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Abstract

The concepts of ultimate bounds and invariant sets play a key role in several control theory problems, as they replace the
notion of asymptotic stability in the presence of unknown disturbances. However, when the disturbances are unbounded, as in
the case of Gaussian white noise, no ultimate bounds nor invariant sets can in general be found. To overcome this limitation
we introduced, in previous work, the notions of probabilistic ultimate bound (PUB) and probabilistic invariant set (PIS)
for discrete-time systems. This article extends the notions of PUB and PIS to continuous-time systems, studying their main
properties and providing tools for their calculation. In addition, the use of these concepts in robust control design by covariance
assignment is presented.
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1 Introduction

Dynamical systems under the influence of non-vanishing
unknown disturbances cannot achieve asymptotic sta-
bility in general. However, under certain conditions, the
ultimate boundedness of the system trajectories can
be guaranteed and invariant sets can be found. Conse-
quently, the notions of ultimate bounds (UB) and invari-
ant sets (IS) play a key role in control systems theory
and design.

A necessary condition to ensure the existence of ulti-
mate bounds and invariant sets is that the disturbances
must be bounded. However, in systems theory, distur-
bances are often represented by unbounded signals such
as Gaussian white noise, in which case ultimate bounds
and invariant sets cannot be obtained in a classical
sense. To overcome this problem, the authors have in-
troduced in [9,10] the notions of probabilistic ultimate
bound (PUB) and probabilistic invariant set (PIS), as
sets where the trajectories converge to and stay in with
a given probability.

Classic UB and IS are an important tool in modern
treatments of model predictive control (see, e.g., [12,14]),
fault diagnosis and fault tolerant control (see, e.g.,

[13,15]) and several other applications of set invariance
in control problems (see [2] and the references therein).
With the usage of the PUB and PIS notions, many of
these applications can be extended to consider also the
presence of unbounded disturbances. In fact, some recent
works on model predictive control use concepts that are
related to probabilistic invariant sets (see, e.g., [3,5,6]).

Although the concepts in [9,10] are limited to the
discrete-time domain, ultimate boundedness and invari-
ance are also important concepts in continuous-time sys-
tems, and they experience the same limitations regard-
ing unbounded disturbances.

Motivated by these facts, this work firstly extends the
notions, properties and tools for PUB and PIS devel-
oped in [9,10] to the continuous-time domain. While
in the case of PUB the extension is almost straightfor-
ward, the concept of probabilistic invariance in continu-
ous time needs to be redefined because of the limitations
imposed by the infinite-bandwidth nature of continuous-
time white noise disturbances (see, e.g., the insightful
discussions in [1]).

Finally, the problem of designing a feedback controller
so that the closed-loop system under white noise dis-
turbances has a desired PUB is addressed. Preliminary
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results covering only single input systems in controller
canonical form were presented by the authors in the con-
ference paper [8]. The current journal version completes
the contribution by presenting new results that gener-
alise the techniques to multiple input systems given in
general form.

The paper is organised as follows: Section 2 introduces
the concepts of continuous time PUB and PIS and es-
tablishes their basic properties. Then, Section 3 presents
closed-form formulas for the calculation of PUB and PIS,
respectively. Section 4 develops the technique for con-
trol design and Section 5 illustrates the results with a
numerical example.

2 Background and Definitions

We consider a continuous-time LTI system given by the
following stochastic differential equation

dx(t) = Ax(t)dt+ dw(t) (1)

with x(t), w(t) ∈ Rn and A ∈ Rn×n being a Hurwitz
matrix.

Assumption 1 The disturbance w(t) is a stochastic
process whose increments are stationary and uncorre-
lated with zero mean values (i.e., a Lévy process, that
in the case of a normal distribution becomes a Wiener
process). We assume also that w(t) has incremental co-

variance Σwdt , cov[dw(t)] = E[dw(t)dwT (t)] with Σw
being a finite covariance matrix.

2.1 Expected Value and Covariance of x(t)

The characterisation of probabilistic ultimate bounds
and invariant sets is based on the stochastic properties of
the solution x(t) of Eq.(1). Given a time t, the covariance
of the solution is defined as

Σx(t) , cov[x(t)] = E[(x(t)−E[x(t)])(x(t)−E[x(t)])T ]
(2)

Both, Σw and Σx(t) are symmetric positive semidefi-
nite matrices. The expected value µx(t) = E[x(t)] can
be computed (see e.g. [1], Theorem 6.1, page 66) as the
solution of µ̇x(t) = Aµx(t). We assume that the initial
state x(t0) is known, then µx(t0) = x(t0) and the previ-
ous equation has the solution

µx(t) = eA(t−t0)x(t0) (3)

The covariance matrix Σx(t) verifies (see e.g. [1], Theo-
rem 6.1, page 66) the following differential equation:

Σ̇x(t) = AΣx(t) + Σx(t)AT + Σw (4)

with Σx(t0) = 0 (since x(t0) is known). Since A is a Hur-
witz matrix, the latter expression converges as t → ∞.
Then, defining Σx , limt→∞ Σx(t) we have from Eq.(4)
that Σx can be obtained from the Lyapunov equation

AΣx + ΣxA
T = −Σw (5)

2.2 Definition of PUB and γ-PIS

We next define the two notions that concern this article.

Definition 2 (Probabilistic Ultimate Bounds)
Let 0 < p ≤ 1 and let S ⊂ Rn. We say that S is a PUB
with probability p for system (1) if for every initial state
x(t0) = x0 ∈ Rn there exists T = T (x0) ∈ R such that
the probability 1 Pr[x(t) ∈ S] ≥ p for each t ≥ t0 + T .

For the definition of PIS, we first introduce the product
of a scalar γ ≥ 0 and a set S as γS , {γx : x ∈ S}.
Notice that when 0 ≤ γ ≤ 1, and provided that S is
a star–shaped set with respect to the origin, 2 it follows
that γS ⊆ S.

Definition 3 (γ-Probabilistic Invariant Sets) Let
0 < p ≤ 1, 0 < γ ≤ 1 and let S ⊂ Rn be a star–shaped
set with respect to the origin. We say that S is a γ–PIS
with probability p for system (1) if for any x(t0) ∈ γS
the probability Pr[x(t) ∈ S] ≥ p for each t > t0.

Remark 4 The definitions of PUB for discrete and con-
tinuous time systems are almost identical. However, PIS
for discrete-time systems were defined to ensure that any
trajectory starting in the set remains in the set with a
given probability. By choosing a sufficiently large set, the
contractivity of the system’s dynamics at the boundary
of the set dominates the noise and the probability of the
trajectory leaving the set at the next step can be made ar-
bitrarily small. In continuous time, however, this is not
possible. Irrespective of the contractivity, when a trajec-
tory starts at time t0 at the boundary of the set, taking t
sufficiently close to t0 the dynamics is always dominated
by the white noise due to its infinite-bandwidth nature.
Thus, for t → t+0 the probability that x(t) leaves the set
S only depends on the noise and becomes independent of
the size of S. In order to overcome this fundamental dif-
ficulty, the initial states of a PIS are restricted in Defi-
nition 3 to a subset γS, with γ less than one.

1 In this work, the expression Pr[x(t) ∈ S ⊂ Rn] denotes the
probability that the solution x(t), at time t, is in the set S ⊂
Rn. Thus, Pr[·] is the probability measure on Euclidean space
induced by the stochastic process {w(τ)|t0 ≤ τ ≤ t} via the
solution, at time t, of the stochastic differential equation (1)
with known initial condition x(t0) at time t0.
2 A set S ⊂ Rn is star shaped, or a star domain, with respect
to the origin if x ∈ S ⇒ γx ∈ S for all 0 ≤ γ ≤ 1
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The previous remark can be simply illustrated by
the solution of the scalar case of Eq. (1) with w(t)
a Wiener process and A = −λ, in which case

x(t) = e−λ(t−t0)x(t0) +
∫ t
t0
e−λ(t−τ)dw(τ). Then, it

can be shown that limt→t+0
Pr[|x(t)| > |x(t0)|] =

limt→t+0
Pr
[∫ t
t0

dw(τ) > 0
]

= 0.5 independently of x(t0)

and λ (since
∫ t
t0

dw(τ) is a zero-mean Gaussian process).

That is, no matter how contractive the term e−λt is, nor
how big the initial condition |x(t0)| is, the probability of
confinement in |x(t)| ≤ |x(t0)| is dominated by the noise.

2.3 Some properties of PUB and γ–PIS

Here we present some basic properties of PUB and γ–
PIS that are analogous to those of deterministic ultimate
bounds and invariant sets. Although these properties
are not used to derive the main results of the paper,
they corroborate that the definitions of PUB and γ–PIS
provided above are consistent with their deterministic
counterparts.

The basic properties of continuous-time PUB are iden-
tical to the discrete-time ones, i.e., Lemma 3 and Corol-
laries 7 and 10 in [10] are also valid for continuous-time
PUB. These properties establish that a PUB with prob-
ability p for (1) is also a PUB with probability p̃ ≥ 0 for
any p̃ < p and that the union and intersection of PUB
sets define PUB sets.

In the case of the unions and intersections of γ–PIS, the
presence of the parameter γ introduces some changes to
their discrete time counterparts. Lemma 4 in [10] is still
valid (a γ–PIS with probability p is also PUB with the
same probability) but the union and intersection of γ–
PIS are now ruled by the following proposition.

Proposition 5 (Intersection and union of γ–PIS)
Let {Si}ri=1 be a collection of γi–PIS for system (1) with
probabilities pi, i = 1, . . . , r, respectively, then

• Provided that
∑r
i=1 pi > (r − 1), the set S∩ = ∩ri=1Si

is a γ–PIS with probability p =
∑r
i=1 pi−(r−1) where

γ = min{γi : i = 1, . . . , r}.
• The set S∪ = ∪ri=1Si is a γ–PIS with probability
p = min{pi : i = 1, . . . , r} where γ = min{γi : i =
1, . . . , r}.

The proof of this Proposition can be derived from those
of Lemma 8 in [8] and Lemma 9 in [10].

3 Characterisation of PUB and γ–PIS

We develop a method to characterise and compute Prob-
abilistic Ultimate Bounds and Invariant Sets for (1)
based on Chebyshev’s inequality which can be used for

arbitrary stochastic processes w(t) satisfying Assump-
tion 1. The results, summarised in Theorems 6 and 7,
also provide tighter bounds for the special case of Gaus-
sian disturbances.

Given a parameter (probability) p such that 0 < p < 1,
the method uses n arbitrary parameters p̃i chosen such
that

0 < p̃i < 1, i = 1, . . . , n;

n∑
i=1

p̃i = 1− p (6)

In the sequel, for a vector x, xi denotes its ith compo-
nent, and for a square matrix Σ, the notation [Σ]i,i indi-
cates its ith diagonal element. The symbol � will denote
the elementwise inequality between two vectors, i.e., for
α, β ∈ Rn, α � β if and only if αi ≤ βi, i = 1, . . . , n.
For a matrix M with complex entries, M∗ will denote
the conjugate transpose of M .

Theorem 6 (PUB Characterisation) Consider the
system (1). Assume that A ∈ Rn×n is a Hurwitz matrix
and suppose that w(t) is a stochastic process whose incre-
ments are uncorrelated with zero mean values and with
incremental covariance matrix Σwdt. Let 0 < p < 1 and
p̃i, i = 1, . . . , n, satisfy Eq.(6). Then, any set of the form
S = {x : |xi| ≤ bi + ε; i = 1, . . . , n} with ε > 0 3 is a
PUB for the system with probability p, with

bi ,

√
[Σx]i,i
p̃i

; i = 1, . . . , n (7)

and Σx is the solution of the Lyapunov equation (5).

Additionally, when w(t) is a Wiener process, Eq.(7) can
be replaced with

bi ,
√

2[Σx]i,ierf−1(1− p̃i); i = 1, . . . , n (8)

where erf is the error function: erf(z) , 2√
π

∫ z
0
e−ζ

2

dζ.

The proof of Theorem 6 follows those of Theorem 12
in [10] (general case) and Theorem 1 in [9] (Gaussian
case) for discrete-time systems. The only difference is
that Σx is now computed from the continuous-time Lya-
punov equation (5).

Notice that the bound provided by Eq.(8) is tighter than
that of Eq.(7) but it is only valid for a noise with Gaus-
sian distribution.

3 The only role played by ε > 0 is to ensure that T (x0)
in Definition 2 is finite (for details, we refer to the proof of
Theorem 12 in [10]).
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Theorem 7 (γ–PIS Characterisation) Consider the
system (1), where matrix A is assumed to be Hurwitz
and diagonalisable 4 . Suppose that w(t) is a stochas-
tic process whose increments are uncorrelated with zero
mean values and incremental covariance matrix Σwdt.
Let 0 < p < 1 and p̃i, i = 1, . . . , n, satisfy Eq.(6). Then,
the set S = {x : |V −1x| � b} is a γ–PIS for the system
with probability p, where V is a similarity transformation
such that Λ = diag(λ1, . . . , λn) = V −1AV is the Jordan
diagonal decomposition of matrix A, and the components
of b = [b1 . . . bn]T are computed according to

bi ,

√
[Σv]i,i

2|Re(λi)|(1− γ2)p̃i
; i = 1, . . . , n (9)

with Σv = V −1Σw(V −1)∗.

Additionally, when w(t) is a Wiener process and the pa-
rameters p̃i satisfying (6) are chosen with the restric-
tion that for each pair of complex conjugate eigenvalues
λi, λj = λ̄i of matrix A we take p̃i = p̃j, Eq.(9) can be
replaced with

bi ,

√
[Σv]i,i

|Re(λi)|(1− γ2)
erf−1(1− p̃i); i = 1, . . . , n

(10)

PROOF. We follow the idea of the proofs of Theo-
rems 15 and 16 in [10]: With the linear transformation
x(t) = V z(t), system (1) becomes

dz(t) = Λz(t)dt+ V −1dw(t) (11)

with z ∈ Cn, w(t) ∈ Rn, V −1 ∈ Cn×n, and Λ ∈ Cn×n
being a diagonal matrix. Defining v(t) , V −1w(t),
the incremental covariance of v(t) satisfies Σvdt =
V −1Σw(V −1)∗dt, and the ith component of (11) is

dzi(t) = λizi(t)dt+ dvi(t) (12)

The expected value of the random variable 5 zi(t) then
verifies E[zi(t)] = eλi(t−t0)zi(t0), since we assume that

4 In an important number of applications, the matrix A
in (1) is given by some closed-loop matrix, e.g., Ã − B̃K or

Ã − LC̃ [where (Ã, B̃, C̃) is the open-loop system and K is
a feedback gain, L is an observer gain, etc.]. Under standard

controllability and observability conditions on (Ã, B̃, C̃) the
design of K, L, etc., can be readily done by pole placement
techniques so that the assumptions on A made here are,
without loss of generality, satisfied.
5 E[zi(t)] refers to the expected value of the random variable
zi ∈ C at time t with respect to the probability measure
defined in footnote 1.

zi(t0) is known. The variance of zi(t) can be computed
from (12) as

var[zi(t)] =
1− e2Re(λi)(t−t0)

2|Re(λi)|
[Σv]i,i

Suppose that x(t0) ∈ γS, i.e., |V −1x(t0)| � γb with b
defined by Eq.(9). Thus, |z(t0)| = |V −1x(t0)| � γb and
|zi(t0)| ≤ γbi. Then, for all t > t0 it results (see, e.g.,
Equation (6.6) from [1], Page 66) that

|E[zi(t)]| = |eλi(t−t0)zi(t0)| ≤ eRe(λi)(t−t0)γbi (13)

From Inequality (13), it follows that

Pr[|zi(t)| ≥ bi]
= Pr[|zi(t)| − eRe(λi)(t−t0)γbi ≥ bi(1− γeRe(λi)(t−t0))]

≤ Pr[|zi(t)| − |E[zi(t)]| ≥ bi(1− γeRe(λi)(t−t0))]

≤ Pr[|zi(t)− E[zi(t)]| ≥ bi(1− γeRe(λi)(t−t0))]

Chebyshev’s inequality establishes that

Pr
[
|zi(t)− E[zi(t)]| ≥ bi(1− γeRe(λi)(t−t0))

]
≤ var[zi(t)]

b2i (1− γeRe(λi)(t−t0))2
(14)

and then it results that

Pr[|zi(t)| ≥ bi] ≤
var[zi(t)]

b2i (1− γeRe(λi)(t−t0))2

=
1− e2Re(λi)(t−t0)

2|Re(λi)|b2i (1− γeRe(λi)(t−t0))2
[Σv]i,i

The expression

1− e2Re(λi)(t−t0)

(1− γeRe(λi)(t−t0))2
(15)

is maximised when eRe(λi)(t−t0) = γ. Then, it results that

Pr[|zi(t)| > bi] ≤ Pr[|zi(t)| ≥ bi] ≤ [Σv ]i,i
2|Re(λi)|b2i (1−γ2)

= p̃i

for all t > t0. Thus, the probability

Pr[|z(t)| 6� b] ≤
n∑
i=1

Pr[|zi(t)| > bi] ≤
n∑
i=1

p̃i = 1− p

for all t > t0, and then,

Pr[|z(t)| � b] = Pr[|V −1x(t)| � b] = Pr[x(t) ∈ S] ≥ p

which proves that S is a γ–PIS with probability p.
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When w(t) is a Wiener process and λi is real, we replace
Chebyshev’s inequality of Eq.(14) by the following ex-
pression valid for Gaussian distributions

Pr
[
|zi(t)− E[zi(t)]| ≥ bi(1− γeRe(λi)(t−t0))

]
= 1− erf

(
bi(1− γeRe(λi)(t−t0))√

2var[zi(t)]

)

and then we obtain

Pr[|zi(t)| > bi]

≤ 1− erf

(
bi

√
(1− γeRe(λi)(t−t0))2|Re(λi)|

(1− e2Re(λi)(t−t0))[Σv]i,i

)

≤ 1− erf

(
bi

√
(1− γ2)|Re(λi)|

[Σv]i,i

)
= p̃i (16)

In the last step we used the fact that erf(·) is a mono-
tonically increasing function and we maximised the ex-
pression of Eq.(15).

In the case of complex eigenvalues, Eq.(12) can be
split into real and imaginary parts zi(t) = Re[zi(t)] +
jIm[zi(t)], where both components are Gaussian pro-
cesses and the variance can be written as var[zi(t)] =
var[Re[zi(t)]] + var[Im[zi(t)]]. Then, the proof follows
that of Theorem 2 in [9] for discrete-time systems,
replacing t0 + N by t and bi(1 − |λi|N ) by bi(1 −
γeRe(λi)(t−t0)). 2

Remark 8 Notice that bi in Eq.(9) and Eq.(10) goes
to infinity as γ goes to one. This is consistent with the
observation made in Remark 4 above, that a PIS cannot
be defined without using a factor γ less than one to restrict
the initial states due to the infinite-bandwidth nature of
the continuous-time white noise disturbance (see, e.g.,
the discussions in [1] on continuous-time white noise).

4 Control Design

We consider here the problem of, given a positive vector
b and a probability p, find a controller gain K such that
any set of the form S = {x : |x| � b+ ε} with ε > 0 is a
PUB with probability p of the closed loop system

dx(t) = (A+BK)x(t)dt+BGdv(t). (17)

We assume that the pair (A,B) is controllable whereA ∈
Rn×n andB ∈ Rn×m, the latter matrix corresponding to
m control inputs. Notice also that the disturbance v(t) ∈

Rq is matched 6 with the control input through a matrix
G ∈ Rm×q. We assume also that v(t) has incremental
covariance Σvdt with Σv a finite covariance matrix.

Theorem 6 shows that the PUB depends on the diag-
onal entries of the state covariance matrix Σx. Thus,
this is a problem of state covariance assignment, con-
sisting in finding a feedback gain which assigns a spec-
ified closed-loop state covariance [4], similar to the one
treated in [16].

Thus, before presenting the control design procedures
to obtain a desired PUB, we first derive some auxiliary
results regarding covariance assignment.

4.1 Covariance Assignment in Controller Canonical
Form

When matrix A is in its controller canonical form, and
the system has a single input, the covariance matrix that
solves Eq.(5) has a Xiao structure [17].

Definition 9 (Xiao matrix) Given a vector 0 � z ∈
Rk, we define the Xiao matrix X (z) as

X (z) =



z1 0 −z2 0 z3 · · · ·
0 z2 0 −z3 0 · · · ·
−z2 0 z3 0 −z4 · · · ·

0 −z3 0 z4 0 · · · ·
...

...
...

...
...

. . .
...

· · · · · · · · · · · · · · · · · · zk


(18)

For the multiple input case, we derive the following
Lemma:

Lemma 10 Consider the system of Eq.(17) and assume
that the pair (A,B) is in its controller canonical form,
with A ∈ Rn×n and B ∈ Rn×m; and let dj, j = 1, . . . ,m,
be the controllability indices of (A,B). Assume also that
the disturbance v(t) has incremental covariance Σvdt.
Further, define

Σ , GΣvG
T (19)

and assume that the pair (A,BΣ1/2) is controllable.
Then, the block diagonal Xiao matrix

Σx = diag(Σ1
x, . . . ,Σ

m
x ) (20)

6 The matched disturbance assumption, or ‘matching con-
dition’ (see, e.g., Chapter 14 in [7]) is a usual hypothesis
in robust control applications, modelling –in particular, but
not limited to– all kinds of input perturbations.
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where Σjx ∈ Rdj×dj for j = 1, . . . ,m are positive definite
Xiao matrices, is an assignable covariance matrix for the
system under the feedback law u = Kx with

K = −B†(AΣx+ΣxA
T+BΣBT )(I−BB†/2)Σ−1

x (21)

where B† is the Moore-Penrose inverse of matrix B.
Moreover, the closed-loop matrix A+BK is Hurwitz.

PROOF. Let Σvdt be the incremental covariance ma-
trix of v. Defining w(t) , BGv(t), the covariance of w(t)
is given by

Σw = BGΣvG
TBT = BΣBT

where Σ = GΣvG
T is the covariance of Gv(t). Substi-

tuting A+BK for A in (5) we have that the closed-loop
state covariance matrix Σx satisfies the Lyapunov equa-
tion

(A+BK)Σx + Σx(A+BK)T = −BΣBT (22)

From Corollary 4.6 of [4], equation (22) has a solution
K (one such solution is given by (21)) if and only if

(I −BB†)(AΣx + ΣxA
T +BΣBT )(I −BB†) = 0 (23)

We next analyse the form of condition (23) when (A,B)
are in the controller canonical form, that is,

A =


A11 A12 . . . A1m

...
...

. . .
...

Am1 Am2 . . . Amm

 B =


B1

...

Bm

 (24)

where the submatrices Aii ∈ Rdi×di , Bi ∈ Rdi×m, for
i = 1, . . . ,m, have the form

Aii =

[ 0 1 0 ... 0
0 0 1 ... 0
...

...
...

. . .
...

∗ ∗ ∗ ... ∗

]
, Bi =

 0 ...

i
↓
0 0 ... 0

0 ... 0 0 ... 0

. . .
...

. . .
0 ... 1 ∗ ... ∗

 (25)

with the ∗’s representing arbitrary entries, and Aij ∈
Rdi×dj , for i, j = 1, . . . ,m, i 6= j, have zero elements
everywhere except for possibly nonzero elements in the
last row. We first find the form of (I −BB†). Note that
the matrix B in (24), (25) has only m nonzero rows

of the form
[
0 . . . 0 1 ∗ . . . ∗

]
, where the 1 is in the

ith position. Thus, eliminating the redundant rows con-
taining only zeros, we can express BTB = B̃T B̃, where
B̃ ∈ Rm×m is an upper triangular matrix with 1’s in
the main diagonal. Simple calculations then show that
BB† = B(BTB)−1BT = BB̃−1B̃−TBT has zero entries

everywhere except for 1’s in the (σi, σi) positions, where

σi ,
∑i
j=1 dj , for i = 1, . . . ,m. It follows that (I−BB†)

has the form

(I−BB†) = diag(1, . . . , 1,

σ1
↓
0, 1, . . . , 1,

σ2
↓
0, 1 . . . , 1,

σm
↓
0) (26)

Hence, (I − BB†)B = 0, BT (I − BB†) = 0 and in
the multiplication (I − BB†)A we have that the rows
of A with arbitrary entries ∗’s are multiplied by zero
whereas the remaining rows are multiplied by one. We
thus conclude that Ā , (I −BB†)A has the form

Ā = diag(Γ1, . . . ,Γm), Γi ,

[ 0 1 0 ... 0
0 0 1 ... 0
...

...
...

. . .
...

0 0 0 ... 0

]
∈ Rdi×di

(27)
Based on the above calculations we can rewrite (23) as

ĀΣ̄ + Σ̄T ĀT = 0, where Σ̄ , Σx(I −BB†). (28)

Due to the structure of Σx in (20) and using (26), we
can write Σ̄ = diag(Σ̄1, . . . , Σ̄m), where Σ̄i ∈ Rdi×di ,
i = 1, . . . ,m, is equal to the Xiao matrix Σix with zeros
in the last column. Hence, (28) leads to the m equations

ΓiΣ̄i + Σ̄i
TΓTi = 0, i = 1, . . . ,m. (29)

From the form of Γi in (27) and that of Σ̄i just discussed,
it is easy to see that (29) (equivalently, (23)) are sat-
isfied and hence Σx in (20) is a closed-loop covariance
matrix for the controller canonical form system (A,B),
assignable by state feedback with gain (21). From the
assumption that the pair (A,BΣ1/2) is controllable and
the fact that Σx is positive definite, it follows (see [7],
Chapter 4) that A+BK satisfying the Lyapunov equa-
tion (22) is Hurwitz. 2

Next, the following Lemma relates the construction of
a positive definite Xiao matrix with the choice of the
probabilities p̃i in Theorem 6. This result will be used
later to build an assignable covariance matrix having the
diagonal entries required by Theorem 6 to ensure that
the closed-loop system has the desired PUB.

Lemma 11 Let g : (0, 1] → R+ be a strictly monoton-
ically decreasing function with Im(g) = [a,∞) for some
constant a ≥ 0. Let b � 0 be a vector in Rn and let
0 < p < 1. Then, there exist n constants 0 < p̃i < 1
for i = 1, . . . , n such that

∑n
i=1 p̃i = 1− p and the Xiao

matrix

Σx = X
([

(b1)2

g(p̃1)2
(b2)2

g(p̃2)2 . . . (bn)2

g(p̃n)2

]T)
is positive definite.
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PROOF. Let us suppose that there exist 0 < p̃
(k)
i < 1

for i = 1, . . . , n with
∑n
i=1 p̃

(k)
i = 1 − p such that the

matrix

Σk , X
([

(b1)2

g(p̃
(k)
1 )2

(b2)2

g(p̃
(k)
2 )2

. . . (bk)2

g(p̃
(k)

k
)2

]T)
(30)

is positive definite. In order to use induction, we shall

prove that there exist 0 < p̃
(k+1)
i < 1 for i = 1, . . . , n

with
∑n
i=1 p̃

(k+1)
i = 1− p such that the matrix

Σk+1 , X

([
(b1)2

g(p̃
(k+1)
1 )2

(b2)2

g(p̃
(k+1)
2 )2

. . . (bk+1)2

g(p̃
(k+1)

k+1
)2

]T)
(31)

is also positive definite. As a first attempt to find Σk+1,
we define the matrix

Σ̃k+1 , X

([
(b1)2

g(p̃
(k)
1 )2

(b2)2

g(p̃
(k)
2 )2

. . . (bk+1)2

g(p̃
(k)

k+1
)2

]T)

=

Σk ck

cTk
(bk+1)2

g(p̃
(k)

k+1
)2

 =

[
Σk ck

cTk d̃k+1

]
(32)

If the product cTk (Σk)−1ck < d̃k+1 then Σ̃k+1 > 0 and

we can choose p̃
(k+1)
i = p̃

(k)
i and the matrix Σk+1 defined

as in Eq.(31) is positive definite.

Otherwise, if cTk (Σk)−1ck ≥ d̃k+1, we first compute

rk+1 =
cTk (Σk)−1ck

d̃k+1

(33)

and choose a constant α > 1 to calculate

[Σk+1]i,i =
[Σk]i,i
αrk+1

for 1 ≤ i ≤ k (34)

Then, noticing that

bi√
[Σk+1]i,i

=
bi
√
αrk+1√

[Σk]i,i
>

bi√
[Σk]i,i

= g(p̃
(k)
i )

it results that

bi√
[Σk+1]i,i

∈ Im(g)

and we can take

p̃
(k+1)
i =


g−1

(
bi√

[Σk+1]i,i

)
for 1 ≤ i ≤ k

p̃
(k)
i

1− p−
∑k
j=1 p̃

(k+1)
j

1− p−
∑k
j=1 p̃

(k)
j

for i > k

(35)

resulting p̃
(k+1)
i < p̃

(k)
i for 1 ≤ i ≤ k, which implies

that p̃
(k+1)
i > p̃

(k)
i > 0 for k + 1 ≤ i ≤ n. Thus, the

parameters defined in Eq.(35) satisfy p̃
(k+1)
i > 0 and∑n

i=1 p̃
(k+1)
i = 1− p. Then, we have

Σk+1 = X

([
(b1)2

g(p̃
(k+1)
1 )2

(b2)2

g(p̃
(k+1)
2 )2

. . . (bk+1)2

g(p̃
(k+1)

k+1
)2

]T)

=


Σk

αrk+1

ck

αrk+1

cTk
αrk+1

(bk+1)2

g(p̃
(k+1)

k+1
)2

 =


Σk

αrk+1

ck

αrk+1

cTk
αrk+1

dk+1


with dk+1 > d̃k+1. Thus, it results that

cTk
αrk+1

(
Σk

αrk+1

)−1
ck

αrk+1
=
cTk (Σk)−1ck

αrk+1

=
d̃k+1

α
< dk+1

and then Σk+1 is positive definite.

The proof by induction then concludes by observing that
Σ1 is positive definite for any choice of the parameters

p̃
(1)
i > 0 such that

∑n
i=1 p̃

(1)
i = 1 − p. We can initially

take, in particular, p̃
(1)
i = 1−p

n . 2

4.2 Control Design with PUB guarantee

Making use of Lemmas 10 and 11, the following theorem
establishes that a feedback gain K can be computed so
that the closed–loop system of Eq.(17) has an arbitrarily
prescribed PUB.

Theorem 12 (PUB Assignment) Given a system

dx(t) = Ax(t)dt+Bu(t)dt+BGdv(t) (36)

where the pair (A,B) is controllable, the disturbance
vector v(t) is a zero mean stationary stochastic process
with uncorrelated increments and incremental covariance
Σvdt, and the pair (A,BΣ1/2) with Σ defined in (19) be-
ing controllable, and given a vector b � 0 and a proba-
bility 0 < p < 1, there exists a control law u(t) = Kx(t)
such that any set of the form S = {x : |xi| ≤ bi + ε; i =
1, . . . , n} with ε > 0, is a PUB with probability p of the
closed-loop system (17).

PROOF. Given a control gain K such that A+BK is
Hurwitz, if we find certain constants p̃i > 0 subject to∑n
i=1 p̃i = 1− p, then, according to Theorem 6, the set

S = {x : |xi| ≤ bi + ε; i = 1, . . . , n} would be a PUB
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with probability p for the closed loop system of Eq.(17)
provided that

bi =
√

[Σx]i,ig(p̃i)

with

g(p̃i) =

{
1/
√
p̃i general distribution√

2erf−1(1− p̃i) Gaussian distrib.
(37)

and where Σx is the solution of the Lyapunov equa-
tion (22).

Let us suppose first that the pair (A,B) is in controller
canonical form. Notice that in both cases (general and
Gaussian distribution), the function g(·) verifies the hy-
pothesis of Lemma 11 (with a = 1 and a = 0, respec-
tively).

Then, takingm constants qj > 0, j = 1, . . . ,m, such that∑m
j=1 qj = 1, and defining σj for j = 1, . . . ,m as in the

proof of Lemma 10, we can use the result of Lemma 11
and, for each j ∈ {1, . . . ,m}, find dj constants p̃i, with
i = σj − dj + 1, . . . , σj such that

σj∑
i=σj−dj+1

p̃i = qj(1− p) = 1− p̂j

and the Xiao matrix

Σjx = X
({
b2i /g(p̃i)

2; i = σj − dj + 1, . . . , σj
})

is positive definite.

Then, according to Lemma 10, matrix Σx =
diag(Σ1

x, . . . ,Σ
m
x ) is an assignable positive definite co-

variance matrix under the control law u = Kx with
K computed from Eq.(21), and the closed-loop matrix
A+BK is Hurwitz.

Notice that the n diagonal entries of Σx are b2i /g(p̃i)
2,

and

n∑
i=1

p̃i =

m∑
j=1

σj∑
i=σj−dj+1

p̃i =

m∑
j=1

qj(1− p) = 1− p

Then, using Theorem 6, the set S = {x : |xi| ≤ bi +
ε; i = 1, . . . , n}, for any given ε > 0, is a PUB with
probability p of the closed loop system (17).

In case the pair (A,B) is not in the controller canonical
form, there exists a linear transformation U (see, e.g.,
[11]) that brings it into that form. Under this transfor-
mation, the system of Eq.(36) becomes

dxc(t) = Acxc(t)dt+Bcu(t)dt+BcGdv(t) (38)

with Ac = U−1AU , and Bc = U−1B.

Let Σ̃c be a positive definite block diagonal Xiao matrix
that according to Lemma 10 is an assignable covariance
matrix for the pair (Ac, Bc). Define Σ̃x , U Σ̃cU

T and
let µ > 0 be a number that also verifies

µ ≤ µmax , min
1≤i≤n

b2i
(a+ δ)2[Σ̃x]i,i

with a = g(1), g(·) defined in Eq.(37), and δ , g(1 −
p)− a > 0. Notice that

bi√
µ[Σ̃x]i,i

≥ bi√
µmax[Σ̃x]i,i

≥ a+ δ

which implies that the first term on the left hand side of
the last inequality is in Im(g) = [a,∞). Define

p̌i(µ) , g−1

 bi√
µ[Σ̃x]i,i

 , i = 1, . . . , n (39)

Notice that each function p̌i(µ) monotonically grows
with µ, taking values in the interval (0, p̌i(µmax)]. More-
over, there exists at least one function p̌i∗(µ) where

i∗ = arg min
1≤i≤n

b2i
(a+ δ)2[Σ̃x]i,i

that takes values in the interval (0, 1− p]. Define then

s(µ) ,
n∑
i=1

p̌i(µ) (40)

and notice that the continuous function s(µ) mono-
tonically grows with µ and can take any value from
0 to smax ≥ 1 − p. Thus, a value µ̄ exists such that
s(µ̄) = 1− p.

Then, taking Σc = µ̄Σ̃c, it results that Σc is an
assignable covariance matrix of system (38) under the
control law u(t) = Kcxc(t) with

Kc = −B†c(AcΣc + ΣcA
T
c +BcΣB

T
c )(I −BcB†c/2)Σ−1

c
(41)

Then, the covariance matrix of system (36) under the
control law u(t) = Kx(t) with K = KcU

−1 results

Σx = UΣcU
T = Uµ̄Σ̃cU

T = µ̄Σ̃x

Taking p̃i = p̌i(µ̄) for i = 1, . . . , n, from Eq.(39) it results
that

bi = g(p̃i)

√
µ̄[Σ̃x]i,i = g(p̃i)

√
[Σx]i,i
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with
∑n
i=1 p̃i = 1 − p. Then, according to Theorem 6,

the set S = {x : |xi| ≤ bi + ε; i = 1, . . . , n} is a PUB
with probability p for the closed-loop system (17). 2

From Theorem 12 and Lemmas 10 and 11 the following
algorithm can be devised to find an assignable covariance
matrix Σx and the corresponding control law u(t) =
Kx(t) such that system (36) has a PUB of size b with
probability p. We consider that the system has m inputs
and that the corresponding controllability indexes are
dj with j = 1, . . . ,m. We also define the cumulative

indexes σi ,
∑i
j=1 dj , for i = 1, . . . ,m as in the proof

of Lemma 10.

Algorithm 1 PUB Design – Controller Canonical
Form

(1) Choose m constants qj such that 7
∑m
j=1 qj = 1.

(2) For each j in 1, . . . ,m,
(a) Compute p̂j = 1− qj(1− p).
(b) Take bj = [bσj−dj+1, . . . , bσj ].

(c) Take k = 1 and p̃
(1)
i = (1 − p̂j)/dj for i =

1, . . . , dj.
(d) Using bj instead of b, form Σk from Eq. (30). If

k = dj go to step (2i).

(e) Using bj instead of b form Σ̃k+1 from Eq.(32).

(f) If Σ̃k+1 > 0, take p̃
(k+1)
i = p̃

(k)
i and go to step

(2h).

(g) Otherwise, choose α > 1 and compute p̃
(k+1)
i

from Eqs.(33)–(35).
(h) Let k := k + 1 and go back to step (2d).
(i) Take Σjx = Σk > 0

(3) Compute the block diagonal Xiao matrix Σx from
Eq.(20).

(4) Calculate Σ = GΣvG
T and compute K from

Eq.(21).

When the pair (A,B) is not in its controller canonical
form, the following algorithm can be devised to find a
control law such that the closed–loop system has a PUB
of size b with probability p.

Algorithm 2 PUB Design – General Form

(1) Compute the matrix U that brings the system (36)
into its controller canonical form (see, e.g., [11]).

(2) Choose a positive vector b̃c and using Algorithm 1 up
to step (3), compute an assignable covariance matrix

Σ̃c for the system in controller canonical form.
(3) Find µ̄ such that s(µ̄) = 1 − p, with s(·) defined in

Eqs.(39)–(40).

7 A reasonable choice would be qj = dj/n, which assigns
an exit probability proportional to the dimension of each
controllability subspace.

(4) Compute Σc = µ̄Σ̃c and Kc from Eq.(41).
(5) Calculate the controller gain K = KcU

−1

5 Example

We consider a system described by Eq.(36) with

A =



2 2 −1 −1 −3

1 0 −1 0 −1

0 1 0 −1 −1

1 0 −1 0 0

2 1 −1 −1 −3


; B =



0 1

0 0

−1 −2

0 0

0 1


; (42)

G = [1 1]T , and v(t) is a Wiener process with incremen-
tal covariance Σvdt = 0.01dt. We want this system to
have a PUB S = {x : |xi| ≤ bi + ε; i = 1, . . . , n}, with

b =
[
0.1 0.1 0.1 0.1 0.1

]T
, for all ε > 0 with probability

p = 0.9. We next follow Algorithm 2:

(1) The matrix that brings the system into its controller
canonical form is

U =



1 1 0 0 1

0 1 0 0 0

1 0 −1 0 0

1 1 0 1 0

0 1 0 0 1


;

(2) The positive vector b̃c is chosen here as b̃c = b.
Then, following Algorithm 1 with q1 = 3/5, q2 =
2/5, we obtain the following assignable covariance
matrix for the system in controller canonical form:

Σ̃c = 10−3



0.9239 0 −0.9239 0 0

0 0.9239 0 0 0

−0.9239 0 2.783 0 0

0 0 0 1.848 0

0 0 0 0 1.848


(3) Computing Σ̃x = U Σ̃cU

T and p̌i(µ) from Eq.(39),
the value µ̄ such that s(µ̄) = 1 − p in Eq.(40) is
µ̄ = 0.4911. Then, the exit probabilities p̃i = p̌i(µ̄)
result p̃1 = p̃4 = 0.0189, p̃2 = 0.000003, p̃3 =
0.055597, and p̃5 = 0.0067.

(4) We compute Σc = µ̄Σ̃c and

Kc =

[
−16.4396 −7.0118 −15.4396 −1 −8.0102

−16.9308 1 −16.9308 0 −4.5102

]
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(5) We calculate the controller gain for the system in
the original coordinates:

K =

[
−30.8792 1.9984 15.4396 −1 22.8689

−33.8616 5.5102 16.9308 0 29.3513

]

This gain ensures that system (17) has the desired PUB
with probability p = 0.9. This fact can be checked by
applying Theorem 6 to the closed loop system of Eq.(17)
with the values of p̃i computed in the step 3 above.

In order to verify the results, we performed 5,000 simu-
lations of the system from the initial state x(t0) = 10 · b
(outside S) and for each instant of time tk = 0.01k, with
k = 0, . . . ,120,000, we evaluated the exit ratio e as the
number of times x(tk) lies outside the PUB divided by
5,000. We found that for any tk ≥1,050, between 7.14%
and 10% of the simulations lie outside the calculated
PUB, which agrees with the maximum theoretical prob-
ability (1 − p) of 10%. The computed exit ratio as a
function of the time is depicted in Figure 1.
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Fig. 1. Exit ratio vs. t for the PUB

6 Conclusions

We have extended the notions of PUB and PIS to the
continuous-time domain, deriving their main properties
and providing formulas for their calculation. In the case
of PIS, a redefinition was required to take into account
the fundamental limitations imposed by the infinite-
bandwidth nature of continuous-time white noise. Then,
a controller design technique was presented to assign a
predetermined PUB having a given probability p. The
results were illustrated with a numerical example.

Future work will include the use of the results in control
applications such as fault tolerant control and model

predictive control, where the notions of invariance and
ultimate boundedness play a fundamental role and the
concepts and tools developed here can allow to deal with
unbounded disturbances in a probabilistic framework.
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