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Abstract

The paper introduces new classes of numerical ODE solvers that base
their internal discretization method on state quantization instead of time
slicing. These solvers have been coined Quantized State System (QSS)
simulators.

The main result of this work is a first order accurate QSS-based stiff
system solver called Backward QSS (BQSS). The numerical properties of
this new algorithm are being discussed, and it is shown that this algorithm
exhibits properties that make it a potentially attractive alternative to the
classical numerical ODE solvers. Some simulation examples illustrate the
advantages of this method.

As a colateral result, a first order accurate QSS-based solver designed
for solving marginally stable systems is sketched. This new method, called
Centered QSS (CQSS), is successfully applied to a new difficult benchmark
problem describing a high-order system that is simultaneously stiff and
marginally stable

1 Introduction.

Practically all of today’s commonly used numerical ODE solvers are based on
similar principles. They all perform some kind of (either equidistant or non-
equidistant) time slicing; they construct an interpolation polynomial that passes
through a number of previously computed state and derivative values; and fi-
nally, they then use that interpolation polynomial to estimate the value of the
state vector at the next discrete time instant, xk+1 = x(tk+1).

Different ODE solvers vary in their approximation orders, i.e., in the number
of past pieces of information that they use in the construction of the interpo-
lation polynomial; they differ in which pieces of information they use in con-
structing the interpolation polynomial; they also differ in their method of time
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slicing, i.e., how often they compute new state values; and finally, whereas some
algorithms are explicit in nature, i.e., make use of past and current information
only, others are implicit, i.e., make use of the derivative value at the next time
instant, ẋ(tk+1), as well.

Yet, all of these algorithms, be they linear or nonlinear methods, single-step
or multi-step techniques, explicit or implicit approaches, attempt to answer the
same question:

Given current and past state and derivative information, which val-
ues shall the state variables assume at the next discrete time instant?

In this paper, we shall describe a set of numerical ODE solvers that are
based on a totally different discretization method. Rather than making use of
the concept of time slicing to reduce a continuous-time problem to a (in some
way equivalent) discrete-time problem that can be solved on a digital computer
using an algorithm, these methods employ the concept of state quantization for
the same purpose.

Hence these methods attempt to provide an answer to a succinctly different
question:

Given that the current value of a state variable, x, is Qi, where Qi

denotes one of an ordered increasing set of discrete values that the
state variable may assume, when is the earliest time instant at which
this state variable shall reach either the next higher or the next lower
discrete level, Qi±1?

This concept, first proposed by Zeigler [23, 24], constitutes the basis of a
new class of numerical ODE solvers, namely the Quantized State System (QSS)
solvers [17]. These algorithms have some striking properties in common:

1. QSS algorithms are intrinsically variable-step techniques. They adjust
the time instant at which the state variable is re-evaluated to the speed
of change of that state variable.

2. QSS methods are naturally asynchronous, i.e., different state variables
update their state values separately and independently of each other at
different instants of time.

3. QSS techniques are guaranteed to retain numerical stability. They au-
tomatically adjust the frequency at which future state values are being
computed to meet the numerical stability requirements [11]. The quan-
tization process can be treated as a bounded perturbation on the origi-
nal ODE. Thus, nonlinear stability can be easily studied making use of
Lyapunov functions [17]. These properties have a connection with those
established by Dahlquist related to nonlinear stability of conventional nu-
merical solvers. [2, 4].
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4. QSS solvers offer a global rather than local error bound, i.e., numerical
solutions obtained by QSS algorithms are guaranteed to never differ from
the analytical solution by an amount larger than a computable finite value,
at least when dealing with linear time-invariant analytically stable systems
[11].

5. The QSS approach allows the definition of explicit solvers that are nev-
ertheless stiffly stable [6], something that classical numerical ODE solvers
can never do, as this paper shall demonstrate.

6. QSS algorithms offer intrinsically dense output, a feature that is particu-
larly important for asynchronous methods [3].

7. QSS solvers are excellent at root solving, i.e., at simulating across heavily
discontinuous models, as they occur frequently in engineering. Due to their
dense output feature, their built-in root-solving method is explicit and
doesn’t require any iteration [12]. More precisely, QSS methods provide
low–order polynomial trajectories, the roots of which can be found in
a straightforward manner. Thus, the time of the zero–crossings can be
calculated before they occur, and the corresponding state events can be
scheduled and treated as simple time events.

8. QSS algorithms are good candidates for real-time simulation, because they
can be easily implemented on parallel computer architectures (due to their
asynchronous nature) [22]; because they can detect and locate discontinu-
ities using explicit methods; and finally, because they allow to minimize
the communication bandwidth between separate agents dealing with dif-
ferent subsystems [15], as a state change in any state variable gets com-
municated asynchronously to its neighbors and to its neighbors only by
a single bit (sending a ”1” means the state increases its discrete value to
the next higher level; sending a ”0” means the state decreases its value to
the next lower level; and not sending anything means the state remains
at the same level as before).

For all of those reasons, it is well worthwhile considering the paradigm shift
that QSS methods call for.

Many practical dynamical systems encountered in either science or engineer-
ing are stiff, i.e., exhibit Jacobians with eigenvalues that are spread out along
the negative real axis of the complex plane. Using traditional methods of time
slicing for the numerical simulation of such systems, it results that implicit
methods must be used, as all explicit methods invariably restrict the step size
in order to guarantee numerical stability. More precisely, algorithms must be
employed whose stability domains loop in the right-half complex plane. Some
implicit methods exhibit such stability domains, whereas all explicit methods
invariably show stability domains that loop in the left-half complex plane [3].

Another case that call for implicit methods is that of marginally stable sys-
tems. In these systems, the Jacobians have eigenvalues located near the imagi-
nary axe.
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The literature on time slicing methods for stiff and marginally stable systems
contains hundreds of algorithms which provide different features and advantages
[3, 7, 8]. However, all of them are invariantly implicit and need iterations at
each step.

Implicit methods exhibit a serious drawback. They are not useful for real-
time simulations, as the resulting Newton iteration cannot be guaranteed to
converge within a fixed time interval. Hence the simulation of stiff systems in
real time poses a hard problem, for which no good solutions have been found in
the past.

Whereas a number of papers have already been written about QSS methods
in general (non-stiff QSS solvers of orders 1 to 3 have been developed and have
been reported in other publications [3, 11, 14, 17, 20, 21]), this paper is the first
to deal with the issues of stiffness and marginal stability. It introduces two new
QSS algorithms: BQSS, a stiff first-order ODE solver based on QSS technology,
and CQSS, another first-order QSS solver designed for solving marginally stable
systems.

Higher-order stiff and geometric QSS solvers are currently under develop-
ment.

2 Quantization Based Integration.

This section introduces the QSS method and explains the difficulties it is having
in dealing with stiff ODE systems.

2.1 QSS Method.

Given the system
ẋ(t) = f(x(t),u(t)) (1)

with x ∈ Rn is the state vector, and u(t) ∈ Rm represents a known set of input
trajectories, the QSS methods approximates it by

ẋ(t) = f(q(t),u(t)) (2)

In this last system, q is the vector of quantized variables, whose components
are related with those of the state vector x according to the following hysteretic
quantization function:

qj(t) =






qj(t
−) + ∆Qj if xj(t

−) − qj(t) ≥ ∆Qj

qj(t
−) − ∆Qj if qj(t

−) − xj(t) ≥ εj

qj(t
−) otherwise

∆Qj is called quantum and εj is the hysteresis width.
The quantum ∆Qj is a given parameter that plays a role analogous to that

of the step size h in conventional numerical integration methods.
The hysteresis width is usually chosen equal to the quantum, as this choice

reduces oscillations without increasing the error [3]. Under this condition, qj(t)

4



follows a piecewise constant trajectory that only changes when it differs from
xj by ∆Qj . After each change, qj(t) = xj(t).

Using the fact that q(t) is piecewise constant and provided that the input
u(t) is also piecewise constant, it can be seen that x(t) is piecewise linear [17].
Consequently, the numerical solution of Eq.(2) is straightforward.

Notice also that x(t) provides a piecewise linear dense output for the state.
Thus, the instants of time at which the trajectories cross a given threshold can
be computed analytically. Due to this fact and due to the asynchronous nature
of the method, QSS can efficiently handle discontinuities on the right hand side
of Eq.(1) [12].

Second- and third-order accurate QSS methods are similar to the first-order
algorithm, but they exhibit quadratic and cubic state trajectories, respectively.
Although the root–solving problem in these cases carries a higher computa-
tional cost, the cost is still negligible in comparison with conventional iterative
solutions.

2.2 QSS and Stiff Systems.

The system

ẋ1(t) = 0.01 x2(t)

ẋ2(t) = −100 x1(t) − 100 x2(t) + 2020
(3)

has eigenvalues λ1 ≈ −0.01 and λ2 ≈ −99.99, which indicates that the system
is stiff.

The QSS method approximates this system as

ẋ1(t) = 0.01 q2(t)

ẋ2(t) = −100 q1(t) − 100 q2(t) + 2020
(4)

Considering initial conditions x1(0) = 0, x2(0) = 20 together with the quanta
∆Q1 = ∆Q2 = 1, the QSS numerical ODE solver performs the following steps:

At t = 0, we set q1(0) = 0 and q2(0) = 20. Then, ẋ1(0) = 0.2 and ẋ2(0) = 20.
This situation remains unchanged until |qi − xi| = ∆Qi = 1.

The next change in q1 is thus scheduled at t = 1/0.2 = 5, whereas the next
change in q2 is scheduled at t = 1/20 = 0.05.

Hence a new step is performed at t = 0.05. After this step, it results that
q1(0.05) = 0, q2(0.05) = 21, x1(0.05) = 0.01, x2(0.05) = 21. The derivatives are
ẋ1(0.05) = 0.21 and ẋ2(0.05) = −80.

The next change in q1 is rescheduled to occur at 0.05+(1−0.01)/0.21 = 4.764,
whereas the next change in q2 is scheduled at 0.05 + 1/80 = 0.0625. Hence, the
next step is performed at t = 0.0625.

At t = 0.0625, it results that q1(0.0625) = 0, q2(0.0625) = x2(0.0625) = 20,
x1(0.0625) ≈ 0.0126, and the derivatives coincide with those found at time t = 0.

This behavior is cyclicly repeated until a change in q1 occurs. That change
occurs at t ≈ 4.95, after 158 changes in q2 oscillating back and forth between
20 and 21.
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The simulation continues in the same way. Figs.1–2 show the evolution of
q1(t) and q2(t) across 500 units of simulated time.
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Figure 1: QSS Simulation
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Figure 2: QSS Simulation (detail)

The fast oscillations of q2 provoke a total of 15995 transitions in that variable,
whereas q1 only changes 21 times. Consequently, the total number of steps
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needed to complete the simulation is greater than 16000, i.e., the number of
simulation steps is of the same order of magnitude as the 25000 steps that would
be needed by the Forward Euler method for maintaining numerical stability.

Evidently, the QSS method is unable to efficiently solve System (3).
QSS, as well as other explicit schemes, can solve some very particular stiff

problems in an efficient way. For instance, if we change the constant value 2020
by 2000 in Eq.(3) the number of steps is reduced to only 42. Another explicit
method similar to QSS was reported to exhibit good performance in some stiff
combustion models [19].

Yet, none of these methods can offer a decent performance in a general case.
Only implicit methods can efficiently handle general stiff systems.

3 Backward QSS.

3.1 Basic Idea.

Efficient solution of stiff systems requires using implicit methods that evaluate
the state derivatives at future instants of time.

This idea, when applied to QSS methods, would imply that the components
of q(t) in (2) are quantized versions of future values of x(t). In other words,
given xi(t), qi(t) should be a quantized value in the neighborhood of xi(t), such
that xi(t) evolves towards qi(t).

For the introductory example (3) using the same initial conditions and quan-
tization as before, this idea would yield the following simulation:

At t = 0, we can choose either q2(0) = 19 or q2(0) = 21 depending on the
sign of ẋ2(0). In both cases, it results that ẋ1(0) > 0 and the future quantized
value of x1 is q1(0) = 1.

If we choose q2(0) = 21, it results that ẋ2(0) = −180 < 0, and consequently,
x2 does not evolve towards q2. On the other hand, choosing q2(0) = 19 implies
that ẋ2(0) = 20 > 0, and once again, x2 does not evolve towards q2.

Hence it is not possible to choose q2 such that x2 moves towards q2.
However, the fact that the sign of ẋ2 changes taking q2 = 19 and q2 = 21

implies that there must exist a point, q̂2, in between those two values, for which
ẋ2 = 0.

In this case, we set arbitrarily q2 = 21, but we let ẋ2 = 0, as if q2 had
adopted the (unknown) value q̂2.

We could have chosen q2 = 19 instead. We would have received another
approximation in this way, but both approximations remain bounded, as shall
be shown in due course.

The next change in q1 is thus scheduled at t = 1/0.21 ≈ 4.762, whereas the
next change in q2 is scheduled at t = ∞.

Hence the next step is evaluated at t = 4.762. Here, it results that x1 = 1
and x2 = 20. Then, q1(4.762) = 2 (because ẋ1 > 0). We evaluate again ẋ2 for
q2 = 19 and q2 = 21. Now the value is negative in both cases. Thus, the correct
value is q2(4.762) = 19 since in that way, x2 moves towards q2.
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With these new values of q1 and q2, it results that ẋ1 = 0.19 and ẋ2 = −80.
The next change in q1 is then scheduled at t = 4.762+1/0.19 = 10.025, whereas
the next change in q2 is scheduled at t = 4.762 + 1/80 = 4.774. Thus, the next
step is performed at t = 4.774, when x2 reaches q2.

The calculations continue in the same way. The algorithm is similar to that
of QSS. The difference is that we try to choose qi such that xi evolves towards
qi. When this is not possible, this means that there must exist a point near
xi, for which ẋi = 0. In that case, we enforce that condition but, instead of
calculating that point, we keep the previous value of qi.

Figure 3 shows the result of this simulation that took 21 changes in q1 and
22 changes in q2. For t = 354.24, the algorithm reaches a stable situation where
the changes in both variables are scheduled at t = ∞.
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Figure 3: BQSS Simulation

This is the basic idea that defines the BQSS method. For each state variable
xi, we use two quantization functions, one from above and the other from below
xi. Then, qi takes its value equal to one or the other function according to the
sign of the derivative ẋi.

In the case analyzed, this idea worked very well. The algorithm solved the
stiff system (3) using 43 steps only, which equals the performance of any implicit
method (although the error might be large as a first order approximation is being
used).

However as already known from the explicit QSS methods, the use of quan-
tization without hysteresis may provoke infinitely fast oscillations [3, 17]. For
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instance using the same idea as before with the system

ẋ1(t) = 0.5 x1 + x2(t)

ẋ2(t) = −x1(t) + 0.5 x2(t)
(5)

with ∆Qi = 1 and initial conditions x1(0) = 0.1, x2(0) = −0.01, we obtain
a solution where the changes in q1 and q2 occur faster and faster, and the
oscillation frequency goes to infinity.

The solution to this problem, just like in the case of the explicit QSS meth-
ods, is to add hysteresis to the upper and lower quantization functions.

3.2 BQSS Definition.

Given the system (1), the BQSS method approximates it by

ẋ(t) = f(q(t),u(t)) + ∆f (6)

where the components of q are chosen from the set:

qj(t) ∈ {q
j
(t), qj(t)} (7)

with:

q
j
(t) =





q
j
(t−) − ∆Qj

if xj(t) − q
j
(t−) ≤ 0

q
j
(t−) + ∆Qj

if xj(t) − q
j
(t−) ≥ εj + ∆Qj

q
j
(t−) otherwise

(8)

qj(t) =






qj(t
−) + ∆Qj

if qj(t
−) − xj(t) ≤ 0

qj(t
−) − ∆Qj

if qj(t
−) − xj(t) ≥ εj + ∆Qj

qj(t
−) otherwise

(9)

In other words, qj(t) is chosen from a set of two values denoting a lower and
an upper bound. These bounds by themselves are being calculated from their
own previous values.

We furthermore choose qj(t) such that xj(t) approaches qj(t):

fj(q(t),u(t)) · (qj(t) − xj(t)) > 0 (10)

and if either none or both of the two possible values q
j
(t) and qj(t) sat-

isfy the condition (10), then there must exist a vector q̂(j)(t), such that
fj(q̂

(j)(t),u(t)) = 0:

∃q̂(j)(t) | fj(q̂
(j)(t),u(t)) = 0 (11)

where each component of the vector q̂(j)(t) satisfies:

|xi(t) − q̂
(j)
i (t)| < ∆Qi + εi (12)
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Finally, we choose the increments:

∆fj =

{
0, if fj(q(t),u(t)) · (qj − xj) > 0
−fj(q(t),u(t)), otherwise

(13)

i.e., the increments are either zero, if a unique consistent evolution has been
found, or alternatively, the increments are chosen such that the corresponding
derivatives are set to zero.

Like in QSS, ∆Qj is called the quantum, and εj is the hysteresis width.
Contrary to QSS, it is here convenient to choose smaller values of εj < ∆Qj .
The reason is that for such values of εj , the two hysteresis loops from above and
from below do not intersect. Also contrary to QSS, the oscillation frequency
of BQSS does not grow linearly with decreasing values of εj . In the current
implementation, BQSS sets εj = 0.01 ∗ ∆Qj.

Notice that the definition of qj is implicit. Moreover, it can yield more than
one solution. However, we know that qj(t) can only assume one of two values:
q

j
(t) or qj(t).

At first glance, we may think that all combinations of possible values qj for
all components must be evaluated in order to find a correct vector q.

However, it shall be shown that this is not necessary and that q can in fact
be obtained explicitly.

3.3 Explicit calculation of q.

The main difference between BQSS and QSS is the way in which q is obtained
from x, as Eqs.(10) and (11) imply that the values of the different components
are interrelated.

In QSS, changes in qj are produced when xj differs from qj by ∆Qj . In
BQSS, changes are provoked when xj reaches qj . In addition, a change in qj

may provoke changes in other quantized variables due to Eqs.(10) and (11).
Also, changes in some component of u can produce changes in some quantized
variables.

Thus, events might be provoked either by changes in the inputs or because a
state variable reached the corresponding quantized variable. After any of those
changes, the main difficulty seems to be finding a consistent set of values for q
that satisfy Eqs.(7)–(12).

We shall introduce an algorithm to obtain –in a simple and explicit way– a
value of the q vector that satisfies the aforementioned equations.

In the algorithm, D = {. . . , i, . . . } is the set of sub–indices of the functions
fi already evaluated. Similarly, A is the set of sub–indices of the qi that are
going to change their values. Both sets are initially empty.

Algorithm 1.
1.a. If an input changes (uj(t) 6= uj(t

−)):

> The sub–indices of the functions fi that depend on uj are included in the set
D.
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> For each i ∈ D:

- Define q̃(i) , q(t−).

- If fi(q̃
(i),u(t)) · (q̃

(i)
i − xi) < 0

. Include i in A

. Define

qi(t) ,

{
qi(t) if fi(q̃

(i),u(t)) > 0
q

i
(t) if fi(q̃

(i),u(t)) < 0
(14)

- Otherwise, qi(t) , qi(t
−)

1.b. If xi reaches qi:

> Include i in A and D.

> Define q̃(i) , q(t−).

> Calculate qi(t) according to Eq.(14)

2. While A 6= φ

> Let j be the smallest element of A.

> Define B as the set of sub–indices i 6∈ D so that fi depends on qj .

> For each i ∈ B:

− Define q̃(i) according to

q̃
(i)
k =

{
qk(t) if k ∈ D
qk(t−) if k 6∈ D

(15)

− If fi(q̃
(i),u(t)) · (q̃

(i)
i − xi) < 0

. Include i in A.

. Calculate qi(t) according to Eq.(14).

− Otherwise, qi(t) , qi(t
−).

> Add the elements of B to the set D and remove j from A.

3. For every i 6∈ D, leave qi(t) = qi(t
−).

This algorithm always finds a value for q. We shall prove below that it
satisfies the definition provided in Section 3.2. Notice that the sub–indices can
be included in set D only once. Thus, every component of function f is being
evaluated at most once.

Theorem 1 Consider the BQSS approximation of Eq.(6) and suppose that x(t)
and q(t−) are known, and they satisfy Eqs.(7)–(12). Suppose further that either
ui(t) 6= ui(t

−) or xi(t) = qi(t
−) for some sub–index i. Then, Algorithm 1 always

finds a value of q(t) that satisfies Eqs.(7)–(12).
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Proof. For every i 6∈ D, we define q̃(i) , q(t−).
We shall prove that an arbitrary component qj(t) satisfies Eqs.(7)–(12).
Note that the only values that qj(t) can take are qj(t

−), q
j
(t) and qj(t). In

the latter two cases, Eq.(7) is automatically satisfied.
In the first case, when qj(t) = qj(t

−), it can be seen that q
j
(t) = q

j
(t−)

and qj(t) = qj(t
−). Otherwise, xj(t) would have reached its quantized variable

qj(t
−) and we would not have assigned qj(t) = qj(t

−) (item 1.b.). This ensures
that Eq.(7) is always satisfied.

To prove that Eqs.(10)–(12) are satisfied, we must show that if fj(q(t),u(t))·
(qj(t) − xj(t)) ≤ 0 then ∃q̂(j) such that fj(q̂

(j),u(t)) = 0 and the components
of q̂ satisfy (12).

Notice that if qj(t) 6= qj(t
−), the new value is calculated according to

Eq.(14). Thus taking into account Eqs.(8)–(9), it will be true that

fj(q̃
(j),u(t)) · (qj(t) − xj(t)) ≥ 0 (16)

On the other hand if we set qj(t) = qj(t
−), it is because Eq.(16) is satisfied.

Consequently, Eq.(16) is always satisfied.
Taking this equation into account, if fj(q(t),u(t)) · (qj(t)− xj(t)) ≤ 0, then

fj(q̃
(j)(t),u(t)) · fj(q(t),u(t)) ≤ 0

and from the mean value theorem, there exists q̂(j) between q̃(j)(t) and q(t)
such that fj(q̂

(j),u) = 0.
Eqs.(8) and (9) ensure that

|qi − xi| ≤ ∆Qi + εi ; |q
i
− xi| ≤ ∆Qi + εi (17)

The components q̃
(j)
i can only adopt the values qi(t), q

i
(t), or xi(t) (item 1.b).

Then
|q̃

(j)
i − xi(t)| ≤ ∆Qi + εi

|qi − xi(t)| ≤ ∆Qi + εi

(18)

From this equation and since q̂
(j)
i is between qi(t) and q̃

(j)
i (t), it results that

|q̂
(j)
i − xi(t)| ≤ ∆Qi + εi (19)

which concludes the proof �

4 Theoretical Properties of BQSS.

This section studies fundamental properties of the BQSS method. We first show
that the BQSS method performs a finite number of steps within any finite inter-
val of time. Then, we analyze the stability and global error bound properties.
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4.1 Legitimacy of BQSS.

The following theorem ensures that the BQSS method cannot exhibit oscillatory
behavior with a frequency approaching infinity, i.e., the algorithm always per-
forms a finite number of steps within any finite interval of time. An algorithm
that satisfies this property is called legitimate.

Theorem 2 Suppose that function f in Eq.(1) is bounded in a domain D×Du,
where D ⊂ R

n, Du ⊂ R
m and assume that the trajectory u(t) ∈ Du is piecewise

constant. Then,

1. Any solution x(t) of Eq.(6) is continuous while q(t) remains in D.

2. The trajectory q(t) is piecewise constant while it remains in D.

Proof. The proof of 1. is straightforward since, according to Eq.(6), the
derivative of x is bounded.

Concerning 2. it is clear that every component qj can only assume values of
the form k ·∆Qj . However to prove that q is piecewise constant, it is necessary
to ensure that it only experiences a finite number of changes in any finite interval
of time.

Let (t1, t2) be an arbitrary interval of time in which q(t) remains in D. We
shall prove that, within this interval, q(t) undergoes a finite number of changes.

The assumptions of the theorem ensure that f(q,u) is bounded and, taking
into account Eqs.(6) and (13), positive constants mj exist such that, for t ∈
(t1, t2)

|ẋj(t)| ≤ mj ; for j = 1, . . . , n.

Let tc ∈ (t1, t2) and suppose that qj(t
−
c ) 6= qj(t

+
c ). According to Eq.(9), this

situation cannot be repeated until |xj(t) − xj(tc)| ≥ ǫj . Thus, the minimum
time interval between two discontinuities in qj(t) is

tj =
ǫj

mj

Then, calling nj the number of changes of qj(t) in the interval (t1, t2), it results
that

nj ≤ (t2 − t1)
mj

ǫj

It can be easily seen that q
j
will perform a maximum number of changes bounded

by the same expression.
Since u(t) is piecewise constant, it will perform a finite number of changes

nu in the interval (t1, t2).
The definition of qj ensures that it can only take the values qj(t) or q

j
(t). In

addition, it can only change if these variables change or if there is a change in
some other quantized or input variable (qi(t) or ui(t)) such that the restrictions
of Eqs.(10) and (11) hold. In conclusion, changes in qj(t) are linked to changes
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in some qi(t), q
i
(t) or ui(t). Thus, the total number of changes will be equal to

or less than the sum of all the changes in those variables, i.e.,

nj ≤ nu + 2(t2 − t1)
n∑

i=1

mi

ǫi

which is a finite number. �

4.2 Perturbed Representation.

Stability and error bound properties of QSS methods can be analyzed consid-
ering that Eq.(2) can be viewed as a perturbed version of the original system
of Eq.(1), where the perturbations are bounded by the quantization in use. We
shall see that something similar occurs with BQSS.

Each component of Eq.(6) can be written as

ẋi(t) = fi(q(t),u(t)) + ∆fi (20)

Defining
∗
q

(i)
(t) =

{
q(t) if ∆fi = 0

q̂(i)(t) otherwise

and using Eqs. (10)–(13), Eq.(20) can be rewritten as

ẋi = fi(
∗
q

(i)
(t),u(t)) (21)

Defining ∆x(i)(t) ,
∗
q

(i)
− x(t) and replacing it in Eq.(21), it results that

ẋi(t) = fi(x(t) + ∆x(i)(t),u(t)) (22)

where
|∆x

(i)
j (t)| ≤ ∆Qj + εj (23)

because from Eqs.(7), (8), and (9) it results that

|qj(t) − xj(t)| ≤ ∆Qj + εj

and from Eq.(12) we have that

|q̂
(i)
j (t) − xj(t)| ≤ ∆Qj + εj

4.3 Stability and global error bound.

In the linear time–invariant case, Eq.(1) can be written as:

ẋ(t) = Ax(t) + Bu(t) (24)

and the BQSS approximation is

ẋ(t) = Aq(t) + Bu(t) + ∆f(t) (25)
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For a stable system of this type1, the following theorem shows the existence of
a global error bound:

Theorem 3 Assume that matrix A is Hurwitz2. Let φ(t) be the solution of
Eq.(24) with initial condition φ(0), and let φ̃(t) be a solution of Eq.(25) with
the same initial condition. Let e(t) , φ(t) − φ̃(t). Then for all t ≥ 0, it results
that3

|e(t)| ≤ |V | · |Re(Λ)−1V −1| · |A| · (∆Q + ε) (26)

where Λ = V −1AV is the spectral decomposition of A, and ∆Q and ε are the
quantization and hysteresis width vectors in Eq.(25).

Proof. According to Eq.(22), the i–th component of Eq.(25) can be
rewritten as

ẋi(t) = Ai(x(t) + ∆x(i)(t)) + Bi u(t)

Defining di(t) , Ai ∆x(i)(t), we can write

ẋi(t) = Ai x(t) + di + Bi u(t) (27)

From Eq.(23) and the definition of di it results that

|di(t)| ≤ |Ai| · (∆Q + ε) (28)

Resuming vector notation, Eq.(27) can be written as:

ẋ(t) = Ax(t) + B u(t) + d(t) (29)

with
|d(t)| ≤ |A| · (∆Q + ε) (30)

Replacing x(t) in Eq.(24) by φ(t) and in Eq.(29) by φ̃(t) and subtracting the
two equations from each other, we obtain:

ė(t) = A e(t) + d(t) (31)

with e(0) = 0.
When A is Hurwitz and diagonalizable, Theorem 3 of [13] establishes the

validity of Eq.(26) from Eqs.(30) and (31). The same result can be derived for
the non–diagonalizable case from Theorem 3.3 of [16]. �

Corollary 1 If matrix A is Hurwitz, the BQSS numerical approximation gives
ultimately bounded results, i.e., it ensures practical stability

Corollary 2 The global error bound has a linear dependence on the quantiza-
tion

1The definitions and main theoretical properties of QSS methods hold for both, linear and
nonlinear cases. However, unconditional practical stability and error bound only apply for
linear time invariant systems [11, 3]. In BQSS the situation is the same. All the definitions
and properties hold for both, linear and nonlinear systems, except this one.

2A square matrix is called Hurwitz when all its eigenvalues have negative real part. A
system like Eq.(24) is stable iff matrix A is Hurwitz.

3The symbol “≤” denotes here a componentwise inequality between two vectors. Similarly,
“| · |” denotes the matrix or vector of componentwise computed absolute values of the matrix
or vector elements.
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5 Towards F-Stability.2

The second–order linear time–invariant system

ẋ1(t) = α x1(t) + ω x2(t)

ẋ2(t) = −ω x1(t) + α x2(t)
(32)

has conjugate complex eigenvalues λ1,2 = α± iω. It is asymptotically stable for
α < 0, marginally stable for α = 0, and unstable for α > 0.

Figure 4 shows the result of simulating this system with QSS1 and BQSS
methods, for the parameters ω = 1, α = 0 (a marginally stable case) and initial
states x1 = 4, x2 = 0.
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Figure 4: QSS and BQSS simulation of a marginally stable system

Both methods give qualitatively wrong results, as they are not F–stable.
QSS and BQSS methods integrate an approximate system of the form

ẋ1(t) = α (x1(t) + ∆x1(t)) + ω (x2(t) + ∆x2(t)) + ∆f1

ẋ2(t) = −ω (x1(t) + ∆x1(t)) + α (x2(t) + ∆x2(t)) + ∆f2

(33)

The perturbation terms ∆xj are bounded according to

|∆xj | ≤ ∆Qj + εj < 2∆Qj (34)

The quantities ∆fj are normally zero, except in BQSS, where they can adopt
a value that brings the derivative to zero. According to the definition, ∆f1 can
be nonzero only when

α q̂1(t) + ω q̂2(t) = 0 (35)

2F-stable numerical ODE solvers are defined as to have their border of stability coincide
with the imaginary axis of the complex λ · h plane [3]. F-Stability was also referred to as
precise A-stability [18]
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with
|q̂i − xi| ≤ ∆Qi + εi < 2∆Qi, (36)

In this case:
−∆f1 = α(x1 + ∆x1) + ω(x2 + ∆x2)

From the last equation and Eq.(35), we can write

∆f1 = α(q̂1 − x1 − ∆x1) + ω(q̂2 − x2 − ∆x2)

Then, using Eqs.(34) and (36), we obtain

|∆f1| < 4|α|∆Q1 + 4|ω|∆Q2 (37)

A similar analysis concludes that

|∆f2| < 4|ω|∆Q1 + 4|α|∆Q2 (38)

We shall analyze the stability of (33) using the Lyapunov candidate

V (x) ,
1

2
(x2

1 + x2
2). (39)

with the time derivative

V̇ (x) = α(x2
1 + x2

2) + x1(α∆x1 + ω∆x2 + ∆f1) + x2(α∆x2 − ω∆x1 + ∆f2)

Thus,

αV̇ (x) = α2(x2
1 + x2

2) + x1α(α∆x1 + ω∆x2 + ∆f1) + x2α(α∆x2 − ω∆x1 + ∆f2)

≥ α2‖x‖2 − 5|α| · ‖x‖(|α| + |ω|)(∆Q1 + ∆Q2).

Then, provided that α 6= 0 and

‖x‖ > 5
(
1 +

∣∣∣
w

α

∣∣∣
)

(∆Q1 + ∆Q2) (40)

it results that αV̇ (x) > 0.
When α < 0, V̇ (x) is negative on all level surfaces where Eq.(40) holds.

Then, both methods, QSS and BQSS, give practically stable results. This is,
the solutions approach a bounded region around the origin.

Similarly when α > 0, V̇ (x) is positive on the same level surfaces, and the
Euclidean norm of x grows monotonically, provided that the initial condition
satisfies (40).

Thus, both methods are numerically stable for eigenvalues in the open left-
half plane and unstable for eigenvalues in the open right-half plane.

Let us now analyze the case α = 0, i.e., when the eigenvalues are located on
the imaginary axis. In this case, it can be seen that ∆fi = 0 in BQSS whenever
‖x‖ > 2∆Q1 + 2∆Q2. The reason is that the derivative of x1 only depends
on the sign of q2 and the derivative of x2 only depends on the sign of q1. In
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this way, we can always find q1 and q2 in the direction of the corresponding
derivatives.

Then, for ‖x‖ large enough, it results that

V̇ (x) = x1ω∆x2 − x2ω∆x1 (41)

Using (33) to substitute the terms x1ω and x2ω we obtain

V̇ (x) = (−ẋ2 − ω∆x1)∆x2 − (ẋ1 + ω∆x1)∆x1

= −ẋ1∆x1 − ẋ2∆x2

In BQSS, the definition ensures that ẋi∆xi ≥ 0. Moreover, the situation
ẋi∆xi = 0 is only possible when ẋi = 0. Thus, the simulation with BQSS
of marginally stable systems will produce practically stable results as V (and
hence ‖x‖) decreases with the time.

For QSS, we need to evaluate V between two instants of time

V (tb) − V (ta) =

∫ tb

ta

V̇ (x)dt =

∫ tb

ta

(−ẋ1∆x1 − ẋ2∆x2)dt , −∆V1 − ∆V2

Let us call t1, t2, · · · , tm the instants of time in the interval (ta, tb) where x1

reaches quantization levels. The first term ∆V1 can be expressed as

∆V1 =

∫ t1

ta

ẋ1∆x1dt +

m−1∑

k=1

∫ tk+1

tk

ẋ1∆x1dt +

∫ tb

tm

ẋ1∆x1dt

Since ∆x1 = q1 − x1 and q1(t) remains constant between tk and tk+1 we can
calculate

∫ tk+1

tk

ẋ1(q1(tk) − x1(t))dt =

∫ x1(tk+1)

x1(tk)

(q1(tk) − x1)dx1

If tk and tk+1 are instants of time at which x1 crosses the same quantization
value, the integral is 0. Otherwise, x1(tk+1) − x1(tk) = ±∆Q1 and

∫ tk+1

tk

ẋ1∆x1(t)dt = q1(tk)(x1(tk+1) − x1(tk)) −
1

2
(x1(tk+1)

2 − x1(tk)2)

= (x1(tk+1) − x1(tk)) · (q1(tk) −
x1(tk+1) + x1(tk)

2
)

In QSS, we have q1(tk) = x1(tk), and the integral evaluates to −∆Q2
1/2.

Hence QSS subtracts this constant value from ∆V1 between successive steps,
except when x1 changes its direction. A similar analysis concludes that ∆V2

decreases by −∆Q2
2/2 between successive steps in x2. In conclusion, V grows

over time, and we obtain an unstable result.
In order to achieve F–stability, we require that the integral in the last equa-

tion becomes zero. This can be achieved by modifying the QSS method such
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that qi(tk) = 0.5(xi(tk+1) + xi(tk)), i.e., by taking the mean value between the
QSS and BQSS values for q.

This very simple idea defines a new method that shall be called Centered QSS
or CQSS method. Figure 5 shows the simulation with CQSS of the marginally
stable system simulated in Fig.4.
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Figure 5: CQSS simulation of a marginally stable system

6 Examples.

The new BQSS and CQSS methods were programmed in PowerDEVS, a DEVS
simulation engine that already implemented the QSS family of numerical in-
tegration methods [1]. In this section we report the simulation results of four
examples of increasing complexity.

6.1 Linear second order stiff system.

Consider again the introductory example of Eq.(3), with initial conditions
x1(0) = 0, x2(0) = 20. This time, we wish to solve the system until
t = tf = 1000.

We first repeated the introductory experiment using BQSS with a quantum
∆Q1 = ∆Q2 = 1. Then, we simulated the system twice more while reducing
the quantum first by a factor of 10, and finally by a factor of 100.

The first simulation took 21 and 22 steps in x1 and x2, respectively. Using
∆Qi = 0.1, the number of steps was 204 in each variable. For ∆Qi = 0.01, we
observed 2022 and 2038 steps in x1 and x2.

In all three cases, the simulation arrived at a stable situation where the
algorithm does not perform any further step before t = 500.
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It can be seen that the number of steps in each variable is given by the
division of the corresponding signal amplitude by the quantum.

Figure 6 shows the results with ∆Qi = 1 (solid lines) and ∆Qi = 0.1 (dotted
lines). We did not include the one corresponding to ∆Qi = 0.01 because it
cannot be distinguished from the latter with the naked eye.
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Figure 6: BQSS simulation of Eq.(3)

The theoretical error bounds, according to Theorem 3, for ∆Qi = 1 are

|e1| ≤ 3.004; |e2| ≤ 5.001 (42)

while for ∆Qi = 0.1, they are 10 times smaller, and for ∆Qi = 0.01, they are
100 times smaller.

Integration Max,Mean Number Function fi

Method Error of Steps evaluations
Power DEVS BQSS (∆Q1,2 = 1) 1.06,0.34 43 65
PowerDEVS BQSS (∆Q1,2 = 0.1) 0.199,0.034 408 612
PowerDEVS BQSS ∆Q1,2 = 0.01) 0.0191,0.0033 4060 6098

Table 1: Results for the linear second order system

Table 6.1 summarizes the results. As in can be seen from comparing the
first column, the analytical error bound turned out to be conservative in this
example.

As the BQSS method does not introduce oscillations the number of changes
performed in each variable can be obtained as the division between the signal
amplitude and the quantum. This fact is corroborated in this example.
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When the trajectories are not monotonic, the number of steps performed
can be obtained adding the number of steps at each monotonic segment. This
is equivalent to divide the signal activity [9] by the quantum.

6.2 Nonlinear third order stiff system.

The following system is a stiff standard test problem for ODE solvers [5]:

ẋ1 = −0.013x1 − 1000x1x3

ẋ2 = −2500x2x3

ẋ3 = −0.013x1 − 1000x1x3 − 2500x2x3

(43)

We consider initial conditions x1(0) = 1 x2(0) = 1 x3(0) = 0.
In order to solve this system with BQSS, we first selected a quantization of

∆Q1 = 0.01, ∆Q2 = 0.01, and ∆Q3 = 5 × 10−8, together with a final time of
tf = 500.

Figure 7 shows the results. The simulation took 517 steps (100 in x1, 102 in
x2, and 315 in x3), arriving at a stable situation at time t = 419.66. PowerDEVS
finished the calculations after 24 ms on a 2 GHz PC running Linux.
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Figure 7: BQSS simulation of the system of Eq.(43)

These results obtained with BQSS have almost the same absolute error than
those obtained with Matlab R© ode15s and ode23s methods using a relative tol-
erance of 10−3. Yet, BQSS requires less time to finish the calculations.

By reducing the quantum 10 times, the number of function evaluations grows
about 10 times. However, the integration time increases less than three times.
This suggest that in the first case, PowerDEVS spends most of the time with
the initialization procedure.
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Integration Mean Number Function fi CPU
Method Error of Steps evaluations Time [sec]
PowerDEVS 0.014 517 1349 0.024
BQSS (∆Q1,2 = 0.01 ∆Q3 = 5 · 10−8 )
PowerDEVS 7.2 · 10−4 4953 12860 0.057
BQSS (∆Q1,2 = 0.001 ∆Q3 = 5 · 10−9 )
PowerDEVS 0.011 522 1363 0.026
CQSS ∆Q1,2 = 0.01 ∆Q3 = 5 · 10−8 )
Matlab 7.1 · 10−5 69 > 621 0.167
ODE15s (To=10−3)
Matlab 8.2 · 10−5 59 > 531 0.088
ODE23s (To=10−3)

Table 2: Results for the third order system

We then repeated the experiment with the F–stable CQSS method. The
results obtained were similar (522 steps), but this time around, a stable situation
was not reached. The simulation ended in slow oscillations around the final
values of the three state variables.

Had we continued the simulation to a longer final time, CQSS would have
produced more steps while BQSS performance remains identical. BQSS evi-
dently performs better than CQSS in stiff systems, while CQSS performs better
in marginally stable systems.

6.3 80th order marginally stable stiff nonlinear system.

The following system of equations represents a lumped model of a lossless trans-
mission line where L = C = 1, with a nonlinear load at the end:

φ̇1(t) = u0(t) − u1(t)

u̇1(t) = φ1(t) − φ2(t)

...

φ̇j(t) = uj−1(t) − uj(t)

u̇j(t) = φj(t) − φj+1(t)

...

φ̇n(t) = un−1(t) − un(t)

u̇n(t) = φn(t) − g(un(t))

(44)

We consider an input pulse entering the line:

u0(t) =

{
10 if 0 ≤ t ≤ 10

0 otherwise
(45)
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and a nonlinear load:
g(un(t)) = (10000 · un)3 (46)

We also set zero initial conditions ui = φi = 0, i = 1, . . . , n.
We consider 40 LC sections (i.e., n = 40), which results in an 80th order

system. Linearization around the origin (ui = φi = 0) shows that the system
is marginally stable (the linearized model does not have any damping term).
However, a more careful analysis concludes that the system is also stiff (the
nonlinear load adds a fast mode when un grows).

We decided to solve the system of Eqs.(44)–(46) using the F–stable CQSS
method. To this end, we started with quanta of ∆Qi = 0.1 for all state variables
except for un, where we applied ∆Q = 1 × 10−4.

The quantum in QSS methods plays the role of the absolute tolerance. We
reduced it at the last state because we wanted to observe the evolution of that
variable with a bigger resolution since its value will be very close to zero.

To obtain the first 500 seconds of simulated time, CQSS performed roughly
6500 transitions in each of the state variables. The results of the first 100 seconds
of the simulation are shown in Fig.8.
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Figure 8: CQSS simulation of the system of Eqs.(44)–(46)

Figure 9 shows the voltage at the 35th section of the transmission line (i.e.,
near the end with the load).

The results obtained with CQSS are similar to those obtained with the
ode15s method of Matlab R©, selecting a small error tolerance.

Regarding computational costs, CQSS (with ∆Qi = 0.1) completed the 500
seconds of simulated time in 8.66 seconds, performing around 6500 steps for
each state variable. Every step changes the value of two components of the
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Figure 9: CQSS simulation of the system of Eqs.(44)–(46)

Integration Mean Number Function fi CPU
Method error of Steps evaluations Time [sec]
PowerDEVS 0.133 497526 995052 3.94
CQSS (∆Qi = 0.1)
PowerDEVS 0.290 263506 527012 2.15
CQSS (∆Qi = 0.2)
PowerDEVS 0.833 144171 288342 1.23
CQSS (∆Qi = 0.5)
Matlab 0.706 5551 >444080 8.80
ODE23t (To=10−3)
Matlab 1.1498 5192 >415360 9.52
ODE15s (To=10−3)

Table 3: Errors and work amount comparation for the transmission line

right hand side function of Eq.(44). Consequently, every component of that
function is evaluated about 13000 times. In other words, the entire simulation
involves about 13000 full function evaluations.

We then repeated the experiment with quanta of ∆Qi = 0.2. This reduced
the number of calculations by roughly a factor of two (the simulation took 4.55
seconds), and the difference with the previous results can be hardly appreciated
with the naked eye.

Using quanta of ∆Qi = 0.5, we observed an error of the order of 1.0 in the
voltages, but the qualitative behavior is the same as before. In this case, the
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Figure 10: Simulation error in u35(t) result comparison

simulation took about 2.33 seconds.
We also simulated the system using different solvers offered by Matlab R©.

The best results were obtained with ode15s. For a relative tolerance of 1×10−3

and an absolute tolerance of 1 × 10−7, the simulation took 9683 steps and was
completed in 8.37 seconds.

The results obtained with ode15s are clearly more accurate than those ob-
tained by CQSS. After all, ode15s is a variable-order algorithm that can increase
its order of approximation accuracy up to fifth order, whereas CQSS is a first-
order accurate method only.

Higher-order BQSS algorithms are currently under development. They are
based upon the idea of back-interpolation [3], i.e., they integrate a higher-order
non-stiff QSS algorithm backward through time using a leap-frogging approach.

Higher-order CQSS methods are also under development. They are based
upon the theories of geometric ODE solvers introduced by Hairer et al. [8].

6.4 Buck Converter

The buck converter is a high efficiency step-down DC/DC switching converter.
They are an integral part of many electronical circuits. The reason which are
called step-down converters is because its output voltage may never be greater
than the input. Given a continuous voltage unregulated, they produce an an-
other one of lesser magnitude and regulated. Figure 11 shows the topology of
this converter where the presence of a conmutation component Sw, a diode D
(discontinuous component), an inductance L, a capacitor C and a resistance R
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can be seen.

Sw L

Figure 11: Buck converter scheme

Switching power converters are circuits discontinuous and nonlinear.
Assuming that the components are ideal, different models are obtained de-

pending on the state of the switching components. Consider for example the
case of changes in the state of the diode D while keeping open the state of the
switch Sw. The corresponding models for both conditions in the state of the
diode have different topologies. The model order corresponding to the situa-
tion with the diode state-on is different to the corresponding one with the diode
state-off. As can be seen through this simple example, considering the switching
components as real, result in models whith different structures.

In a simulation environment object-oriented (such as Dymola and other tools
based on Modelica), such changes in structure presents a major problem. For
this reason, this type of software add realism to its components thus achieving
that there is no structural changes. For the example shown, if the switching
components are modeled as a very low resistance when the state component is
on and, a very high resistance if the state component is off, the following DAE
(Differencial Algebraic Equation) model can be get:

V̇C = IL

C
− VC

RC

İL = VD−VC

L

VD = RD

(
VCC−VD

RLL
− IL

)

vout = VC

(47)

where

RLL =

{
RLL−on if Sw–ON
RLL−off if Sw–OFF

(48)

RD =

{
RD−off if VD > 0(ID · RD > 0)
RD−on if VD ≤ 0(ID · RD ≤ 0)

(49)

This new system, but no changes in structure (only change parameters) is
very stiff due to the presence of resistance very large or very small depending
on the conmutation components states.

Figure 12 shows the simulation results of model (47) from the initial condi-
tions VC(0) = 0 and IC(0) = 0, using the parameters of Table 6.4, and changing
the state of the switch Sw with a frequency of 10kHz. The results shown in
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Parameter Value
R 10Ω
C 1 · 10−4 F
L 1 · 10−4 Hr
Ron Diode 1 · 10−6

Roff Diode 1 · 106

Ron Sw 1 · 10−6

Roff Sw 1 · 106

Switch Commutation 10 kHz
Frequency
Vcc 24V

Table 4: Parameters of the Buck Circuit

this figure where simulated using de method BQSS (dQ = ∆QI = ∆QV = 0.1)
on the PowerDEVS environment and in Simulink/Matlab(ODE23/Trapezoidal
- Relative Tolerance 1 · 10−3) using the PowerSIM library.
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Figure 12: Simulation result comparison

In Table 6.4 the mean error together with the amount of work and CPU
time (in seconds) are presented for several methods and tolerances and Fig.13
shows a comparation betwen error using diferent methods (using as a reference
signal a simulation with low tolerance error)
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Integration Mean Number Function fi CPU
Method Error of Steps evaluations Time [sec]
PowerDEVS 0.067 10431 20862 0.09
BQSS (∆Qi = ∆QV = 0.1)
PowerDEVS 0.139 5386 10772 0.06
BQSS (∆Qi = ∆QV = 0.2)
PowerDEVS 2.467 2935 5870 0.03
BQSS (∆Qi = ∆QV = 0.4)
PowerDEVS 0.044 10027 20054 0.09
CQSS (∆Qi = ∆QV = 0.1)
PowerDEVS 0.198 4857 9714 0.04
CQSS (∆Qi = ∆QV = 0.2)
PowerDEVS 2.078 1968 3936 0.02
CQSS (∆Qi = ∆QV = 0.4)
Matlab 0.199 > 2003 > 24036 0.65
ODE23t (To=10−3)
Matlab 0.213 > 2327 > 27924 0.71
ODE23t (To=10−4)
Matlab 0.033 > 3561 > 42732 0.81
ODE23t (To=10−5)
LTSpice 0.209 11714 > 67000 0.53
ModTrap (Tol=10−3)
Dymola 0.019 734 8766 1.041
esdirk23a (To=10−2)

Table 5: Errors and work amount comparation for problem 47

7 Conclusions.

In this paper, new classes of stiff and geometric numerical ODE solvers were
introduced that use state quantization instead of time-slicing as their discretiza-
tion method.

Although state quantization leads invariably to non-linear solvers, it has been
possible to develop theorems, using analysis of perturbations [10, 16], about ac-
curacy, consistency, and numerical stability of these methods that are analogous
to those developed for classical ODE solvers.

It was shown that QSS-based solvers share a number of striking properties
that make it well worthwhile studying them as potentially interesting alterna-
tives to classical ODE solvers.

In particular, it was shown that QSS-based “implicit” solvers can be imple-
mented by explicit algorithms that don’t require any iteration.

The reason is that there are only two possible next state values that need to
be investigated (one level up and one level down), i.e., in the worst of all cases,
the computation of the next step needs to be repeated once, but this happens
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Figure 13: Absolute error

only, when the gradient changes its sign, which occurs rarely. At all other times,
the additional cost of using a BQSS or CQSS algorithm over using the non-stiff
QSS algorithm of first order is almost negligible (less than 10%). In contrast,
classical implicit ODE solvers require on average three Newton iteration steps
for each integration step.

BQSS was designed to solve general stiff systems. However, taking into
account that QSS methods are intrinsically efficient to simulate discontinuous
systems, we found that BQSS shows important advantages in discontinuous
stiff ODEs, as those present in power electronic circuits. In these cases, for
low accuracy settings, BQSS overperforms to all the stiff solvers available in
Dymola, Matlab and PSpice.

The paper also proposed an interesting new test case simulating a linear
transmission line without damping together with a non-linear load at one end.
Compartmentalization of the transmission line led to an 80th order system that
is simultaneously marginally stable (due to the transmission line) and stiff (due
to the non-linear load), a type of model that most classical numerical ODE
solvers have difficulties dealing with.

The model was coded in Simulink R©, and simulated in Matlab R©. All available
numerical ODE solvers were tried. All of the explicit solvers died because of the
stiffness of the problem, and most of the stiff system solvers produced highly
inaccurate results due to the marginal stability of the problem. They exhibited
far too much numerical dissipation, and the oscillations died out rapidly. Only
one of the ODE solvers, ode15s, was capable of producing a simulation result
that comes acceptably close to reality.

The model was then recoded in PowerDEVS (the user interface of Pow-
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erDEVS is almost identical to that of Simulink R©), and simulated trying all of
the (QSS-based) numerical ODE solvers offered by PowerDEVS [1]. Whereas
the three non-stiff algorithms (QSS, QSS2, and QSS3) failed to simulate this
model (not surprisingly), both BQSS and CQSS completed the simulation quite
rapidly. BQSS also exhibited too much numerical dissipation (the oscillations
died out rapidly); CQSS solved the problem well.

In spite of the fact that CQSS is a first-order algorithm only, the code solved
the test problem as rapidly as ode15s and with results that are comparable in
accuracy for relaxed (relatively large) tolerance values. When more accurate
results are desired, ode15s beats CQSS by leaps and bounds due to its higher
order of approximation accuracy. Since CQSS is a first-order accurate method
only, the number of state changes grows linearly in the quantization, ∆Q. In
CQSS2, once available, the computational load will grow with the square root
of the quantization, and in CQSS3, it will grow with the cubic root of the
quantization.

Due to the non-linear and marginally stable nature of the problem, the BQSS
algorithm was unable to produce simulation results that remained within the
global error bound, but that error bound has been proven to hold for linear
time-invariant analytically stable systems only.
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