Fig.4, we obtain a coupled DEVS model
equivalent to Eq. (6). This DEVS model can be used to exactly simulate the
behavior of the QSS1 approximation of the original ODE.

2.4. Higher–order QSS

The QSS1 mechanism described so far is a first–order approximation al-
gorithm showing a linear relationship between the desired precision and the
number of steps needed to simulate a given system. It exhibits poor perfor-
mance for levels of accuracy as they are required for most practical (engi-
neering) applications.

For this reason, higher–order QSS methods have also been developed,
in particular a second–order QSS (QSS2) and a third–order QSS (QSS3)
method. The basic idea behind higher–order QSS algorithms is to change
the quantization function that calculates qj(t) to preserve higher–order in-
formation about the original signals xj(t).

In the QSS1 quantization, all higher time derivatives are discarded, and a
piecewise constant qj(t) approximation is obtained. In QSS2, the second time
derivative of xj(t) is preserved by producing piecewise–linear qj(t) outputs,
while in QSS3, the third time derivative of xj(t) is preserved by producing
piecewise–parabolic qj(t) outputs.

The quantization qj(t) for an arbitrary input signal xi(t), using a quantum
∆Qj , is depicted in Figure 5 for the QSS2 and QSS3 methods.

10

Figure 5: First order quantization function (QSS2, left) and second order quantization
function (QSS3, right)

The formal definitions of the QSS2 and QSS3 methods are the same as
that of QSS1, i.e., these integrators approximate the ODE system of Eq. (5)
by the QSS of Eq. (6), but now the quantized states qj are computed from
xj as shown in Fig.5.

In terms of the performance concerns mentioned earlier, higher–order QSS
methods show an important property: for QSS2, the number of steps grows
with the square root of the accuracy, and for QSS3, the number of steps
grows with the cubic root of the precision. As a remark, QSS1, QSS2, and
QSS3 share the same theoretical properties, at least for linear systems.

The DEVS implementation of QSS2 and QSS3 is analogous to that of
QSS1. They follow the block diagram structure of Fig.4, but the atomic
DEVS models for the static functions Fi and the quantized integrators HQI
are different, as they take into account higher–order derivatives of their input
and ouput trajectories.

For instance in QSS2, the blocks Fi and HQI have piecewise–linear input
and output trajectories. Consequently, the DEVS models for Fi and HQI

receive and produce events carrying two coefficients representing the values
and slopes of the sections of the corresponding piecewise–linear trajectories.

3. QSS Methods for Delay Differential Equations

In this section, we present the Delay Quantized State System (DQSS)
methods for solving DDEs.

DDEs are characterized by their ability to reference in the model past

11

values of state variables. DDEs express past information by means of one
or more delay functions of the general form τj(·). The delays may be either
constant with τj(·) = τj (constant–delay DDEs), or they may be functions of
time with τj(·) = τj(t) (time–dependent DDEs), and finally, they may also
depend on system states with τj(·) = τj(x1(t), ..., xn(t), t) (state–dependent
DDEs).

We can reformulate the general ODE representation in Eq. (5) to incor-
porate such delayed information and then apply a quantization function to
the state variables, thus obtaining what we shall call DQSS methods.

3.1. DQSS Definition

Consider the following DDE in its State Equation System (SES) vectorial
representation:

ẋ(t) = f(x(t),x(t− τ1(x, t)), ...,x(t− τm(x, t)),u(t)) (9)

where τj(x, t) ≥ 0 for all t,x and for all j, and the rest of the variables and
functions are defined like in the ODE case of Eq. (5).

We also consider the initial history:

x(t) = S(t) ; − τmax < t < 0 (10)

where τmax is a positive constant that satisfies t− τi(x, t) > −τmax for all t,x
and for all i.

The DQSSn method then simulates the delayed quantized state system:

ẋ(t) = f(q(t),q(t− τ1(q, t)), ...,q(t− τm(q, t)),u(t)) (11)

where each component of the quantized state vector q(t) is related to the
corresponding component of the state vector x(t) by a hysteretic quantization
function of order n.

3.2. DEVS representation of DQSS

Figure 6 shows the block diagram representation of the delayed quantized
state system of Eq. (11).

12

Figure 6: Block diagram representation of a DQSS. Box references: continuous (regu-
lar block), dotted (DEVS equivalent model). Arrow references: thin (single component
signal), bold (multiple component bus), continuous (non-delayed), dotted (delayed)

13

In order to implement this method using DEVS, we can proceed following
the same idea as in the ODE case, i.e. we build a coupled DEVS model with
DEVS equivalents of the different system blocks.

The block diagram of Figure 6 shows now three types of DEVS models:
Hysteretic Quantized Integrators HQI, which compute qj ; Static Functions
Fj and τi, which compute ẋj and τi, respectively; and the Delays D, which
compute q(t− τi).

We already have available DEVS models for quantized integrators and
static functions. All we still have to do is to find a DEVS representation for
the delay blocks D. The first step towards this aim is to define mathemat-
ically the operation of a generic delay block (Figure 7, left). After that, we
shall provide the DEVS equivalent modelD (Figure 7, right) that implements
the obtained mathematical definition.

Figure 7: Delay block (left). Delay DEVS model D (right)

3.3. Analytical Calculation of Delayed Signal

We wish to compute d(t) = y(t− τ(t)), where y(t) and τ(t) are piecewise
polynomial trajectories.

We can express y(t) as a sequence of polynomial segments valid on adja-
cent time intervals given by:

y(t) = y0,k + y1,k(t− t
y
k) + y2,k(t− t

y
k)

2 + . . .

t
y
k ≤ t < t

y
k+1

(12)

where tyk is a sequence of time instants with t
y
k < t

y
k+1, and y0,k, y1,k, y2,k, . . .

are the corresponding sequences of polynomial coefficients.
Note that under this representation, the polynomial coefficients can change

their values only at the beginning of each interval (tyk). The coefficients re-
main constant throughout any time interval t ∈ [tyk, t

y
k+1).

Similarly, we express τ(t) as the following sequence:

τ(t) = τ0,j + τ1,j(t− tτj) + τ2,j(t− tτj)
2 + . . .

tτj ≤ t < tτj+1

(13)

14

where tτj is a sequence of time instants with tτj < tτj+1, and τ0,j , τ1,j, τ2,j , . . .

are the corresponding sequences of polynomial coefficients.
The delayed signal d(t) will also follow a piecewise polynomial trajectory

that can be written as:

d(t) = d0,ℓ + d1,ℓ(t− tdℓ) + d2,ℓ(t− tdℓ)
2 + . . .

tdℓ ≤ t < tdℓ+1

(14)

and we need to compute the time sequences tdℓ and the coefficient sequences
d0,ℓ, d1,ℓ, d2,ℓ,

Note that there is not predefined relationship between the time instants
t
y
k and tτj , which can evolve independently. The resulting timing sequence tdℓ

will depend on tyk and tτj in a manner that we shall now describe.
Let t∗ be an arbitrary instant of time, for which we want to find the

expression of d(t∗). Let j be the integer number that satisfies

tτj ≤ t∗ < tτj+1

and let k be the integer number satisfying

t
y
k ≤ t∗ − τ(t∗) < t

y
k+1

It should be noted that, whereas the DDE makes use of values of state
variables from the past, the delay time τ(t) is calculated now, i.e., at the
time when the past state value is being accessed, not when it was computed.

Note further that d(t∗) will be related to both the j–th polynomial section
of τ(t) and the k–th polynomial section of y(t). The beginning of the ℓ–th
polynomial section of d(t) can correspond to either a section change in τ(t),
or a section change in y(t), or both simultaneously. Thus, tdℓ will be related
to either tτj , t

y
k, or tyk+1.

Let us define:

ta = max

(

t | (t− τ(t) = t
y
k) ∧ (tτj < t ≤ t∗)

)

tb = max

(

t | (t− τ(t) = t
y
k+1) ∧ (tτj < t ≤ t∗)

) (15)

in case the equations t − τ(t) = t
y
k and/or t − τ(t) = t

y
k+1 have solution in

the given interval. Otherwise, we set ta = −∞ and/or tb = −∞.

15

Then, we can compute the starting time tdℓ < t∗ of the ℓ–th polynomial
section to which d(t∗) belongs as:

tdℓ = max(ta, tb, t
τ
j) (16)

The next adjacent section of d(t) will start at tdℓ+1. In order to find its
value, let us define:

t′a = min

(

t | (t− τ(t) = t
y
k) ∧ (t∗ < t ≤ tτj+1)

)

t′b = min

(

t | (t− τ(t) = t
y
k+1) ∧ (t∗ < t ≤ tτj+1)

) (17)

in case the equations t − τ(t) = t
y
k and/or t − τ(t) = t

y
k+1 have solution in

the given interval. Otherwise, we set t′a = ∞ and/or t′b = ∞.
The next point in time tdℓ+1 > t∗ belonging to the sequence of the delayed

signal d(t) can be computed as:

tdℓ+1 = min(t′a, t
′
b, t

τ
j+1) (18)

Following these definitions, for any time instant belonging to the contin-
uous interval t ∈ [tdℓ , t

d
ℓ+1), the trajectories y(t− τ(t)) and τ(t) will not have

discontinuities, and d(t) will satisfy Eq. (14).
In Figure 8, we depict the main timing components and polynomial se-

quences discussed so far that uniquely define d(t) = y(t − τ(t)). From now
on, we shall refer to sets of polynomial coefficients that define a signal in a
given interval as column vectors. Also, taking into account that we are inter-
ested in methods up to third order (QSS3), we shall only handle polynomial
coefficients up to quadratic terms.

Thus, we shall deal with vectors

dℓ =

d0,ℓ

d1,ℓ

d2,ℓ

 , yk =

y0,k

y1,k

y2,k

 , and τj =

τ0,j

τ1,j

τ2,j

Either Eq. (16) or Eq. (18) can be used to define the time sequence tdℓ
of the delayed function d(t). To complete its analytical expression, we need

16

]

]

Figure 8: DQSS algorithm based on polynomial segments. Sequences of time instants and
polynomial coefficients.

to also compute the sequence of coefficients d0,0 . . . d0,ℓ , d1,0 . . . d1,ℓ , and
d2,0 . . . d2,ℓ. From Eqs. (12), (13), and (14), we can write:

d(t) = d0,ℓ + d1,ℓ(t− tdℓ) + d2,ℓ(t− tdℓ)
2 + · · · =

= y(t− τ(t)) =

= y0,k + y1,k[(t− τ(t)) − t
y
k] + y2,k[(t− τ(t)) − t

y
k]

2 + · · · =

= y0,k + y1,k[(t− (τ0,j + τ1,j(t− tτj) + τ2,j(t− tτj)
2 + . . .)) − t

y
k]+

+ y2,k[(t− (τ0,j + τ1,j(t− tτj) + τ2,j(t− tτj)
2 + . . .)) − t

y
k]

2 + . . .

Removing all coefficients of orders higher than 2 and eliminating the j, k,
and ℓ sub-indices of the corresponding sequences to avoid notational clutter,
we obtain the following expressions for the coefficients:

17

d0 =y0 − y1[τ0 + τ1(t
d − tτ) + τ2((t

τ)2 − 2tτ td + (td)2) + ty − td]+

y2[τ
2
0 − τ0(2τ1(t

τ − td) − τ2(2(tτ)2 − 4tτ td + 2(td)2) − 2ty + 2td)+

τ 2
1 t

τ − (td)2 + 2τ1(t
d − tτ)(τ2((t

τ)2 − 2tτ td + (td)2) + ty − td)+

τ 2
2 ((tτ)2 − 2tτ td + (td)2)2 + 2τ2((t

τ)2 − 2tτ td + (td)2)(ty − td)+

(ty)2 − 2tytd + (td)2]

d1 = − y1[τ1 + 2τ2(t
d − tτ) − 1]+

y22[τ0 + τ1(t
d − tτ) + τ2((t

τ)2 − 2tτ td + (td)2) + ty − td]·
[τ1 + 2τ2(t

d − tτ) − 1]

d2 = − y1τ2 + y2[2τ0τ2 + τ 2
1 − τ1(6τ2(t

τ − td) + 2) + 6τ 2
2 ((tτ)2 − 2tτ td + (td)2)+

2τ2(2t
τ + ty − 3td) + 1]

(19)

3.4. DEVS–based Algorithm to Obtain d(t) = y(t− τ(t))

Due to the event–like nature of quantized state systems, the task of de-
laying segments is based on a queueing–like activity. Incoming y(t) events
(polynomial representations of segments) are received, enqueued, eventually
queried (as many times as required according to what the evolution of τ(t)
demands), processed by an algorithm, and sent out as d(t) events.

In Section 1.1, we presented an informal iterative procedure using a simple
backward lookup to obtain q(t−τ) from q(t). The procedure was fairly simple
to follow and did not present algorithmic complexities. The system solved
in that example is a very simple one, given that it features a single constant
delay and that the integration method used to solve it was of first order.

Although there are many models of practical interest that involve constant
delays, models with time– and state–dependent delays are very important
also, and they turn out to be the most challenging DDE problems for classical
time–slicing methods.

The DEVS Delay models D must accept variable delay information and
must implement the required mechanism to search dynamically back in time
over the stored y(t) segments in accordance with τ(t) as discussed in Sec-
tion 3.3.

We shall now describe a general implementation of a DEVS Delay model
D that follows the mathematical specification provided in Section 3.3. The

18

main activities of D will be mapped to the description of Figure 8 and can
be summarized as follows:

• DEVS external transitions1:

– Upon receiving a new y(t) segment at time t:

Enqueue the new segment as a vector ym with time-stamp
tym = t. It contains the n polynomial coefficients that describe the
m–th arrived segment of the trajectory y(t).

– Upon receiving a new τ(t) segment at time t:

Update the previously stored vector τj with the new segment
and time-stamp tτj . It contains the n polynomial coefficients that
describe the j–th arrived segment of the trajectory τ(t).

Lookup backward in the queue the k–th segment yk with
time-stamp tyk “pointed at” by τ(t), i.e., satisfying tyk ≤ t− τ(t) <
t
y
k+1.

– After having processed all of the external events that arrived at
time t:

Calculate the next time instant tdℓ+1 according to Eq. (18) at
which the validity of the current output dℓ expires.

Schedule an internal transition to take place at time t = tdℓ+1

for calculating tdℓ+2, assuming that no external transition inter-
fered.

• DEVS internal transitions:

– Upon expiration of the current output segment dℓ at time t = tdℓ+1:

Recalculate and Output a new vector dℓ+1 with time-
stamp tdℓ+1 and polynomial coefficients as defined by Eq. (19).

1Upon receiving multiple new segments y(t) and/or τ(t) simultaneously, consecutive
external transitions will be triggered to process segments independently, one at a time.
The processing order will be that of the segments’ arrival order at model D, which will in
turn be determined by the priorities of the models generating them. The resulting final
state for model D will correspond to the last processed segment. This mechanism does
not affect the correctness of the calculated output segments d(t).

19

Calculate and Schedule a new internal transition to take
place at time t = tdℓ+2 for calculating tdℓ+3, assuming that no ex-
ternal transition interfered.

The pseudo–algorithm just described can be easily mapped onto a DEVS
atomic model. In the next section, we shall provide details of our implemen-
tation of the Delay model using the PowerDEVS tool.

3.5. PowerDEVS Implementation.

We developed a new block named Delay for the Continuous Library of
PowerDEVS. It consists of an atomic DEVS model that implements the al-
gorithm depicted in Figure 8.

The Delay block has two input ports and one output port. The top input
port receives the variable delay information τ(t), and the bottom input port
accepts the signal y(t) to be delayed. The output port emits the resulting
delayed signal d(t) = y(t− τ(t)).

In Figure 9 we show the PowerDEVS tool with a Delay block and its user
interface window for parametrization.

Figure 9: PowerDEVS Delay Block user interface.

Two parameters can be configured: Initial Delay and History. Both
parameters use Scilab expressions or variables.

20

By configuring Initial Delay, we provide the block with the value for
τ0 = τ(t0) at the beginning of the simulation, in case there is no signal
present at the top input port at time t0. For instance in the example of
Figure 9, the block is configured with τ0 = 2, and consequently, it will start
emitting d(t0) = y(t0 − τ0) = y(−2).

Values for y(t ≤ 0) are entered through the History parameter. The
history information is entered as a matrix H(r, c) of size r×c with r rows and
c columns. Each column defines a polynomial segment and its time stamp.
The first row H(1, ·) represents the sequence of negative time stamps for each
segment. For instance in the example of Figure 9, we have H(1, ·) = [−2,−1],
meaning that the block is provided with two history segments starting at
t = −2 and t = −1.

For a given column H(·, c), the first row defines the time stamp, and the
rows from 2 to r represent the polynomial coefficients of orders 0, 1, 2,

For instance in the example of Figure 9, the oldest segment at t = −2 has
polynomial coefficients 2, 0,−2 and will remain valid until the beginning of
the next segment, starting at t = −1, with polynomial coefficients 1,−1, 0.
With these parameters, the block will start emitting d0 = y(−2) = 2 at t0.

Note that, it might happen that the Initial Delay parameter and/or τ(t)
point at an instant told in the past, for which there is no segment defined in the
History parameter, i.e., when told < tmin = min(hi|hi ∈ H(1, i), i = 1, . . . , c).
Under that condition, the Delay block extrapolates the oldest segment de-
fined in H backward in time, so that its new time stamp t′min coincides with
told. Each time this particular situation occurs, a warning message is written
to a log file.

The Delay block can be connected to any PowerDEVS block from the
Continuous Library and/or Hybrid Library to build complex hybrid systems
with delays.

4. Theoretical Properties of QSS Methods for DDEs.

4.1. Stability and Convergence. Constant Delays.

With the next theorem, we provide the conditions to guarantee the ap-
plicability of DQSS methods to solve general constant–delay DDEs.

We prove that, if the original system is stable, then the simulation of
the DQSS equivalent system will preserve numerical stability, and also the
numerical solution can be made as accurate as desired by making the selected

21

quantum ∆Q approach zero. We only require that the original system has
an asymptotically stable solution for zero initial conditions.

Theorem 1. Consider the following DDE:

ẋ(t) = Ax(t) +
m
∑

i=1

Aix(t− τi) (20)

and assume that the analytical solution φa(t) for the trivial initial condition
φa(t) = x(t) = 0, t ≤ 0 is asymptotically stable. Then,

1. The error committed by any QSS method in the simulation of Eq. (20)
is bounded for all t ≥ 0, for any quantum ∆Q adopted, and for any
initial condition x(t ≤ 0).

2. The QSS approximation converges to the analytical solution, i.e., the
global error goes to zero when the quantum goes to zero.

Proof:. See Appendix B

4.2. Stability and Convergence. Time and State Dependent Delays

With the next theorem, we extend the class of DDEs that can be simu-
lated with DQSS methods to those with time– and state–dependent delays,
guaranteeing the applicability of DQSS methods to solve general DDEs of
these classes.

As before, we prove that the simulation of the DQSS equivalent of an orig-
inally stable system will preserve numerical stability, and also the numerical
solution can be made as accurate as desired by only making the selected
quantum ∆Q approach zero.

But in this case, we require a more stringent property to the original
system. We ask the DDE system to be an Input to State Stable (ISS)2 system.
This means that, if the system is perturbed with an arbitrary bounded input,
then the evolution of all states will be also bounded.

Theorem 2. Consider the DDE

ẋ(t) = f(x(t),x(t− τ1(x, t)), t) (21)

2See Appendix A for a definition of Input to State Stability

22

where function f is locally Lipschitz in the first two arguments and piecewise
continuous on t, and τ1(·) is locally Lipschitz in x and piecewise continuous
on t. Let φa(t) be the analytical solution from a given initial history φa(t < 0).
Suppose that the analytical solution is bounded, and assume also that the
forced system

ẋ(t) = f(x(t),x(t− τ1(x, t)), t) + u(t) (22)

is Input to State Stable along the solution φa(t).
Let φ(t) be the solution of the DQSS approximation

ẋ(t) = f(q(t),q(t− τ1(q, t)), t) (23)

with initial history φ(t < 0) = φa(t < 0).
Then, provided that the quanta ∆Qj, j = 1, . . . , n are sufficiently small,

the error e(t) , φ(t)− φa(t) is bounded for all t > 0. Moreover, e(t) → 0 as
∆Qj → 0.

Proof:. See Appendix C

Remark:. Theorem 2 holds for any DDE of the form of Eq.(21), which has
a single delay function τ1. However, it can be extended in a straightforward
way to DDEs with multiple delay functions, such as Eq.(9).

5. Experimental Results

We tested and bench-marked the solution of some typical DDE systems
taken from the open literature by performing simulations using the new
DQSS–based algorithms and comparing those to the results obtained us-
ing discrete–time based solvers developed and published previously by other
authors [18, 19].

We implemented the Delay block described in Section 3.3 as a DEVS
model in PowerDEVS, a DEVS–based simulation platform specially adapted
to simulating hybrid systems based on QSS methods. PowerDEVS has a
graphical user interface similar to that of Matlab/Simulink, which permits
editing block diagrams. The atomic DEVS description is programmed in
C++ and can be easily edited with the PowerDEVS atomic editor tool.
The Delay block is the only new model required for simulating DDEs with
PowerDEVS, given that the tool already comes with static functions and
hysteretic quantized integrators. The new Delay block is now part of the
standard PowerDEVS library of continuous models.

23

5.1. Example 1

Let us consider, as a first example, the system reported as Example 1 in
[18] characterized by the DDE of Eq. (24). The DDE is to be simulated for
t ∈ [0, 5] with history x1(t) = 1, x2(t) = 1, and x3(t) = 1 for t ≤ 0.

ẋ1(t) = x1(t− 1)

ẋ2(t) = x1(t− 1) + x2(t− 0.2)

ẋ3(t) = x3(t)

(24)

This system has three state variables x1, x2, and x3 and two constant
delays τ1 = 1, τ2 = 0.2. It represents a linear DDE system with constant
history.

In order to model the DQSS approximation of Eq. (24), we used the block–
oriented graphical user interface of PowerDEVS, as depicted in Figure 10. It
can be seen that two Delay blocks were needed, one for obtaining x1(t− τ1),
and another for obtaining x2(t− τ2). Constant generator blocks are used to
produce the constant continuous delay signals, which are connected to the
top input port of the Delay blocks.

The simulation results are shown in Figure 11.
The system is analytically unstable, i.e., the trajectories grow exponen-

tially over time.
Average performance results for sets of 30 simulation runs are provided in

Table 1. DQSS3, the third-order accurate QSS solver coded in PowerDEVS is
compared with dde23, another third-order accurate discrete-time algorithm
coded in Matlab. Identical error tolerance values were applied in both cases.
A relative accuracy of 10−3 was requested. For values of state variables
very close to zero, |xi| < 10−6, the relative error tolerance is replaced by an
absolute error tolerance of 10−6.

We compared both the number of function evaluations and the execution
times. The number of function evaluations cannot be compared one to one,
since DQSS3 is an asynchronous algorithm, i.e., performs function evalua-
tions independently for each state variables, whereas dde23 is a synchronous
algorithm that performs function evaluations on all state variables together.
Consequently, three separate function evaluations of DQSS are needed when
simulating a third-order model to update all three state variables, whereas
only one function evaluation is needed when using dde23. For this reason,
we multiplied the reported number of function evaluations of the dde23 and

24

Figure 10: Model of a DDE implemented in the PowerDEVS tool

dde solver algorithms by the order of the system in the tables to get compa-
rable numbers.

Both PowerDEVS and Matlab perform partial compilations of the solver
algorithms and/or the models. However, neither environment generates a
flat program that is compiled and executed. Consequently, both programs
experience similar overheads, and therefore, the execution times can be mean-
ingfully compared to each other.

In PowerDEVS, the algorithm itself is so fast that its weight relative to
the initialization process turned out to be negligible in this example. The
0.0158 seconds of execution time reported correspond to the initialization
process in all cases. However, since the system to be simulated in analyti-
cally unstable, the simulation time cannot be extended much further without
causing overflow.

25

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
0

20

40

60

80

100

120

140

160

180

200

Example 3 of Willé and Baker (1992)

time

x1
(t

),
 x

2(
t)

, x
3(

t)

Figure 11: Solution of Example 1 [20]

5.1.1. Error Analysis

There is an important difference between DQSS and dde23 in how they
interpret the error tolerance values. Whereas dde23 interprets these values
as a measure of the local integration error in a single integration step, DQSS
interprets these values as a measure of the global integration error across the
entire simulation.

For this reason, it is important to compare both solutions to a reference
solution and measure the true simulation errors generated by the solvers.

In order to obtain a reference solution, we ran the simulation using both
solvers with accuracy requirements that were more stringent than the ones
used before by three orders of magnitude. Comparing the results obtained in
this way, we could indeed confirm that they are in agreement with an accu-
racy that is much better than the one requested in our original simulations.

We now report the absolute errors obtained, i.e., the deviations of the
solutions of the original simulations from the reference solution. We report
in Table 2 the maximum absolute error (max), and the average squared error
(rms).

Let us interpret these results. x1(t) grows, during the simulation, to a
value of approximately 20. Thus, with a relative error tolerance of 10−3,

26

Simulation Time Method # Function Evals. Execution Time Speedup

5 s (reported)
DQSS3 74 0.0158 2.57
dde23 264 0.0406

10 s
DQSS3 162 0.0157 3.08
dde23 498 0.0484

15 s
DQSS3 246 0.0157 3.54
dde23 723 0.0557

20 s
DQSS3 332 0.0155 4.24
dde23 948 0.0656

RelTol:1E-3, AbsTol:1E-6

Table 1: Speedup analysis for DQSS3 vs. dde23 solving Eq.(24)

Simulation Method # Function Execution Speedup Rms Error Max Error
Time Evaluations Time ×10−6 ×10−6

5 s
DQSS3† 74 0.0158 2.57 2680.7 9020.5
dde23† 264 0.0406 27.4 86.0
DQSS3‡ 284 0.0158 2.57 43.0 128.9
DQSS3∗ 598 0.0336 1.20 4.4 17.7

Error measurements for variable: x1
† RelTol:1E-3, AbsTol:1E-6
‡ RelTol:1E-5, AbsTol:1E-6
∗ RelTol:1E-6, AbsTol:1E-6

Table 2: Error and Speedup analysis for DQSS3 vs. dde23 solving Eq.(24)

we would allow the maximum absolute error, which occurs at the end of the
simulation period, to be of the order of 20·10−3. DQSS3 attained a maximum
error of 9 ·10−3. For reasons unknown to us, dde23 obtains, for this example,
an absolute error that is much smaller than the one requested.

In order to compare the two solvers better, we thus squeezed the error
tolerances of DQSS3 down to 10−5 and even 10−6. With an error tolerance
of 10−5, we would allow an absolute error of 20 · 10−5. DQSS3 attained a
maximum error of 12.89 · 10−5. With an error tolerance of 10−6, we would
allow an absolute error of 20 · 10−6. DQSS3 attained a maximum error of
17.7 · 10−6.

It can be seen that DQSS3 performs simulations that are as accurate as
requested, but not much more accurate. In all of the simulations, DQSS3

27

turned out to be faster than dde23.

5.2. Example 2

In this example, we study the scalar DDE reported as Example 3 in [18],
whose DDE is defined by Eq. (25). The DDE model is to be simulated for
t ∈ [0, 20] with history x(t) = t for t ≤ 0.

ẋ(t) = −λ · x(t− 1) · (1 + x(t)) (25)

This system has a single delay τ1 = 1, is non–linear, and has a time-
varying initial history. The simulation results are shown in Figure 12.

0 2 4 6 8 10 12 14 16 18 20
−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Example 4.2 of Oberle and Pesch (1981)

time

x(
t)

Figure 12: Solution of Example 2 solved for λ = 1.5 [15]

Average performance results for sets of 30 simulation runs are provided
in Table 3.

In this example, DQSS3 always requires slightly more function evaluations
than dde23. Since the system to be simulated is characterized by a first-
order model, the number of function evaluations needed can be compared
better between the two solvers. Thus, we might expect dde23 to execute a

28

Simulation Time Method # Function Evals. Execution Time Speedup

20 s (reported)
DQSS3 3825 0.2185 4.22
dde23 3679 0.9219

40 s
DQSS3 7379 0.4359 4.83
dde23 7372 2.1063

60 s
DQSS3 11121 0.6561 5.62
dde23 11092 3.6891

80 s
DQSS3 14931 0.8908 6.26
dde23 14800 5.5755

λ = 1.5
RelTol:1E-6, AbsTol:1E-10

Table 3: Speedup analysis for DQSS3 vs. dde23 solving Eq.(25)

little faster than DQSS3. However, due to the much simpler nature of the
DQSS3 solver in comparison with the algorithm used by dde23, DQSS3 still
outperforms dde23.

5.2.1. Error Analysis.

As in Example 1, we wish to compare the errors that were actually ob-
tained using the two solvers. We used the same methodology explained in
the discussion of example 1. We requested here a relative error tolerance of
10−6. Since the solution itself is in the order of 1.0, this means that also the
absolute error should be of the order of 10−6.

Simulation Method # Function Execution Speedup Rms Error Max Error
Time Evaluations Time ×10−6 ×10−6

20 s
DQSS3† 3825 0.2185 4.22 0.9 3.2
dde23† 3679 0.9219 2.7 5.7
DQSS3‡ 8133 0.4378 2.1 0.1 0.5

λ = 1.5
† RelTol:1E-6, AbsTol:1E-10
‡ RelTol:1E-7, AbsTol:1E-10

Table 4: Error and Speedup analysis for DQSS vs. dde23 solving Eq.(25)

29

To understand the simulation errors even better, we plotted the absolute
errors, i.e., the deviations of the simulation trajectories from the reference
solution, as functions of time.

Figure 13: Simulation errors for example 2

The largest errors are those incurred by dde23. The error reaches a max-
imum value of 5.7 · 10−6 after roughly 6 seconds of simulated time. The
simulation error committed by dde23 is approximately proportional to the
solution itself, i.e., the error is large and positive when the solution itself is
large and positive.

The medium error curve depicts the errors committed by DQSS3 with a
relative error tolerance of 10−6. The error reaches a maximum absolute value
of 3.2 · 10−6 after roughly 1 second of simulated time. The error oscillations
are phase–shifted in comparison with those obtained by dde23. Whereas
dde23 seems to compute a solution with an amplitude that is, on average, a
bit too large, DQSS3 seems to compute a solution with an amplitude that
is, on average, a bit too small.

The most accurate results are obtained by DQSS3 with a relative error
tolerance of 10−7. The error reaches a maximum absolute value of 5 · 10−7

after roughly 1 second of simulated time. The error curves for the two DQSS3

30

simulations look qualitatively similar, except that the errors of the more
accurate simulation are, on average 9 times smaller.

In order to obtain these better simulation results, the number of function
evaluations has grown by a factor of 8133

3825
= 2.126 ≈ 3

√
10, which is what we

expect of a third-order accurate DQSS method.

5.3. Example 3

We shall now proceed to a slightly more complex DDE system, reported
as Example 4 in [18], whose DDE is defined by Eq. (26).

ẋ1(t) = −x1(t)x2(t− 1) + x2(t− 10)

ẋ2(t) = x1(t)x2(t− 1) − x2(t)

ẋ3(t) = x2(t) − x2(t− 10)

(26)

This DDE model is to be simulated for t ∈ [0, 40] with initial history
x1(t) = 5, x2(t) = 0.1, and x3(t) = 1 for t ≤ 0. This is a third order
non–linear system with multiple constant delays of τ1 = 1 and τ2 = 10 and
constant initial history trajectories. The simulation results are presented in
Figure 14.

0 5 10 15 20 25 30 35 40
0

1

2

3

4

5

6

7

Infectious desease from Hairer et al.

time

x1
(t

),
x2

(t
),

x3
(t

)

Figure 14: Solution of Example 3 [8]

Average performance results for sets of 30 simulation runs are provided
in Table 5.

31

Simulation Time Method # Function Evals. Execution Time Speedup

40 s (reported)
DQSS3 1104 0.0470 3.68
dde23 1353 0.1734

80 s
DQSS3 2328 0.0470 6.99
dde23 2568 0.3286

RelTol:1E-3, AbsTol:1E-6

Table 5: Speedup analysis for DQSS3 vs. dde23 solving Eq.(26)

While simulating this model, DQSS performs slightly fewer function eval-
uations than dde23. The speedup factor is similar to that of the previous
examples.

5.3.1. Error Analysis.

We repeated the error analysis also for this example. We requested here
a relative error tolerance of 10−3. Since the solution itself is in the order of
6.0, this means that the absolute error should be of the order of 6 · 10−3.

Simulation Method # Function Execution Speedup Rms Error Max Error
Time Evaluations Time ×10−3 ×10−3

40 s
DQSS3† 1104 0.047 3.68 1.032 6.28
dde23† 1353 0.1734 10.701 43.75
DQSS3‡ 703 0.0314 5.52 13.599 59.0

Error measurements for variable: x1
† RelTol:1E-3, AbsTol:1E-6
‡ RelTol:1E-2, AbsTol:1E-6

Table 6: Error and Speedup analysis for DQSS3 vs. dde23 solving Eq.(26)

DQSS3 obtained almost exactly the error requested. Its maximum abso-
lute error during the 40 seconds of simulation was 6.28 · 10−3. In contrast,
dde23 generated a maximum absolute error of 43.75 · 10−3, i.e., an error that
is approximately seven times larger. This error is still acceptable, since dde23

32

controls only the local error, and it is usually expected that the global error
may be roughly 10 times larger than the local error.

In order to be able to compare the two solvers a bit better, we repeated the
DQSS3 simulation with a tenfold relaxed tolerance of 10−2. We now would
expect an error of 6 · 10−2, whereas DQSS3 generated an error of 5.9 · 10−2.

While relaxing the tolerance by a factor of 10, the number of function
evaluations was reduced by a factor of 1104

703
= 1.57 only, i.e., a little less than

3
√

10.
Both DQSS3 simulations were more efficient than the dde23 simulation.
To understand the simulation errors better, we once again plotted the

absolute errors, i.e., the deviations of the simulation trajectories from the
reference solution, as functions of time. In Figure 15 we plotted the errors of
the dde23 simulation together with the errors of the DQSS3 simulation with
the more stringent accuracy requirements.

0 10 20 30 40 50 60 70 80 90 100
−0.08

−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12

DQSS (solid) vs. dde23 (dashed)

time

E
rr

or

Figure 15: Simulation errors for Example 3

The simulations seem to be mildly unstable, as the absolute errors are
growing. However, this is an artifact. The system exhibits a limit cycle, i.e.,
it is marginally stable. The numerical solutions accumulate over time a small
phase error that represents itself, in the error plots, in the form of growing
absolute errors.

33

This becomes evident when looking at the trajectories of x1 in Figure 16.
The dde23 trajectory leads the more accurate DQSS3 trajectory by a small
∆t.

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

DQSS (thin solid) vs. dde23 (bold dashed)

time

x1
(t

)

Figure 16: Trajectories of x1 for Example 3

5.4. Example 4

In this last example, we deal with a much more demanding DDE system.
The system is a time–varying DDE with impulses, reported as Example 3.1
in [19]. The DDE model is defined by Eq. (27).

34

ẋ1(t) = − 6x1(t) + sin(2t)f(x1(t)) + cos(3t)f(x2(t))

+ sin(3t)f

(

x1

(

t− 1 + cos(t)

2

))

+ sin(t)f

(

x2

(

t− 1 + sin(t)

2

))

+ 4sin(t)

ẋ2(t) = − 7x2(t) +
cos(t)

3
f(x1(t)) +

cos(2t)

2
f(x2(t))

+ cos(t)f

(

x1

(

t− 1 + sin(t)

2

))

+ cos(2t)f

(

x2

(

t− 1 + sin(t)

2

))

+ 2cos(t)

f(x) =
|x+ 1| − |x− 1|

2
(27)

The initial history is given by x1(t) = −0.5 and x2(t) = 0.5. At each
impulse time, tk = 2k, a time–dependent solution impulse is applied with
x1(tk) being replaced by 1.2x1(tk), and x2(tk) being replaced by 1.3x2(tk).
The simulation results are presented in Figure 17.

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0
−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

Neural Network

x1

x2

Figure 17: Phase plane of a neural network DDE with time–dependent impulses

This example includes delays and discontinuities in the states. The num-
ber of function evaluations of f() in PowerDEVS does not include the number

35

of times that the two integrators were reset due to the spikes. The total num-
ber of resets is 52.

Average performance results for sets of 30 simulation runs are provided
in Table 7.

Simulation Method # Function Execution Slowdown Rms Error
Time Evaluations Time ×10−6

50 s
DQSS3† 15003 0.636 4.07 1154.4
ddesolver† 15822 0.156 9899.1
DQSS3‡ 11512 0.579 3.51 3062.9

Error measurements for variable: x1
† RelTol:1E-3, AbsTol:1E-6
‡ RelTol:1E-2, AbsTol:1E-6

Table 7: Error and Speedup analysis for DQSS3 vs. ddesolver solving Eq.(27)

For this example, we did not have any Matlab (dde23) code available,
but only compiled Fortran code (ddesolver). For this reason, the execution
times of DQSS3 and ddesolver are not comparable. The compiled Fortran
code is more efficient than the interpreted PowerDEVS code, which is not
overly surprising. The number of function evaluations afforded by DQSS is
significantly smaller for this example than that used by ddesolver.

We requested here a relative error tolerance of 10−3. Since the solution
itself is in the order of 1.0, this means that the absolute error should be of
the order of 10−3 as well.

5.4.1. Error Analysis.

For this example, we did not provide the maximal absolute errors in
the above table, but only the average squared errors. The reason is that
this example contains discontinuities. Since the time instants, at which the
discontinuities are being executed, varies slightly between the original sim-
ulation and the reference solution, the error plot contains spikes that are of
the order of the magnitude of the signal itself.

Looking at the above plots, we see that the absolute largest errors for
DQSS3(rel.tol=10−3) under exclusion of the spikes are approximately 10−3

as requested, whereas the absolute largest errors for DQSS3(rel.tol=10−2) are

36

0 5 10 15 20 25 30 35 40 45 50
−0.03

−0.02

−0.01

0.00

0.01

0.02

0.03

DQSS (solid) vs. ddesolver (dashed)

time

E
rr

or

Figure 18: Simulation errors for Example 4

approximately 10−2. Thus, DQSS3 is computing solutions that are almost
exactly as accurate as they are supposed to be. The absolute largest errors
for ddesolver(rel.tol=10−3) are approximately 2 · 10−2, i.e., about 20 times
as large as requested. However, this is acceptable considering that ddesolver
controls the local integration error only, whereas DQSS3 controls the global
integration error.

6. Conclusions

In this article, a new class of numerical delay differential equation (DDE)
solvers has been introduced, and their use has been demonstrated by means
of a number of benchmark problems from the open literature.

Numerical DDE solvers that are based on state quantization instead of
time slicing offer some striking and unparalleled properties that make these
algorithms particularly well suited for the task at hand.

First, quantized state system (QSS) methods are naturally asynchronous.
These are variable–step methods, whereby each state variable is updated
at its own pace. State variables with larger gradients are updated more
frequently than state variables with little ongoing activity. For this reason,
the QSS–based solvers exploit implicitly and intrinsically the sparsity of the
model to be simulated.

37

Second, we were able to show that an asymptotically stable linear time–
invariant DDE system with constant delays leads to a QSS approximation
that remains numerically stable for any quantum ∆Q. The granularity of
the quantization influences the accuracy of the simulation results, but not
the numerical stability.

Third, we were able to show that an input–to–state–stable non–linear
time-varying DDE system with variable and even state–dependent delays
leads to a QSS approximation that remains numerically stable for any suf-
ficiently small quantum ∆Q. For any such system, there exists a quantum
∆Qmax larger zero, such that its QSS approximation remains numerically
stable for all ∆Q ≤ ∆Qmax.

Fourth, we showed that, as ∆Q approaches zero in such a system, the
numerical simulation trajectories converge to the analytical trajectories of
the original DDE system.

Fifth, whereas the step–size control algorithms of time–slicing based solvers
usually control the local integration error only, state–quantization based
solvers control the global integration error. Hence state–quantization based
solvers are more robust than their time–slicing based competitors.

Sixth, it was demonstrated by means of four different benchmark prob-
lems from the open literature that state–quantization based DDE solvers are
frequently significantly more efficient than their time–slicing based competi-
tors. The reason for their higher efficiency is partly, because they naturally
exploit the sparsity in the models to be simulated, and partly, because the
algorithms used for interpolating the delayed states are simpler and can thus
be implemented more effectively.

Seventh, the DQSS codes as implemented in PowerDEVS, a modeling
and simulation environment with a graphical user interface similar to that of
Simulink, are much easier to use than the dde23 and dde solver codes that
were previously available.

7. Acknowledgments

We wish to acknowledge support by CONICET under grant PIP–2009/2011–
00183 and Fundación Repsol–YPF under fellowship Estenssoro 2006. We also
wish to express our gratitude to Sylvester (Skip) Thompson for his willing-
ness to share the dde23 (Matlab) and dde solver (Fortran) codes with us.

38

References

[1] C. Baker, C. Paul, D. Willé, A Bibliography on the Numerical Solution
of Delay Differential Equations., Technical Report Numerical Analysis
Report No. 269, University of Manchester, U.K., 1995.

[2] B. Balachandran, K.N. T., G.D. Eds., Delay Differential Equations - Re-
cent Advances and New Directions, Springer Science+Business Media,
2009.

[3] F. Bergero, E. Kofman, PowerDEVS. A Tool for Hybrid System Model-
ing and Real Time Simulation, Simulation: Transactions of the Society
for Modeling and Simulation International (2010). In press.

[4] J. Butcher, The Numerical Analysis of Ordinary Differential Equations:
Runge–Kutta and General Linear Methods, John Wiley, Chichester,
United Kingdom, 1987. 512p.

[5] F. Cellier, E. Kofman, Continuous System Simulation, Springer, New
York, 2006.

[6] F. Cellier, E. Kofman, G. Migoni, M. Bortolotto, Quantized state system
simulation, in: Proceedings of SummerSim 08 (2008 Summer Simulation
Multiconference), Edinburgh, Scotland.

[7] E. Hairer, C. Lubich, G. Wanner, Geometric Numerical Integration
Structure-Preserving Algorithms for Ordinary Differential Equations,
Springer, 2002.

[8] E. Hairer, S. Nørsett, G. Wanner, Solving Ordinary Differential Equa-
tions I: Nonstiff Problems, volume 8 of Series in Computational Math-
ematics, Springer–Verlag, Berlin, Germany, 2nd edition, 2000. 528p.

[9] E. Hairer, G. Wanner, Solving Ordinary Differential Equations II. Stiff
and Differential-Algebraic Problems., Springer, Berlin, 1991.

[10] E. Kofman, Discrete Event Simulation of Hybrid Systems, SIAM Journal
on Scientific Computing 25 (2004) 1771–1797.

[11] E. Kofman, S. Junco, Quantized state systems. a devs approach for
continuous system simulation., Transactions of SCS 18 (2001) 123–132.

39

[12] J. Lambert, Numerical Methods for Ordinary Differential Systems: The
Initial Value Problem, John Wiley & Sons, 1991.

[13] G. Migoni, Simulación por Cuantificación de Sistemas Stiff, Ph.D. thesis,
Facultad de Ciencias Exactas, Ingenieŕıa y Agrimensura. Universidad
Nacional de Rosario, Rosario, Argentina, 2010.

[14] G. Migoni, E. Kofman, Linearly Implicit Discrete Event Methods for
Stiff ODEs, Latin American Applied Research 39 (2009) 245–254.

[15] H. Oberle, H. Pesch, Numerical Treatment of Delay Differential Equa-
tions by Hermite Interpolation, Numerische Mathematik 37 (1981) 235–
255.

[16] P. Pepe, Z.P. Jiang, A Lyapunov−Krasovskii methodology for ISS and
iISS of time-delay systems., Systems Control Letters. 55 (2006) 1006–
1014.

[17] L. Shampine, S. Thompson, Solving Delay Differential Equations with
dde23., Technical Report, Southern Methodist University, 2000.

[18] L. Shampine, S. Thompson, Solving DDEs in Matlab, Applied Numeri-
cal Mathematics 37 (2001) 441 – 458.

[19] S.P. Corwin, S. Thompson and S.M. White, Solving ODEs and DDEs
with Impulses, JNAIAM J. Numer. Anal. Indust. Appl. (2008) 139–149.

[20] D. Willé, C. Baker, DELSOL – A Numerical Code for the Solution of
Systems of Delay–Differential Equations, Applied Numerical Mathemat-
ics 9 (1992) 223–234.

[21] B. Zeigler, Theory of Modeling and Simulation, John Wiley & Sons,
New York, 1976.

[22] B. Zeigler, T. Kim, H. Praehofer, Theory of Modeling and Simulation.
2nd. edition, Academic Press, New York, 2000.

Appendix A. Input to State Stability

We define here some tools that are used along the theorems and their
proofs.

40

Class K function. A continuous real valued function α : R
+
0 → R

+
0 is said to

belong to class K if it is strictly increasing and α(0) = 0.

Class L function. A continuous real valued function ψ : R
+
0 → R

+
0 is said to

belong to class L if it is strictly decreasing and limt→∞ ψ(t) = 0.

Class KL function. A continuous real valued function β : R
+
0 × R

+
0 → R

+
0 is

said to belong to class KL if it is class K with respect to the first argument
and class L with respect to the second one.

Input to State Stability. Let φa(t) be the solution of the DDE

ẋ(t) = f(x(t),x(t− τ1(x, t)), ...,x(t− τm(x, t)),u(t)) (A.1)

for u(t) = 0 with a given initial history φa(t < 0), and let φ(t) be the solution
for a given input u(t) with initial history φ(t < 0).

Define
∆φ0 = sup

t<0
‖φ(t) − φa(t)‖ (A.2)

and
um = sup

t≥0
‖u(t)‖ (A.3)

We say that the system of Eq.(A.1) is input to state stable along φa(t) if
a class KL function β and a class K function α exist such that

‖φ(t) − φa(t)‖ ≤ β(∆φ0, t) + α(um) (A.4)

When the initial history of φ(t) is identical to that of φa(t), we have
∆φ0 = 0 and the ISS condition becomes:

‖φ(t) − φa(t)‖ ≤ α(um) (A.5)

In this last case, the ISS property implies that a bounded input provokes
a bounded difference between the trajectories of the unforced and the forced
system. Additionally, as the upper bound of the input becomes smaller, the
upper bound of the difference between both trajectories also becomes smaller.

41

Appendix B. Proof of Theorem 1

The QSS approximation of Eq. (20) is given by

ẋ(t) = Aq(t) +

m
∑

i=1

Aiq(t− τi) (B.1)

Let φa(t) be the analytical solution of Eq.(20) from an arbitrary initial history
and let φ(t) be the solution of Eq. (B.1) from the same initial condition
φ(t ≤ 0) = φa(t ≤ 0).

Define the perturbation introduced in the states by the quantization of
Eq. (B.1) as

∆x(t) , q(t) − x(t) (B.2)

Now, rewrite Eq. (B.1) as

ẋ(t) = A(x(t) + ∆x(t)) +
m
∑

i=1

Ai(x(t− τi) + ∆x(t− τi)) (B.3)

This implies that φ(t) will also be the solution of Eq. (B.3), verifying:

φ̇(t) = A(φ(t) + ∆x(t)) +

m
∑

i=1

Ai(φ(t− τi) + ∆x(t− τi)) (B.4)

As φa(t) is a solution of Eq. (20), the following will hold:

φ̇a(t) = Aφa(t) +

m
∑

i=1

Aiφa(t− τi) (B.5)

Let us now define the error committed by the QSS approximation as

e(t) , φ(t) − φa(t) (B.6)

Then, substracting Eq.(B.5) from Eq.(B.4) the error has the following
dynamics:

ė(t) = Ae(t) +
m
∑

i=1

Aie(t− τi) + A∆x(t) +
m
∑

i=1

Ai∆x(t− τi) (B.7)

42

with e(t ≤ 0) = 0.
By defining B , I and

u(t) , A∆x(t) +

m
∑

i=1

Ai∆x(t− τi) (B.8)

the error dynamics can be rewritten as

ė(t) = Ae(t) +

m
∑

i=1

Aie(t− τi) +Bu(t) (B.9)

When u(t) = 0, this last equation is identical to Eq. (20) with trivial
intial condition. Then, according to the initial hypothesis, the solution of
(B.9) for u(t) = 0 is asymptotically stable. Following Prop. 2.5 of [16], this
condition implies that Eq. (B.9) is Input to State Stable (ISS).

This is, there exist a class K function α so that ‖e(t)‖ ≤ α(supt≥0(‖u(t)‖)).
Then, taking into account that

‖u(t)‖ = ‖A∆x(t) +
m
∑

i=1

Ai∆x(t− τi)‖

≤ ‖A‖ · ‖∆x(t)‖ +

m
∑

i=1

‖Ai‖ · ‖∆x(t− τi)‖

≤ ‖A‖ · ‖∆Q‖ +
m
∑

i=1

‖Ai‖ · ‖∆Q‖

≤ (‖A‖ +

m
∑

i=1

‖Ai‖) · ‖∆Q‖

(B.10)

being ∆Q the quantum vector, it results that

‖e‖ ≤ α((‖A‖ +

m
∑

i=1

‖Ai‖) · ‖∆Q‖) , γ(‖∆Q‖) (B.11)

where γ is a class K function.
Then, the error is bounded for all t ≥ 0. This completes the proof of item

1).
Moreover, when the quantum goes to zero, i.e., ‖∆Q‖ → 0, it results

that ‖e‖ → 0 (this is a property of any class K function). This proves the
convergence condition claimed in item 2). �

43

Appendix C. Proof of Theorem 2

Proof:. Let em be an arbitrary positive number. Let tf > 0 be the first
instant of time at which the norm of the error ‖e(t)‖ reaches the value em.
Then, we have ‖e(t)‖ < em for all t < tf .

Define
∆x(t) , q(t) − x(t) (C.1)

and
∆xτ (t) , x(t− τ1(q, t)) − x(t− τ1(x, t)) (C.2)

Then, we can rewrite the DQSS approximation of Eq.(23) as

ẋ(t) = f(x(t) + ∆x(t),x(t− τ1(x, t)) + ∆xτ (t) + ∆x(t− τ1(q, t)), t) (C.3)

Define now

u(t) ,f(x(t) + ∆x(t),x(t− τ1(x, t)) + ∆xτ (t) + ∆x(t− τ1(q, t)), t)

− f(x(t),x(t− τ1(x, t)), t)
(C.4)

Then, the DQSS of Eq.(C.3) becomes identical to the system of Eq.(22),
which is ISS along the analytical solution φa(t).

We also know that

‖∆x(t)‖ ≤ δQ , ‖∆Q‖ (C.5)

for all t. Notice also that, since we are assuming that ‖φ(t) − φa(t)‖ < em

for all t < tf , then function f in the DQSS of Eq.(23) is being evaluated in a
bounded region, since

‖q(t)‖ ≤ φamax
+ em + δQ (C.6)

for all t < tf , with φamax
being an upper bound for the norm of the analytical

solution φa(t).
Taking into account that f is locally Lipschitz, a constant L exists for the

given region so that

‖u(t)‖ ≤ L · (‖∆x(t)‖ + ‖∆xτ (t) + ∆x(t− τ1(q, t))‖) (C.7)

Using also Eq.(C.5) in this last equation it results that

‖u(t)‖ ≤ L · (2δQ+ ‖∆xτ (t)‖) (C.8)

44

Function τ1(·) is also locally Lipschitz and it is being evaluated in the
same bounded region. So, a constant Lτ exists in that region such that

|τ1(q(t), t) − τ1(x(t), t)| ≤ Lτ · ‖q(t) − x(t)‖ ≤ Lτ · δQ (C.9)

From Eq.(C.2) we know that

‖∆xτ (t)‖ ≤ max
t<tf

(‖ẋ(t)‖) · |τ1(q(t), t)) − τ1(x(t), t))| (C.10)

Recalling that f(·) is being evaluated in a bounded region defined by Eq.(C.6)
and it is locally Lipschitz, it results bounded, and then a positive constant
fm exists so that (‖ẋ(t)‖) ≤ fm for t < tf . Then,

‖∆xτ (t)‖ ≤ fm · Lτ · δQ (C.11)

Plugging this last inequality in Eq.(C.8), we obtain that

‖u(t)‖ ≤ (2 · L+ fm · Lτ) · δQ (C.12)

Since the forced system of Eq.(22) is ISS and φ(t)−φa(t) = 0 for t ≤ 0, then
the last equation implies that a class K function α exists so that

‖e(t)‖ ≤ α((2 · L+ fm · Lτ) · δQ) (C.13)

for all t < tf .
Then, by taking a sufficiently small quanta δQ, we can make

‖e(t)‖ ≤ α((2 · L+ fm · Lτ) · δQ) < ρ · em (C.14)

for any 0 < ρ < 1.
This contradicts the initial assumption that the error reaches the value em

at time tf . Thus, by taking the quantum such that Eq.(C.14) is accomplished,
the error will never reach em.

Moreover, if we take an arbitrary small value for em, we can always find
δQ such that Eq.(C.14) is verified. This proves convergence when δQ → 0.
�

45

