
Time Discretization versus State Quantization in

the Simulation of a 1D

Advection-Diffusion-Reaction Equation

Federico Bergero∗, Joaqúın Fernández, Ernesto Kofman, Margarita Portapila

Laboratorio de Sistemas Dinámicos. FCEIA - UNR. CIFASIS–CONICET.
27 de febrero 210 bis - (S2000EZP) Rosario, Argentina

Phone: +54 (341) 4237248 Ext. 336
bergero@cifasis-conicet.gov.ar

∗ Corresponding author

Abstract

In this article, we study the effects of replacing the time discretiza-
tion by the quantization of the state variables on a one dimensional
Advection-Diffusion-Reaction (ADR) problem. For that purpose the
1D ADR equation is first discretized in space using a regular grid, to
obtain a set of time dependent ordinary differential equations (ODEs).
Then we compare the simulation performance using classic discrete
time algorithms and using Quantized State Systems (QSS) methods.

The performance analysis is done for different sets of diffusion and
reaction parameters and also changing the space discretization refine-
ment.

This analysis shows that, in advection-reaction dominated situa-
tions, the second order linearly implicit QSS method outperforms all
the conventional algorithms (DOPRI, Radau and DASSL) in more than
one order of magnitude.

Keywords: Advection-Diffusion-Reaction Equation, Quantization Based
Integration Methods, Numerical Simulation.

1 Introduction

Advection-diffusion equations provide the basis for describing heat and mass
transfer phenomena as well as processes of continuum mechanics, where the
physical quantity of interest u(x, t) could be temperature in heat conduc-
tion or concentration of some chemical substance. In several applications
these phenomena occur in presence of chemical reactions, leading to the
advection-diffusion-reaction (ADR) equation, a problem frequently found in
many areas of environmental sciences as well as in mechanical engineering.

1

The ADR problem includes a wide range of configurations encompassing
variable velocity fields, variable reaction coefficients, steady and transient
problems, in 1D, 2D and 3D1,2,3,4.

The ADR equation poses several challenges to numerical integration al-
gorithms. First, as in most Partial Differential Equations (PDEs), the space
discretization usually leads to large systems of equations which require an
efficient treatment. Also, when the diffusivity is small in comparison with
the advection field and the reaction coefficient (i.e., when the Péclet and
Damköhler numbers are high) the problem often develops sharp fronts that
are nearly shocks where numerical solutions are difficult to obtain . In ad-
dition, chemical reactions take place on very small time scales compared to
the long term effects considered for the advection-diffusion transport. For
stability reasons, the presence of fast and slow dynamics (called stiffness

in the numerical ODE literature) enforces the usage of implicit numerical
integration algorithms. These algorithms have a high computational cost,
particularly when the system dimension is large.

In all cases, obtaining numerical solutions of PDEs such as the ADR
problem involves discretization in space and time. In some techniques like
the Method of Lines (MOL)5,6, this discretization is only performed in space,
transforming the PDE into a large set of ODEs. The resulting time depen-
dent set of ODEs can then be solved with numerical integration algorithms
such as Euler’s or Runge-Kutta’s methods7,6, or through algebraic differen-
tial equation solvers such as DASSL8,9 among others.

An alternative way to solve the resulting set of ODEs is given by the
Quantized State Systems (QSS) methods10,6, that replace the time dis-
cretization by state quantization. These algorithms are characterized by
performing only local steps when and where changes occur. In consequence,
QSS methods are efficient when dealing with large sparse systems where only
some parts of the system experience changes at a given time, a very common
situation in ADR problems. Taking also into account that Linearly Implicit
QSS (LIQSS) methods11 are able to tackle certain stiff systems, these algo-
rithms appear as promising candidates for integrating the ODEs resulting
from the space discretization of ADR equations.

In this article, we provide a first analysis regarding the usage of QSS
methods in ADR problems by comparing the performance of LIQSS meth-
ods against classic time discretization algorithms (DASSL, DOPRI and
RADAU) in the simulation of a one dimensional ADR problem previously
discretized in space by the MOL. The comparison is performed under dif-
ferent parameter and grid refinement settings, showing that in advection–
reaction dominated ADR problems, LIQSS methods are more than 10 times
faster than discrete time algorithms. We also briefly analyze the extension
of these results to a 2D ADR equation.

The article is organized as follows. Section 2 introduces the main con-
cepts used in the rest of the paper and describes some related work in the

2

field. Section 3 discusses the implementation of the model in a QSS solver,
studying also the error bounds of the approximation from a theoretical per-
spective. Section 4 shows numerical results of the performance of LIQSS
methods in Advection-Diffusion-Reaction models, comparing these results
against classical integration methods . Finally, Section 5 presents the arti-
cle conclusions and discusses how the state quantization can be extended to
more general ADR problems in 2D and 3D .

2 Background

2.1 Motivating Example

Consider the following ODEs

u̇1(t) = 3− u1(t)

u̇2(t) = u1(t)− u2(t)

u̇3(t) = u2(t)− u3(t)

(1)

with initial conditions: u1(0) = 3, u2(0) = u3(0) = 0. Equations (1), that
can be analytically solved, may represent a rough MOL approximation of
the pure advection equation

∂u(x, t)

∂t
= −a

∂u(x, t)

∂x

for given parameters and boundary conditions.
Instead of solving Eqs.(1) using a classic time discretization approach,

we shall modify it substituting ui(t) by its integer part qi(t) , floor[ui(t)]
at the right hand side of each equation:

u̇1(t) = 3− floor[u1(t)] = 3− q1(t)

u̇2(t) = floor[u1(t)]− floor[u2(t)] = q1(t)− q2(t)

u̇3(t) = floor[u2(t)]− floor[u3(t)] = q2(t)− q3(t)

(2)

Let us solve this last set of equations:

• At time t0 = 0 we have q1(t0) = 3, q2(t0) = q3(t0) = 0.

– Initially, according to Eqs.(2), we have u̇1(t0) = u̇3(t0) = 0 and
u̇2(t0) = 3. These derivatives will remain unchanged until some
ui(t) changes its integer part.

– Since u̇1(t0) = u̇3(t0) = 0, neither q1 nor q3 will change now.

– The next change in q2(t) occurs when u2(t) = 1. Since u2(t0) = 0
and its derivative is u̇2(t0) = 3, it will reach the value 1 at time
t1 = 1/3.

3

• At time t1 = 1/3 it results q2(t1) = u2(t1) = 1.

– According to Eqs.(2) it results u̇2(t1) = 2 and u̇3(t1) = 1.

– The next change in q2(t) occurs at time t2 = t1 + 1/2 while the
following change in q3 would occur at time t1 + 1/1.

• At time t2 = t1 + 1/2 = 5/6 it results q2(t2) = u2(t2) = 2, while
u3(t2) = u3(t1) + (t2 − t1)u̇3(t1) = 1/2.

– According to Eqs.(2) the derivatives are now u̇2(t2) = 1 and
u̇3(t2) = 2.

– Then, the upcoming change in q2(t) would occur at time t2 + 1
while the next change in q3 should be recomputed to occur at
time t3 = t2 + 0.5/2.

• At time t3 = t2 + 1/4 = 13/12 it results q3(t3) = u3(t3) = 1.

– According to Eqs.(2) we have now u̇3(t3) = 1.

– Then, the subsequent change in q3(t) would occur at time t3 +1.

• At time t4 = t2 + 1 = 11/6 we have q2(t4) = u2(t4) = 3 and u3(t4) =
u3(t3) + (t4 − t3)u̇3(t3) = 7/4.

– According to Eqs.(2) the derivatives are now u̇2(t2) = 0 and
u̇3(t2) = 2.

– Then, q2(t) will not change again and the next change in q3(t)
can be recomputed to occur at time t5 = t4 + 0.25/2.

• At time t5 = t4 + 1/8 = 47/24 we have q3(t5) = u3(t5) = 2.

– According to Eqs.(2) the derivative is now u̇3(t2) = 1.

– Then, the next change in q3 occurs at time t6 = t5 + 1.

• At time t6 = t5 + 1 = 71/24 we have q3(t6) = u3(t6).

– All the derivatives are equal to zero and no further changes occur
after t6.

The trajectories of this solution are depicted in Figure 1. Variables u1(t)
and q1(t), that remain unchanged for all t, are not drawn .

This example shows that replacing a variable ui(t) by its integer part
floor[ui(t)] at the right hand side of an ODE seems to provide a way to
integrate the equation. Notice that under this principle, we are replacing
the time discretization by the quantization of the system states. This is
indeed the basic idea behind the family of Quantized State System methods.

4

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.5 1 1.5 2 2.5 3 3.5 4

S
ta

te
s

Time (s)

q3
q2
u3
u2

Figure 1: Solution of Equation (2)

The following remarks must be taken into account in connection with
the procedure followed above:

• After the startup, the simulation took a total of 6 steps.

• Each step was local,related to a change in the integer part of a state:
In t1, t2 and t4 the change occurred in q2(t) while in t3, t5 and t6 the
change occurred in q3(t). As q1(t) was already at equilibrium, it never
changed.

• Changes in q2(t) prompted the evaluation of u̇2 and u̇3. Changes in
q3(t) provoked that only u̇3 was evaluated. Thus, after the startup,
u̇1 was never computed, u̇2 was evaluated three times and u̇3 was
evaluated six times.

• The previous analysis shows that computations are only performed
where and when changes occur, which leads to a very efficient sparsity
exploitation.

• The results plotted in Figure 1 show very coarse steps, with jumps of
1 unit between successive values of each state. More accurate results
can be obtained replacing the quantization function floor[ui(t)] by ∆Q·
floor[ui(t)/∆Q]. The parameter ∆Q is called quantum.

• If the first line of Eqs.(1) is replaced by u̇1(t) = 2.5−u1(t), then the first
line of Eqs.(2) becomes u̇1(t) = 2.5− q1(t). In this case, the procedure
fails. Initially we have q1(0) = 3 and then u̇1(0) = −0.5. Thus imme-
diately we have u1(0

+) < 3 =⇒ q1(0
+) = 2 and then u̇1(0

+) = +0.5.

5

Therefore , we are back to the initial situation u1(0
++) = 3. This

cyclic behavior provokes an infinitely fast oscillation and the simula-
tion cannot advance beyond the initial time .

This drawback is solved with the usage of hysteresis in the quantization
function, which leads to the definition of the Quantized State System

algorithm.

2.2 Quantized State System Methods

Quantized State System (QSS) methods are inspired in the ideas explained
above, replacing the time discretization of classic numerical integration al-
gorithms by the quantization of the state variables.

Given the ODE
ẋ(t) = f(x(t), t) (3)

the first order Quantized State System method (QSS1)10 approximates it
by

ẋ(t) = f(q(t), t) (4)

Here, q is the quantized state vector. Its entries are component-wise related
with those of the state vector x by the following hysteretic quantization

function:

qj(t) =

{

xj(t) if |xj(t)− qj(t
−)| ≥ ∆Qj

qj(t
−) otherwise

(5)

where ∆Qj is called quantum and qj(t
−) denotes the left-sided limit of qj

at time t.
Equation (5) says that the quantized state qj(t) only changes when its

difference with the state xj(t) becomes equal to the quantum ∆Qj. When
this condition is reached, the quantized state starts a new segment with the
value of the state, i.e., qj(t) = xj(t).

Since the quantized state trajectories qj(t) are piecewise constant then,
the state derivatives ẋj(t) also follow piecewise constant trajectories and,
consequently, the states xj(t) follow piecewise linear trajectories. Figure 2
shows typical QSS1 trajectories.

Due to the particular form of the trajectories, the analytical solution of
Eq.(4) is straightforward and can be obtained following the ideas used to
solve Eqs.(2). These ideas can be generalized by the following procedure:

For j = 1, · · · , n, let tj denote the next time at which |qj − xj | = ∆Qj.
Then,

1. Advance the simulation time t to the minimum tj .

2. Recompute xj(t) = xj(t
−

j) + ẋj(t
−

j) · (t − t−j), where t−j was the last

update time of xj and ẋj(t
−

j) was computed at time t−j from Eq.(4).

6

Figure 2: State and Quantized Trajectories in QSS1 Method

3. Take qj = xj and recompute tj (the next time at which |qj − xj | =
∆Qj).

4. For all i such that ẋi explicitly depends on qj, update xi(t) = xi(t
−

i)+
ẋi(t

−

i) · (t − t−i), recompute ẋi(t) and recalculate ti (the next time at
which |qi − xi| = ∆Qi).

5. Go back to step 1.

The QSS1 method has the following features:

• The difference between the state and quantized variables is never
greater than the quantum ∆Qj. This fact ensures stability and global
error bound properties10,6. In stable linear systems, the global simu-
lation error results linearly bounded by the quantum.

• The quantum ∆Qj of each state variable can be chosen to be pro-
portional to the state magnitude, leading to an intrinsic relative error
control12.

• Each step is local to a single state variable xj (the one which reaches
the quantum change), and it only provokes evaluations of the state
derivatives that explicitly depend on it. This fact implies that QSS1
performs intrinsic sparsity exploitation.

• If some state variables do not change significantly, they will not pro-
voke any step or evaluation at all. This feature reinforces the efficient
sparsity exploitation.

7

• The fact that the state variables follow piecewise linear trajectories
makes very easy to detect discontinuities. Moreover, after a disconti-
nuity is detected, its effects are not different to those of a normal step
(because changes in qj are discontinuous). Thus, QSS1 is very efficient
to simulate discontinuous systems13.

The main limitations of QSS1 are the following:

• It only performs a first order approximation, and a good accuracy
cannot be obtained without a significant increment in the number of
steps.

• It is not suitable to simulate stiff systems.

The first limitation was solved with the introduction of higher order QSS
methods like QSS214 and QSS315.

QSS2 has the same definition of Eq.(4) except that the quantization
function of Eq.(5) is replaced by a different one, such that the quantized state
variables qj(t) follow piecewise linear trajectories and the state variables
xj(t) follow piecewise parabolic trajectories as shown in Figure 3. That
way, the algorithm performs larger steps preserving the difference between
the state xj(t) and the quantized state qj(t) bounded by the quantum ∆Qj.

Figure 3: State and Quantized Trajectories in QSS2 Method

QSS2 has the same theoretical properties and practical advantages of
QSS1.

QSS3 is based on the same principles but with piecewise parabolic and
piecewise cubic trajectories.

Regarding stiff systems, a first order backward QSS method (BQSS) was
introduced in Migoni et al.16. This method, in spite of being backward, was

8

explicit due to the following property. In QSS the next state value is always
known as it should be either qj + ∆Qj or qj −∆Qj, according to the sign
of ẋj. The unknown, that can be explicitly computed, is the instant of time
at which the state reaches the next quantized value.

Unfortunately, BQSS cannot be extended to higher order approxima-
tions. However, a family of linearly implicit QSS methods (LIQSS) up to
third order was proposed in Migoni et al.11. Even when the formulation of
LIQSS methods is implicit, their implementations are explicit thanks to the
same property explained above for the case of BQSS algorithm.

LIQSS methods share the advantages of QSS methods and, additionally,
they are able to efficiently handle stiff systems, provided that the stiffness
is due to the presence of large entries in the main diagonal of the system
Jacobian matrix. Otherwise, when the stiffness obeys to other reasons (the
structure of semi–discretized diffusion problems6, for instance) LIQSS meth-
ods may provoke spurious oscillations and the efficiency is lost.

In consequence, for sparse, discontinuous systems or those exhibiting the
type of stiffness that is properly handled by LIQSS algorithms, the usage of
Quantized State solvers can offer a better performance than that of classic
discrete time methods. Otherwise, the use of appropriate classical methods
may be the best choice.

In the context of this work, the intrinsic sparsity exploitation and the
explicit treatment of stiffness will provide the main advantages of LIQSS
algorithms. Anyway, these advantages will disappear in presence of large
diffusion terms where the resulting stiffness cannot be efficiently handled by
these methods.

2.3 Implementation of QSS Methods

It was shown that the behavior of the QSS approximation of Eq.(4) can
be described in terms of the Discrete Event System Specification (DEVS)
formalism17. Based on this property, the whole family of QSS methods was
first implemented in PowerDEVS18, a DEVS–based simulation platform de-
signed for simulating hybrid systems. In addition, the explicit QSS methods
of orders 1 to 3 were also implemented in a DEVS library of Modelica19

and implementations of the first–order QSS methods can also be found in
CD++20 and VLE21.

DEVS–based implementations of QSS methods are simple but inefficient.
DEVS simulation engines waste a large amount of computational effort pass-
ing messages and scheduling events that are not strictly necessary for the
QSS algorithms. This fact motivated the development of stand–alone QSS
solvers.

A first approach to a stand–alone version of QSS1 to 3 was implemented
in the Java–based simulation tool Open Source Physics 22, but that imple-
mentation was not more efficient than that of PowerDEVS and it required

9

the user to provide the system structure information needed by QSS meth-
ods.

Recently, the complete family of QSS methods was implemented in a
stand–alone QSS solver coded in plain C language23. This solver improves
PowerDEVS simulation times in more than one order of magnitude, allowing
the simulation of models described in a subset of the Modelica language24

called µ-Modelica.
This is the tool we shall use in the rest of this article.

2.4 Related Work

The goal of this article is to study the efficiency of QSS methods in the
simulation of the ADR PDE semi–discretized using the MOL.

To the best of the authors knowledge, this problem was never studied.
However, there are several works that study the same PDE problem in the
context of classic numerical integration algorithms, and there are some works
that study the use of QSS methods in the simulation of other types of PDEs.

The combination of the MOL with classic numerical algorithms for the
ADR PDE has been analyzed in several articles.25,26,27,28,29,30.

In all these works, the goal was to overcome the problem imposed by
the stiffness associated to the reaction term, using variants of Runge-Kutta
algorithms.

Savcenco et al.31 study the use of multi-rate algorithms for stiff ODE
problems, including a case resulting from the semi–discretization of an advection–
reaction PDE. Multi-rate algorithms are somehow related to quantization
based integration methods in the sense that both use different time scales
for different state variables.

The use of QSS methods in PDEs has not been yet studied in depth.
Muzy et al.32 showed the results of using QSS methods for a one dimensional
diffusion problem. Hyperbolic PDEs representing lossless transmission lines
were also simulated in the context of QSS methods in Migoni et al.14,16,
including also a stiff load.

3 QSS approximation of the ADR Model

In this section, we first introduce the 1D ADR model used along the work
and its discretization with the Method of Lines. We then perform a theoret-
ical analysis to obtain an upper bound for the error introduced by the QSS
approximation of the resulting ODE. Finally, we describe the implementa-
tion of this ODE in the QSS solver.

10

3.1 The Advection-Diffusion-Reaction Equation

Let u(x, t) be the concentration of some species in the space coordinate x at
time t. Then, the 1D Advection and Diffusion33 process can be described
by the following PDE:

∂u(x, t)

∂t
+ a

∂u(x, t)

∂x
= d

∂2u(x, t)

∂x2
(6)

.
Taking into account that the species undergoes a chemical reaction, we

include a non-linear reaction term following Zeldovich’s equation34 as fol-
lows:

∂u(x, t)

∂t
+ a

∂u(x, t)

∂x
= d

∂2u(x, t)

∂x2
+ r(u(x, t)2 − u(x, t)3) (7)

This is the model we shall work with along the rest of the article. Here
a, d and r are parameters expressing the advection, diffusion and reaction
coefficients, respectively.

We shall consider that the space domain is limited to the interval 0 ≤
x ≤ 10 and that the boundary conditions are

u(x = 0, t) = 1;
∂u(x = 10, t)

∂x
= 0; (8)

For the simulations, we shall work with the following initial conditions:

u(x, t = 0) =

{

1 if x < 2

0 otherwise
(9)

3.2 MOL Discretization of the ADR Model

In order to discretize the problem with the MOL, we shall use a regular grid
of width

∆x =
10

N
(10)

where N is the number of grid points.
The advection term of Eq.(7) ∂u(x,t)

∂x
shall be replaced by a first order

upwind finite difference:

∂u

∂x
(x = xi, t) ≈

ui − ui−1

∆x
(11)

for i = 1, · · · , N , where

ui(t) ≈ u(xi, t) (12)

is the i–th state variable of the resulting ODE and

xi = i ·∆x (13)

11

is the i–th grid point.
Taking into account the boundary condition of Eq.(8) at x = 0, we also

have u0 = 1.
We shall discretize the diffusion term replacing the expression ∂2u

∂x2 by a
second order centered finite difference:

∂2u

∂x2
(x = xi, t) ≈

ui+1 − 2ui + ui−1

∆x2
(14)

for i = 1, · · · , N − 1.
For the last grid point, taking into account the symmetrical border con-

dition of Eq.(8) at x = 10, we can replace

∂2u

∂x2
(x = xN , t) ≈

uN−1 − 2uN + uN−1

∆x2
(15)

Replacing Eqs (11)–(15) into Eq. (7) we get the following set of ODEs:

u̇i = −a
(ui − ui−1)

∆x
+ d

(ui+1 − 2ui + ui−1)

∆x2
+ r(u2i − u3i) (16)

for i = 1, · · · , N − 1 and

˙uN = −a
(uN − uN−1)

∆x
+ d

(2uN−1 − 2uN)

∆x2
+ r(u2N − u3N) (17)

3.3 Model Structure

The Jacobian matrix of the system of Eq. (16) can be computed as

J =

J11 J12 0 0 · · · 0
J21 J11 J12 0 · · · 0
0 J21 J11 J12 · · · 0
...

...
...

...
. . .

...

(18)

where

J11 =
−a

∆x
+

−2d

∆x2
+ r(2u1 − 3u21); J12 =

d

∆x2
; J21 =

a

∆x
+

d

∆x2
(19)

Notice that J is tri-diagonal.
As it was shown by Migoni et al.35, LIQSS methods efficiently handle

stiffness due to large entries in the main diagonal. Thus, we expect that the
stiffness due to the reaction term –which only appears in J11– is efficiently
handled. However, the stiffness due to the diffusion term may cause prob-
lems. Moreover, it is known that the stiffness ratio of the resulting ODE
grows quadratically with the number of segments6, so those problems may
become more important as the grid is refined.

12

3.4 Global Error Bounds of the QSS Simulation of the ADR

model

The global error bound properties of QSS methods14,6 establish that the
simulation with these algorithms of stable linear time invariant (LTI) sys-
tems gives numerical solutions that differ from the analytical solution in a
quantity that is linearly bounded with the quantum.

In absence of reaction term, the system of Eqs.(16)–(17) is LTI. How-
ever, for the pure advection problem, the analysis cited before14,6 cannot be
applied because the system cannot be diagonalized.

Thus, we analyze here the pure advection case in order to establish a
theoretical upper bound for the error introduced by the QSS approximation
of Eqs.(16)–(17).

Defining u , [u1, u2, . . . , uN]T , the pure advection model can be written
as:

u̇(t) = A · u(t) +B · u0(t) (20)

with

A =
a

∆x
·

−1 0 0 . . . 0
1 −1 0 . . . 0
0 1 −1 . . . 0
...
0 1 −1

; B =
a

∆x
·

1
0
0
...
0

(21)

Any QSS or LIQSS method transforms Eq.(20) into

v̇(t) = A · q(t) +B · u0(t) (22)

where v(t) is the numerical solution and q(t) is the quantized version of the
state v(t).

Taking into account that differences between the components qi(t) and
vi(t) cannot be larger than the quantum ∆Q, we can write

qi(t) = vi(t) + ∆vi(t) (23)

with |∆vi(t)| < ∆Q. Then, we can rewrite the i–th component of Eq.(22)
as

v̇i(t) = −
a

∆x
(vi(t) + ∆vi) +

a

∆x
(vi−1(t) + ∆vi−1) (24)

while the i–th component of the original system of Eq.(20) is

u̇i(t) = −
a

∆x
ui(t) +

a

∆x
ui−1(t) (25)

Defining the error ei(t) , vi(t)−ui(t) and subtracting Eq.(25) from (24) we
obtain the error dynamics as

ėi(t) = −
a

∆x
(ei(t) + ∆vi) +

a

∆x
(ei−1(t) + ∆vi−1) (26)

13

Taking into account that we have not quantified the boundary condition
(i.e., u0 = v0 = q0), then the dynamics of the first component of the error is

ė1(t) = −
a

∆x
· (e1(t) + ∆v1(t)) (27)

Notice that if at certain time tk this error is positive and reaches the
quantum, i.e., e1(tk) = ∆Q, recalling that |∆v1(t)| ≤ ∆Q it results that
e1(tk) ≥ |∆v1(tk)| and therefore e1(tk) + ∆v1(tk) ≥ 0. Taking into account
the negative sign in Eq.(27) it results ė1(tk) ≤ 0.

Similarly, if at certain time tk this error is negative and reaches the
quantum, i.e., e1(t : k) = −∆Q, an analogous reasoning shows that ė1(tk) ≥
0.

In other words, whenever e1(t) reaches the value +∆Q, its derivative
becomes negative or zero and whenever e1(t) reaches the value −∆Q, its
derivative becomes positive or zero. Thus, if |e1(tk)| ≤ ∆Q then |e1(t)| ≤
∆Q for all t > tk.

Taking into account that e1(t0) = 0 it results that

|e1(t)| ≤ ∆Q (28)

for all t ≥ t0.
For the second component we have that

ė2 = −
a

∆x
· (e2 +∆v2 − e1 −∆v1) (29)

where it can be easily seen that |∆v2(t) − e1(t) −∆v1(t)| ≤ 3∆Q. Hence ,
proceeding as before, we found that |e2| < 3 ·∆Q.

Extending this analysis, we arrive to the error bound condition

|ei(t)| < (2 · i− 1) ·∆Q (30)

This is a global upper bound on the error introduced by the QSS algorithms
at the i–th space point of the solution, which stands for any initial condition
of the purely advective problem of Eqs.(16)–(17).

This result establishes that the error bound grows linearly with the quan-
tum ∆Q and with the space coordinate index i = xi/∆x. Although it is
a conservative result, its predictions will be corroborated in the following
section.

The addition of a small diffusion term does not change significantly the
results, leading to a more complex expression.

The presence of reaction terms leads to a more complex non-linear study
that is out of the scope of this work.

14

3.5 The ADR Model in the QSS Solver

The ODE model of Eqs.(16)–(17) can be described in the subset of Modelica
language (µ-Modelica) used by the Stand–Alone QSS Solver23 as follows.

model adv_dif_reac

constant Integer N=1000;

parameter Real a=1;

parameter Real d=1e-4;

parameter Real r=10;

parameter Real L=10;

parameter Real dx=L/N;

Real u[N];

initial algorithm

for i in 1:0.2*N loop

u[i]:=1;

end for;

equation

der(u[1])=-a*(u[1]-1)/dx+d*(u[2]-2*u[1]+1)/(dx^2)+r*(u[1]^2)*(1-u[1]);

der(u[N])=-a*(u[N]-u[N-1])/dx+d*(u[N-1]-2*u[N]+u[N-1])/(dx^2)+r*(u[N]^2)*(1-u[N]);

for i in 2:N-1 loop

der(u[i])=-a*(u[i]-u[i-1])/dx+ d*(u[i+1]-2*u[i]+u[i-1])/(dx^2)+ r*(u[i]^2)*(1-u[i]);

end for;

end adv_dif_reac;

Notice that in this case, we used parameters a = 1, d = 10−4, r = 10
and performed the discretization over N = 1000 grid points. The solution
for this parameter set, obtained with LIQSS2, is shown in Fig.4. There,
u[400] is the discretized version of u(x = 4), u[600] is the discretized version
of u(x = 6), and so on .

4 Results

In this section we compare the performance of different numerical integration
methods on the ADR problem semi-discretized with the MOL. For that
purpose, the resulting model of Eq.(16) is simulated for different parameter
settings using LIQSS2, DASSL, Radau5 and DOPRI.

• DASSL results were computed using the Fortran code DASPK36.

• DOPRI and Radau5 results were computed using the C++ implemen-
tation available at Hairer’s website http://www.unige.ch/~hairer/software.html,
written by Blake Ashby.

• LIQSS2 results were obtained with the stand–alone QSS Solver.

• All the simulations were performed on the same Intel i7-3770@3.40GHz
computer under a Linux Operating System (Ubuntu).

• The errors in all cases are computed against reference trajectories
obtained with a tight error tolerance (1 · 10−10) using DOPRI. We

15

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 1 2 3 4 5 6 7 8 9 10

S
ta

te
 V

ar
ia

bl
es

Time

u[400]
u[600]
u[800]

u[1000]

Figure 4: Simulation results for a = 1, d = 1 · 10−4, r = 10, N = 1000 using
LIQSS2 method.

consider the error on the state of the last grid point uN (t) since, as
shown in Section 3.4, that point accumulates the error of all the pre-
vious ones. The average error is computed on 5000 equidistant time
points by

∑5000
i=1 |uNref

(ti)− uNsim
(ti)|/5000 while the maximum error

is maxi({|uNref
(ti) − uNsim

(ti)|}) where uNref
(t) is the ground truth

reference and uNsim
(t) is the simulated solution.

• We did not compute consistency errors due to the MOL space dis-
cretization. We are only interested in the ODE integration error.

• In all scenarios (except for the error analysis case) we gave the numer-
ical solver a relative tolerance of 1 · 10−3 and an absolute tolerance of
1 · 10−4.

• The model was simulated up to t = 10 second. Before that time, the
model always reaches an equilibrium condition.

• In all cases, the number of function evaluations reported corresponds
to scalar components.

16

4.1 Error Analysis

We first simulated the system of Eq.(16) with parameters a = 1, r = d = 0
(i.e., the pure advective case) using the LIQSS2 method for different quan-
tum ∆Q and grid refinementN . The goal of this experiment was to compare
the theoretical bound of Eq.(30) with the actual error introduced by the al-
gorithm.

The results are summarized in Table 1.

Table 1: Max. and Avg. Error for different values of ∆Q with N =
100, 1000, 10000

N = 100 N = 1000 N = 10000
Max. Avg. Max. Avg. Max. Avg.

∆Q = 1e− 3 8.5e−3 2.5e−4 7.7e−3 1.7e−3 2.5e−2 3.8e−4
∆Q = 1e− 4 9.9e−4 3.2e−5 7.1e−4 1.9e−5 1.4e−3 3.3e−5
∆Q = 1e− 5 1.8e−4 7.3e−6 7.3e−5 2.5e−6 2.5e−4 3.73e−6
∆Q = 1e− 6 5.4e−5 2.2e−6 1.6e−5 3.9e−7 3.0e−5 4.1e−7

Analyzing these results, we make the following observations:

• The theoretical error bound computed by Eq.(30) holds for all cases.

• The theoretical error bound formula is very conservative. For instance,
taking N = 10000 and ∆Q = 1e−6, the theoretical error bound states
that |eN (t)| < 1.9e−2 and Table 1 shows that the maximum error
found is 3.0e−5.

• The reported errors grow linearly with the quantum in concordance
with the theoretical error bound.

• While Eq.(30) establishes that the theoretical error bound grows lin-
early with the grid refinement N , results reported in Table 1 show
that N does not seem to affect the maximum error significantly, since
it remains of the same order.

• The main practical conclusion of the error analysis is that the measured
error and the quantum have a similar order of magnitude.

4.2 Variation of the grid size ∆x

In this scenario we study the computational cost and error introduced by
the different algorithms for different number of points (N) in the grid. The

17

remaining parameters are kept fixed , a = 1, d = 1 · 10−4, r = 1000. The
resulting Péclet Number is a/d = 10000.

The goal of this experiment is to establish how efficient are ODE solvers
at handling models resulting from more refined grids, which are used often
to reduce the consistency error introduced by the MOL.

Figure 5 compares the CPU time of DASSL, DOPRI, Radau5 and LIQSS2
as N grows. Table 2 summarizes the results together with the number of
scalar function evaluations.

 0.1

 1

 10

 100

 1000

 10000

 100000

 10 100 1000 10000

C
P

U
 T

im
e(

m
s)

Grid Size (N)

LIQSS2
DASSL

Dopri
Radau

Figure 5: CPU time vs. N with a = 1, d = 1 · 10−4, r = 1000

Here LIQSS2 outperforms the other methods in all cases. Notice that up
to N = 1000, the CPU time grows sub–linearly with the size N for LIQSS2.
With N = 1000 LIQSS2 is 15 times faster than DOPRI and DASSL, and 27
times faster than Radau.

However, at N = 10000 the stiffness due to the diffusion term at Eq.(16)
becomes relevant since, as it was mentioned before, in diffusion problems
discretized with the MOL the stiffness ratio grows quadratically with the
number of grid points. We recall that this type of stiffness is not properly
handled by LIQSS methods11, hence its performance is impoverished.

Although the presence of the reaction term makes the problem stiff, the
explicit algorithm DOPRI is still able to simulate it in a reasonable time.
In fact it performs several function evaluations, but its low cost per step
results in a similar performance to that of DASSL.

It must be mentioned that DASPK and Radau5 codes are suitable for
large scale models. Moreover, they exploit the knowledge of the tridiagonal

18

Table 2: CPU time(ms) and number of function evaluations for different
values of N with a = 1, d = 1 · 10−4, r = 1000

LIQSS2 DASSL DOPRI Radau5
N time eval. time eval. time eval. time eval.
10 9.04e−1 5.99e3 3.85e0 8.47e3 1.00e1 1.88e5 2.00e1 1.02e4
50 3.45e0 2.79e4 1.93e1 1.02e5 4.00e1 1.06e6 2.00e1 1.74e5
100 6.62e0 5.38e4 5.11e1 3.29e5 6.00e1 2.45e6 5.00e1 5.02e5
200 1.48e1 1.17e5 1.10e2 8.85e5 1.20e2 5.17e6 1.50e2 1.57e6
500 2.73e1 3.16e5 3.33e2 2.61e6 3.70e2 1.73e7 6.10e2 6.06e6
1000 4.66e1 6.05e5 7.41e2 5.64e6 7.00e2 3.54e7 1.29e3 1.23e7
10000 7.49e3 1.07e8 1.54e4 1.08e8 1.50e4 7.41e8 3.97e4 4.04e8

structure of the Jacobian matrix for this particular case. Otherwise, their
computational cost would grow cubically with N .

Table 3 shows the maximum and mean absolute errors obtained by the
tested algorithms.

Table 3: Max. and Avg. Error for different values of N with a = 1, d =
1 · 10−4, r = 1000

LIQSS2 DASSL DOPRI Radau5
N Max. Avg. Max. Avg. Max. Avg. Max. Avg.
10 5.9e−2 2.8e−3 7.4e−1 7.9e−4 3.9e−3 8.7e−4 2.5e−3 2.7e−6
50 8.4e−2 8.1e−4 7.0e−1 6.8e−4 2.2e−2 1.9e−3 3.5e−3 6.7e−6
100 1.2e−1 1.7e−4 6.6e−1 6.1e−4 3.8e−2 2.5e−3 9.1e−3 2.9e−5
200 1.6e−1 1.8e−3 7.5e−1 7.6e−4 9.8e−2 3.0e−3 3.0e−3 1.3e−5
500 1.8e−1 1.1e−3 5.3e−1 4.0e−4 3.9e−2 3.8e−3 1.7e−2 1.4e−5
1000 2.1e−1 1.3e−3 3.4e−2 2.4e−5 5.8e−2 4.8e−3 4.9e−2 3.3e−5
10000 5.9e−1 8.1e−4 1.0e0 1.4e−3 1.9e−1 6.6e−3 3.0e−1 1.3e−4

The average errors of LIQSS2, DASSL and DOPRI are similar, and they
are consistent with the tolerance settings. Radau, however, is about two
orders of magnitude more accurate. This is because the implementation is
extremely conservative regarding the error tolerance.

The maximum absolute error is high for all algorithms (except for Radau).
The reason is that the solution is a traveling wave with a large slope. Fig-
ure 4 illustrates the solution for r = 10. For r = 1000 the solution looks like

19

a traveling step. Thus, a very small error in the wave speed causes a very
large error in the value of ui when the wave passes through the i–th point
of the grid.

4.3 Variation of the grid size ∆x without diffusion

In this scenario we study the computational cost for different number of
points N in the grid without diffusion term (d = 0), i.e., a purely advective–
reactive problem. The remaining parameters were fixed as: a = 1, r = 1000.
Errors are not reported as they are similar to those of the previous scenario.

Figure 6 compares the CPU time of DASSL, Radau5, DOPRI and LIQSS2.
Table 4 summarizes the results together with the number of scalar function
evaluations.

 0.1

 1

 10

 100

 1000

 10000

 100000

 10 100 1000 10000

C
P

U
 T

im
e(

m
s)

Grid Size (N)

LIQSS2
DASSL

Dopri
Radau

Figure 6: CPU time vs N with a = 1, d = 0, r = 1000

The results here are similar to those with d = 1 · 10−4, except that
now LIQSS2 does not experience any problem as N grows. The absence of
diffusion confines the stiffness to the main diagonal of the Jacobian matrix,
a case that LIQSS2 efficiently handles .

Consequently, when N = 10000, LIQSS2 is about 30 times faster than
DOPRI, 38 times faster than DASSL and 98 times faster than Radau.

20

Table 4: CPU time and number of function evaluations for different values
of N with a = 1, d = 0, r = 1000

LIQSS2 DASSL DOPRI Radau5
N time eval. time eval. time eval. time eval.
10 8.54e−1 6.14e3 3.78e0 8.47e3 2.00e1 1.88e5 1.00e1 1.02e4
50 1.46e0 2.81e4 1.61e1 1.02e5 3.00e1 1.06e6 3.00e1 1.74e5
100 8.30e0 5.92e4 4.49e1 3.12e5 6.00e1 2.46e6 6.00e1 5.02e5
200 1.28e1 1.04e5 9.79e1 8.70e5 1.20e2 5.16e6 1.50e2 1.57e6
500 2.33e1 2.70e5 3.17e2 2.74e6 3.40e2 1.65e7 5.80e2 6.06e6
1000 4.23e1 5.49e5 7.44e2 5.90e6 6.70e2 3.54e7 1.17e3 1.19e7
10000 3.99e2 6.58e6 1.51e4 1.04e8 1.19e4 6.43e8 3.93e4 4.23e8

4.4 Variation of reaction term r

Now we consider the variation of r with the remaining parameters fixed at
a = 1, d = 1 · 10−4, N = 1000.

Figure 7 compares the CPU time of DASSL, Radau5, DOPRI and LIQSS2
as r grows. Table 5 summarizes the results together with the number of
scalar function evaluations. Errors are not reported as they are similar to
the previous ones.

 10

 100

 1000

 10000

 100000

 100 1000 10000 100000

C
P

U
 T

im
e(

m
s)

Reaction (r)

LIQSS2
DASSL

Dopri
Radau

Figure 7: CPU time vs. r with a = 1, d = 1 · 10−4, N = 1000

21

Table 5: CPU time and number of function evaluations for different values
of r with a = 1, d = 1 · 10−4, N = 1000

LIQSS2 DASSL DOPRI Radau5
r time eval. time eval. time eval. time eval.
100 3.35e1 5.93e5 3.53e2 1.94e6 1.10e2 5.38e6 5.80e2 5.50e6
500 4.34e1 5.45e5 4.79e2 3.68e6 3.10e2 1.61e7 9.90e2 9.18e6
1000 4.66e1 6.05e5 7.41e2 5.64e6 7.00e2 3.54e7 1.29e3 1.23e7
2000 4.49e1 6.51e5 1.05e3 1.00e7 1.21e3 6.37e7 2.51e3 2.41e7
5000 5.08e1 6.84e5 1.50e3 1.71e7 2.60e3 1.41e8 3.58e3 3.52e7
10000 5.25e1 7.04e5 1.75e3 2.14e7 5.25e3 2.78e8 4.39e3 4.49e7
100000 5.64e1 7.68e5 3.29e3 5.12e7 4.68e4 2.71e9 8.93e3 9.43e7

In this scenario LIQSS2 shows a noticeable advantage over the other methods
as its performance is not affected at all by the growth of the reaction term r.
When r grows the problem becomes more stiff, but this stiffness is due to a
large entry in the main diagonal of the Jacobian matrix, which is efficiently
handled by LIQSS2.

However, the other methods present various drawbacks . DOPRI, being
explicit, has its step size limited by the stability region which is reduced
linearly with r. Thus, the computational cost grows linearly with r.

DASSL and Radau do not have stability issues, but the growth of r
increases the non–linearity of the problem and the Newton iteration used by
these implicit algorithms requires more steps to converge.

In conclusion, for the last case analyzed (r = 100000), LIQSS2 is about
60 times faster than DASSL, 160 times faster than Radau and 830 times
faster than DOPRI.

4.5 Variation of diffusion term d

In the last scenario we study the computational cost for different values of
the diffusion term d while the remaining parameters are kept fixed (a =
1, N = 1000, r = 1000) . Errors are similar to those of the first scenario so
they are not reported.

Figure 8 plots the computational costs as a function of d while Table 6
summarizes the results together with the number of scalar function evalua-
tions.

For low values of d, LIQSS2 again outperforms the other methods. However,
as the diffusion term grows, LIQSS2 performance is soon degraded. The
reason of this is the appearance of stiffness which is not reflected at the
main diagonal of the Jacobian matrix. These stiff cases are not correctly
handled by LIQSS algorithms, as it is analyzed in Migoni et al.11.

22

 10

 100

 1000

 10000

 1e-07 1e-06 1e-05 0.0001 0.001 0.01 0.1

C
P

U
 T

im
e(

m
s)

Diffusion (d)

LIQSS2
DASSL

Dopri
Radau

Figure 8: CPU time comparison for different magnitudes of diffusion d -
a = 1, N = 1000, r = 1000

Table 6: CPU time and number of function evaluations for different d -
a = 1, N = 1000, r = 1000

LIQSS2 DASSL DOPRI Radau5
d time eval. time eval. time eval. time eval.
1e−1 3.79e3 6.19e7 3.15e2 2.46e6 1.82e3 9.45e7 4.90e2 4.76e6
1e−2 6.25e1 8.68e5 5.38e2 4.04e6 6.20e2 3.16e7 9.40e2 9.00e6
1e−3 5.23e1 6.07e5 7.39e2 5.26e6 7.00e2 3.63e7 1.81e3 1.59e7
1e−4 4.66e1 6.05e5 7.41e2 5.64e6 7.00e2 3.54e7 1.29e3 1.23e7
1e−5 4.18e1 5.62e5 7.73e2 5.77e6 6.90e2 3.54e7 1.26e3 1.20e7
1e−6 4.27e1 5.48e5 7.47e2 5.45e6 6.90e2 3.54e7 1.26e3 1.19e7
1e−7 3.89e1 5.22e5 8.07e2 6.11e6 6.90e2 3.54e7 1.24e3 1.19e7

23

4.6 A simple 2D scenario

In this scenario we briefly analyze whether the results found before hold for
two dimensional cases. For that purpose we consider a 2D MOL Advection-
Reaction model given by the following equations:

u̇i,j = −ax
(ui,j − ui,j−1)

∆x
− ay

(ui,j − ui−1,j)

∆y
+ r(u2i,j − u3i,j) (31)

for i = 2, · · · , N, j = 2, · · · , N ,

u̇i,1 = −ax
ui,1
∆x

− ay
(ui,1 − ui−1,1)

∆y
+ r(u2i,1 − u3i,1) (32)

for i = 2, · · · , N ,

u̇1,j = −ax
(u1,j − u1,j−1)

∆x
− ay

u1,j
∆y

+ r(u21,j − u31,j) (33)

for j = 2, · · · , N and finally

u̇1,1 = −ax
u1,1
∆x

− ay
u1,1
∆y

+ r(u21,1 − u31,1) (34)

where the grid refinement is defined by ∆x = ∆y = 10/N .
We simulated this model for different grid refinement settings, obtaining

the results summarized in Table 7.

Table 7: CPU time (ms) for different grid refinement settings (N × N) -
ax = ay = 1, r = 1000.

LIQSS2 DOPRI DASSL
time eval. time eval. time eval.

10× 10 5.70e0 4.86e4 1.37e2 2.39e6 8.64e1 1.28e6
50× 50 1.82e2 1.17e6 3.02e3 7.16e7 3.76e4 4.69e8
100× 100 8.59e2 4.68e6 1.19e4 2.91e8 − −
500× 500 5.69e4 1.21e8 4.03e5 9.40e9 − −
1000× 1000 4.35e5 4.96e8 1.91e6 4.24e10 − −

We note that DASSL solver fails to perform from N×N = 100×100 . In
this case, DASSL must invert a huge matrix which is no longer tri–diagonal.

As before, the LIQSS2 method exhibits a better performance than DO-
PRI and DASSL. We must mention that while the number of function eval-
uations of LIQSS2 grows linearly with the system size, the CPU time scales
supra-linearly. This is due to the fact that the stage of the QSS Solver that
translates the µ–Modelica model into C language does not support 2D mod-
els yet, so we wrote the N ×M matrix using M arrays. In consequence, the
µ–Modelica model was inefficiently translated into C, with the right hand
side of the ODE containing M unnecessary comparisons. As M grows, those
unnecessary comparisons affect the overall performance.

24

5 Conclusions

In this work we studied the application of Quantization Based Integration
methods for semi–discretized one dimensional Advection-Diffusion-Reaction
(ADR) problems.

We compared the second order Linearly Implicit QSS (LIQSS2) method
against widely used classic numerical integration methods implemented in
solvers such as DASSL, Radau and DOPRI.

We conclude that:

• LIQSS2 is a better option than classical numerical integration methods
when the relation between the advection and the diffusion is large
(i.e., large Peclet Numbers). However, when the diffusion is higher,
the stiffness introduced is not properly handled by LIQSS2 and classic
methods are more efficient.

• Provided that the diffusion term is kept small, LIQSS2 shows an in-
creasing advantage over the other methods while N grows since it
scales sub–linearly with the grid refinement.

• Contrary to classic methods, LIQSS2 performance is not affected by
the growth of the reaction term r. This is because (as stated in Section
2.2) LIQSS methods efficiently handle stiffness due to large entries in
the main diagonal of the Jacobian matrix.

• In most cases, LIQSS2 performed at least 10 times faster than classic
solvers.

We also have performed a theoretical analysis on the maximum error
introduced by the LIQSS methods for purely advective cases. A simulation
study showed that this error bound, in spite of being extremely conservative,
still holds in presence of diffusion and reaction terms.

We also extended the results to a simple 2D Advection–Reaction case,
obtaining promising results regarding the usage of LIQSS methods in higher
dimensional problems, where they can still offer advantages over classic dis-
crete time algorithms.

It is worth mentioning that in these two dimensional studies, we are
reporting simulation results with QSS methods on a system having up to
one million states. To the best of our knowledge, this is the first time QSS
methods are applied to models of this size.

In spite of the advantages observed, we must recall that this work is
limited to some special cases (one dimensional ADR and two dimensional
AR equations) with particular initial states and boundary conditions, and
semi-discretized with the MOL using first order finite differences. Thus,
future work should corroborate these results on a more general context,
considering:

25

• More sophisticated models, including 2D and 3D problems with re-
alistic initial states and boundary conditions, such as environmental
geochemistry, and pollutants transport in surface and ground water.
Also adding native support for 2D models in the QSS tool is a must.

• The use of different space discretization methods, such as boundary
integral methods or meshless methods.

• The usage of the MOL with higher order finite differences.

It would be also of theoretical interest to extend the error analysis to the
complete ADR model, including diffusion and reaction terms.

References

[1] J. Volker, E. Schmeyer, Finite element methods for time-dependent
convection-diffusion-reaction equations with small diffusion, Computer
Methods in Applied Mechanics and Engineering 198 (3-4) (2008) 475 –
494.

[2] P. Theeraek, S. Phongthanapanich, P. Dechaumphai, Solving
convection-diffusion-reaction equation by adaptive finite volume ele-
ment method, Mathematics and Computers in Simulation 82 (2) (2011)
220 – 233.

[3] M. Portapila, H. Power, A convergence analysis of the performance
of the drm-md boundary integral approach, International Journal for
Numerical Methods in Engineering 71 (1) (2007) 47–65.

[4] N. Caruso, M. Portapila, H. Power, Local regular dual reciprocity
method for 2d convection-diffusion equation., in: 34th International
Conference on Boundary Elements and other Mesh Reduction Meth-
ods, 2012, pp. 27–37.

[5] W. Schiesser, The numerical method of lines: integration of partial
differential equations, Academic Press, 1991.

[6] F. Cellier, E. Kofman, Continuous System Simulation, Springer, New
York, 2006.

[7] J. Butcher, Numerical Methods for Ordinary Differential Equations,
John Wiley & Sons, Ltd, 2005.

[8] K. E. Brenan, S. L. Campbell, L. R. Petzold, Numerical Solution of
Initial-Value Problems in Differential-Algebraic Equations, Society for
Industrial and Applied Mathematics, 1995.

26

[9] L. R. Petzold, A description of DASSL: a differential/algebraic system
solver, in: Scientific computing (Montreal, Quebec, 1982), IMACS, New
Brunswick, NJ, 1983, pp. 65–68.

[10] E. Kofman, S. Junco, Quantized State Systems. A DEVS Approach
for Continuous System Simulation, Transactions of SCS 18 (3) (2001)
123–132.

[11] G. Migoni, M. Bortolotto, E. Kofman, F. Cellier, Linearly Implicit
Quantization-Based Integration Methods for Stiff Ordinary Differential
Equations, Simulation Modelling Practice and Theory 35 (2013) 118–
136.

[12] E. Kofman, Relative Error Control in Quantization Based Integration,
Latin American Applied Research 39 (3) (2009) 231–238.

[13] E. Kofman, Discrete Event Simulation of Hybrid Systems, SIAM Jour-
nal on Scientific Computing 25 (5) (2004) 1771–1797.

[14] E. Kofman, A Second Order Approximation for DEVS Simulation of
Continuous Systems, Simulation: Transactions of the Society for Mod-
eling and Simulation International 78 (2) (2002) 76–89.

[15] E. Kofman, A Third Order Discrete Event Simulation Method for Con-
tinuous System Simulation, Latin American Applied Research 36 (2)
(2006) 101–108.

[16] G. Migoni, E. Kofman, F. Cellier, Quantization-Based New Integration
Methods for Stiff ODEs., Simulation: Transactions of the Society for
Modeling and Simulation International 88 (4) (2012) 387–407.

[17] B. Zeigler, H. Praehofer, T. G. Kim, Theory of Modeling and Simulation
- Second Edition, Academic Press, 2000.

[18] F. Bergero, E. Kofman, PowerDEVS: A Tool for Hybrid System Mod-
eling and Real Time Simulation, Simulation 87 (2011) 113–132.

[19] T. Beltrame, F. Cellier, Quantised State System Simulation in Dy-
mola/Modelica Using the DEVS Formalism, in: Proceedings of the
Fifth International Modelica Conference, Vol. 1, Vienna, Austria, 2006,
pp. 73–82.

[20] M. D’Abreu, G. Wainer, M/CD++: Modeling continuous systems using
Modelica and DEVS, in: Proceedings of MASCOTS 2005, Atlanta, GA,
2005, pp. 229 – 236.

[21] G. Quesnel, R. Duboz, E. Ramat, M. Traoré, VLE: a multimodeling and
simulation environment, in: Proceedings of the 2007 Summer Computer
Simulation Conference, San Diego, California, 2007, pp. 367–374.

27

[22] F. Esquembre, Easy Java Simulations: a software tool to create scien-
tific simulations in Java, Computer Physics Communications 156 (1)
(2004) 199–204.

[23] J. Fernández, E. Kofman, A Stand-Alone Quantized State System
Solver for Continuous System Simulation., Simulation: Transactions
of the Society for Modeling and Simulation International 90 (7) (2014)
782–799.

[24] P. Fritzson, V. Engelson, Modelica - A Unified Object-Oriented Lan-
guage for System Modelling and Simulation, in: ECOOP, 1998, pp.
67–90.

[25] R. Wolke, O. Knoth, Implicit–explicit Runge–Kutta methods applied to
atmospheric chemistry-transport modelling, Environmental Modelling
& Software 15 (6) (2000) 711–719.

[26] B. Sommeijer, L. Shampine, J. Verwer, Rkc: An explicit solver for
parabolic {PDEs}, Journal of Computational and Applied Mathematics
88 (2) (1998) 315 – 326.

[27] J. Verwer, B. Sommeijer, W. Hundsdorfer, Rkc time-stepping
for advection-diffusion-reaction problems, Journal of Computational
Physics 201 (1) (2004) 61 – 79.

[28] B. Kleefeld, J. Mart́ın-Vaquero, SERK2v2: A new second-order stabi-
lized explicit Runge-Kutta method for stiff problems, Numerical Meth-
ods for Partial Differential Equations 29 (1) (2013) 170–185.

[29] J. Álvarez, J. Rojo, An improved class of generalized runge-kutta meth-
ods for stiff problems. part i: The scalar case, Applied Mathematics and
Computation.

[30] J. Álvarez, J. Rojo, An improved class of generalized runge-kutta meth-
ods for stiff problems. part ii: The separated system case, Applied
Mathematics and Computation 159 (3) (2004) 717 – 758.

[31] V. Savcenco, W. Hundsdorfer, J. Verwer, A multirate time stepping
strategy for stiff ordinary differential equations, BIT Numerical Math-
ematics 47 (1) (2007) 137–155.

[32] A. Muzy, R. Jammalamadaka, B. Zeigler, J. J. Nutaro, The Activity-
tracking paradigm in discrete-event modeling and simulation: The case
of spatially continuous distributed systems, Simulation 87 (5) (2011)
449–464.

[33] W. Hundsdorfer, J. G. Verwer, Numerical Solution of Time-Dependent
Advection-Diffusion-Reaction Equations, Springer, 2003.

28

[34] B. H. Gilding, R. Kersner, Travelling waves in nonlinear diffusion-
convection-reaction, Memorandum 1585, Department of Applied Math-
ematics, University of Twente, Enschede (2001).

[35] G. Migoni, F. Bergero, E. Kofman, J. Fernández, Quantization-Based
Simulation of Switched Mode Power Supplies., Simulation: Transac-
tions of the Society for Modeling and Simulation International 91 (4)
(2015) 320–336.

[36] P. Brown, A. Hindmarsh, L. Petzold, Using Krylov methods in the
solution of large-scale differential-algebraic systems, SIAM Journal on
Scientific Computing 15 (6) (1994) 1467–1488.

29

