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Abstract

In this work we generalize the concept of activity of continuous time signals. We define

the activity of order n of a signal and show that it allows to estimate the number of sections

of polynomials up to order n which are needed to represent that signal with certain accuracy.

Then, we apply this concept to obtain a lower bound for the number of steps performed by

quantization–based integration algorithms in the simulation of ordinary differential equations.

We perform an exhaustive analysis over two examples, computing the activity of order n

and comparing it with the number of steps performed by different integration methods. This

analysis corroborates the theoretical predictions and also allows to measure the suitability

of the different algorithms depending on how close they perform in comparison with the

theoretical lower bound.

1 Introduction

The concept of activity associated to a continuous signal (in the following continuous activity) was
introduced by Zeigler and Jammalamadaka [6] in order to measure the rate of change of a signal.

More precisely, in its original definition the continuous activity computes the total change
experienced by a signal within a given interval of time. Thus, for a monotonically increasing or
decreasing signal, the activity measures the distance between the final and the initial value. When
a signal is not monotonic, the activity is computed as the sum of the activities of the monotonic
sections.

In either case, the formal definition of the activity for a signal xi(t) between an initial time t0
and a final time tf is given by

Axi(t0,tf ) ,

∫ tf

t0

∣

∣

∣

∣

dxi(τ)

dτ

∣

∣

∣

∣

· dτ (1)

According to this formulation, the activity only measures distances between final and initial
values, without using at all the information about how the signal reaches those values. Thus, a
monotonic signal that grows (or decreases) with a straight ramp presents the same activity than a
monotonic signal that starts and ends at the same values but following a more complex function
of time.

When a continuous time signal xi(t) is the input of a zero–order quantization function, the
corresponding output trajectory qi(t) results piecewise constant as shown in Figure 1.
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Figure 1: Zero order quantization with quantum ∆Qi.

In this case, the number of discontinuities of the output trajectory qi(t) is closely related to the
activity of the input xi(t).

If the amplitude (i.e., the activity) of the j–th monotonic section of xi(t) is Aj and the quantum
size of the quantization function is ∆Qi, then the number of quantum crossings of xi(t) in that
section is about Aj/∆Qi.

Thus, the total number of discontinuities in qi(t) can be directly computed as

k ≈
∑

j

Aj

∆Qi
=

Axi(t0,tf )

∆Qi
(2)

Zero–order quantization functions like that of Fig.1 are used in some Quantized State Systems
(QSS) numerical integration algorithms, such as the first order accurate QSS1 method [11], the
Backward QSS (BQSS) method [15], and the first order accurate Linearly Implicit QSS (LIQSS1)
algorithm [14].

Thus, Eqs.(1)–(2) can be used to establish a lower bound for the number of steps needed by
those methods to simulate a given system with a given quantum. That way, the concept of activity
can predict the minimal computational costs required to simulate a system with a given accuracy.

However, there exist higher order quantization functions that are also used in QSS methods
of higher order. For instance, the QSS2 method [9] uses first order quantization functions that
produce piecewise linear output trajectories as shown in Fig.2.

In these cases, nor Eq.(1) neither Eq.(2) provide any help to estimate the number of disconti-
nuities in the output trajectory.

Firstly, as it was already mentioned, the activity definition of Eq.(1) obtains the same result for
a straight ramp than for a more complex (monotonic) signal, provided that both signals have the
same amplitude. However, a straight ramp can be represented by a single section of a piecewise
linear trajectory while a more complex signal, depending on the quantum, would require more
segments. Evidently, this difference is not captured by Eq.(1)
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Figure 2: First order quantization.

Secondly, it is known that in second order accurate methods like QSS2 the number of steps
varies with the square root of the quantum ∆Qi [9, 14]. However, Equation (2) shows a linear
dependence, which is clearly wrong.

These facts motivated the need of generalizing the concept of activity so that it can be still
applied in presence of higher order quantization.

In this work we study and develop the idea of activity of order n of a signal as a property
that allows estimating the number of sections of polynomials up to order n that are needed to
represent that signal with a given accuracy. Then, we apply this concept to obtain a lower bound
for the number of steps performed by quantization–based integration algorithms in the simulation
of ordinary differential equations.

The paper is organized as follows. In Section 2 we begin with a historical perspective of activity–
based modeling and simulation establishing the relation between discrete and continuous activity.
Then in Section 3 we review quantization schemes up to order 3, followed by Section 4 discussing
how they are used in quantization–based simulation of continuous systems.

In Section 5 we first derive the expression for n–th order quantization and, based on that, we
present the new definition for continuous activity of order n. Then, in Section 6 we apply the new
definitions in two practical example models: a first order non-stiff system, and a second order stiff
system. In both cases we analyze the correlation between theoretical and practical results obtained
through simulation.

Finally, in Section 7 we present the conclusions and provide hints about follow up steps stem-
ming from the concepts introduced in this work.

3



2 Historical perspective on activity–based modeling and

simulation

During the 60’s (Lackner [12, 13], Kiviat [7, 8]) and the beginning of the 70’s (Fishman [4]) discrete
event simulation strategies started being categorized according to so-called world views (”Weltan-
sicht”). World views were originally meant to provide conceptual frameworks that can guide
systematically the development of discrete event simulation languages and simulation software. A
subsequent more practical reference study is that of Balci ([1]) in the late 80’s.

The ”classical” world views are: event-scheduling, activity scanning and process-oriented. The
adoption of one or several of these can be made according to the needs of the particular goal at
hand (e.g. creating a simulation language, a software tool or a single model).

In a nutshell, these world views can be synthesized as follows:

• Event-scheduling: Model dynamics are driven by events scheduled ahead of time, on a con-
tinuous time base, according to local rules whose logic cannot be subjected to global state
information.

• Activity scanning: Model dynamics are driven by activities, which are phases commenced and
ended by events. Such events make a model’s phase ”active” or ”inactive”. The occurrence
of events can only take place on a clock-driven discrete-time base. At each time slot, models
are ”scanned” to check whether conditions are satisfied for the triggering events.

• Process interaction: Model dynamics are driven by processes, which can be combinations
(possibly complex) of events and/or activities (i.e., of the event scheduling and the activity
scanning paradigms).

An updated and more in-depth description of world views can be found in [2].
Recently, in [18] an integrative approach was introduced aiming at combining modeling views

and time flow management under a single strategy termed activity tracking. The activity tracking
pattern merges the three classical world views. Time flow is continuous and dynamics are driven by
events, just like in event scheduling. At the same time, active and inactive phases can be handled
just like in activity scanning. Nonetheless the latter is achieved by an asynchronous tracking
mechanism (handling ”marks” that are propagated throughout a hierarchy of models), instead of
the classical synchronous scanning mechanism (which queries all models only at permitted time
slots).

In [18] it was proposed that the DEVS formalism [23] is a sound candidate for expressing and
implementing the activity tracking strategy. The authors proposed activity tracking as a compre-
hensive world view for modeling and simulation that can improve efficiency and rigorousness.

Regardless of the world view of choice, in the context of discrete event simulations, dynamic
systems get ultimately driven by trajectories of state changes on a continuous time base. As time
evolves, the occurrence of events dictates state changes at given timestamps. The latter can be
counted and then interpreted quantitatively as a measure of the ”activity” of the system. Within
the activity tracking realm, the word activity is linked to this quantitative counting of a discrete
nature, or discrete activity.

On the contrary, the continuous activity (as introduced in [6] and discussed in the previous
section) is a quantitative measure of a continuous nature.

Continuous activity can serve as a formal link between inherent characteristics of a continuous
signal and the minimum discrete activity theoretically required to approximate said signal with a
desired accuracy, using a quantized–state simulation method in a discrete event setup [22]. This
idea applies e.g. to the particular case where the quantized–state simulation method is the QSS
methods commented before.
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Such formal link can enable establishing a theoretical connection between the analytical expres-
sion of a continuous trajectory and the computational effort required to simulate it. An obvious
parameter that can serve as said link is the quantum size adopted for the quantization–based
approximation.

In the context of the historical evolution of world views, continuous activity is relevant as it
can provide quantitative links between the emerging activity tracking pattern and the domain of
continuous systems simulation.

Nevertheless, for achieving true generality, a formal foundation must be provided that considers
generalized quantization–based numerical techniques of arbitrary order of approximation. Such
general formal foundation is the main result presented in this work.

2.1 State of the art in the field

Several works have investigated recently the advantages of applying activity–driven techniques in
discrete event simulation. The reader is referred to the references therein for a broader perspective.

In [16] the activity scanning strategy is analyzed in context of other possible world views and
provides new definitions (e.g. qualitative and quantitative activity) and essays an overarching
multi-level life cycle adapted to activity aware simulations.

In [17] the authors applied the activity tracking paradigm to a one-dimensional Partial Differen-
tial Equations (PDEs) solved numerically using state-quantization instead of time-slicing methods.
They showed evidence on how to use discrete events as a means to track activity in a simple spatial
system, using a diffusion model with known analytical solution for accuracy comparison purposes.
They also emphasize that activity of systems can be ”tracked” (basically, dealt with) at both
modeling and simulation phases.

A recent work in [5] introduces an activity-based framework that links information and energy,
and applies it to support energy-aware information processing in wireless sensor nodes that detect
and monitor wildfires.

Also recently in [20] a detailed analysis is provided for a practical implementation of the activity
tracking paradigm in the context of the object-oriented DEVSimPy simulation framework.

In [19] the authors explore the activity concept in varied modeling domains, and stemming
from them identify a general three level architecture for guiding the construction of component
based systems.

3 Signal quantization schemes

In this section we review a particular family of quantization functions which are used in the context
of quantization–based integration of Ordinary Differential Equations (ODEs).

These quantization functions approximate a continuous time input signal xi(t) by a piecewise
polynomial output signal qi(t), so that they do not differ more than the quantum ∆Qi. This is,
they ensure that.

|xi(t)− qi(t)| ≤ ∆Qi (3)

3.1 Zero–order quantization

In zero–order quantization [11, 3] the approximating polynomial segments are of order zero, i.e.,
the quantized signal qi(t) is piecewise constant.
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Formally, given an input signal xi(t) and a piecewise constant output signal qi(t), we say that
they are related by a zero–order quantization function Q0 with quantum ∆Qi if they satisfy

qi(t) = qi(tj) for tj ≤ t < tj+1 (4a)

with the sequence tj defined by

tj+1 = min
t>tj

t subject to |qi(tj)− xi(t)| = ∆Qi (4b)

Notice that qi(t) follows a piecewise constant trajectory that only changes its value when the
difference between qi(t) and xi(t) becomes equal to the quantum. After each recalculation of the
quantized variable it results that qi(t) = xi(t). This behavior is depicted in Figure 1.

One consequence of this approach is that a regular grid of evenly spaced quantization thresholds
can be imagined superimposed to the input and output trajectories offering an intuitive visual
perception of the quantization process: new values of qi(t) are produced as xi(t) hits the thresholds
that verify |qi(tj)− xi(t)| = ∆Qi.

Unfortunately, as we shall see shortly after, this grid–oriented hint is only possible in the zero
order case; such an evenly spaced set of adjacent thresholds will lack any meaning in higher order
schemes, starting already with the first–order quantization case.

3.2 First and second order quantization

The same idea presented for zero–order quantization is followed in first–order quantization [9], but
this time around resorting to piecewise linear segments for constructing qi(t) rather than piecewise
constant as in the preceding case.

Formally, given an input signal xi(t) and a piecewise linear output signal qi(t), we say that
they are related by a first–order quantization function with quantum ∆Qi if they satisfy

qi(t) = qi(tj) + c1,j · (t− tj) for tj ≤ t < tj+1 (5a)

with the sequence tj defined by

tj+1 = min
t>tj

t subject to |qi(tj) + c1,j · (t− tj)− xi(t)| = ∆Qi (5b)

and c1,j computed as:

c1,j =
dxi

dt
(tj) (5c)

The result of this approach is that qi(t) follows a piecewise linear trajectory that experiences
discontinuities at time instants t = tj when the difference between qi(tj) and xi(tj) is equal to the
quantum ∆Qi, as shown in Fig.2.

Along the same lines, given an input signal xi(t) and a piecewise parabolic output signal qi(t),
we say that they are related by a second–order quantization function [10] with quantum ∆Qi if
they satisfy

qi(t) = qi(tj) + c1,j · (t− tj) + c2,j · (t− tj)
2 for tj ≤ t < tj+1 (6a)

with the sequence tj defined by

tj+1 = min
t>tj

t subject to |qi(tj) + c1,j · (t− tj) + c2,j · (t− tj)
2 − xi(t)| = ∆Qi (6b)

and c1,j , c2,j computed as:

c1,j =
dxi

dt
(tj); c2,j =

1

2!

d2xi

dt2
(tj) (6c)
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which results in qi(t) following a piecewise parabolic trajectory, changing their polynomial coef-
ficients only at time instants t = tj when the difference between qi and xi becomes equal to the
quantum ∆Qi.

The behavior of a second order quantization function is depicted in Figure 3.

Figure 3: Second order quantization.

4 Quantization–Based Integration

Continuous Time Systems are typically represented by ODEs. Except for very simple cases, these
ODEs lack of analytical solutions and they must be approximated by numerical integration algo-
rithms in order to be solved. Classic numerical integration algorithms are based on the discretiza-
tion of the time variable [3].

In recent years, a new class of ordinary differential equation solvers has been developed that
replaces the time discretization by the state quantization [3]. These algorithms, based on Zeigler’s
idea of representing quantized system as DEVS models [21, 23], are called Quantized State Systems
(QSS) methods.

A QSS numerical solver operates naturally in an asynchronous mode, i.e., the instants tj belong
to the set of positive real numbers and are not confined to any synchronized pattern of time instants.

Each state variable carries its own simulation clock. If the states of a subsystem change very
little, the model equations capturing the dynamics of that subsystem will be executed rarely (or
equivalently, their activity will be very low).

In the context of QSS–based simulations a dormant model does not slow down the simulation,
as its equations will not get executed (i.e., it will experience null activity).

The quantization schemes presented above are those employed within QSS methods that shall
be described in the next section.
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4.1 First Order QSS1 Method

Given the system:
ẋa(t) = f(xa(t), t) (7)

with analytical solution xa(t), the first order QSS1 method approximates it by

ẋ(t) = f(q(t), t) (8)

Here, q is the quantized state vector. Its entries qi(t) are componentwise related with those of the
state vector xi(t) by hysteretic quantization functions, defined as in Eq.(4).

4.2 Other First Order QSS Methods

Besides QSS1, the Backward QSS (BQSS) [15], Centered QSS (CQSS) [15] and Linearly Implicit
QSS (LIQSS1) [14] perform first order approximations. They differ from QSS1 in the definition of
the quantization function given by Eq.(4), however in all these methods the quantized variables
qi(t) follow piecewise constant trajectories.

BQSS and LIQSS1 were conceived to efficiently simulate stiff systems, while CQSS was proposed
to simulate marginally stable systems.

4.3 Higher Order QSS Methods

The accuracy of the simulation is directly related to the quantum ∆Qi [9]. Thus, if we want to
improve the accuracy by a factor of e.g. 100, the quantum must be reduced 100 times. Then, any
first order QSS method will perform 100 times more steps. This is a serious limitation of first order
schemes, since accurate results require performing lots of steps with the corresponding increment
in the computational costs.

To overcome this difficulty, higher order methods where developed like the second order QSS
(QSS2) [9] and the third order QSS (QSS3) [10].

The QSS2 method is based on the same principles as QSS1, approximating Eq.(7) by Eq.(8).
However, it replaces the zero–order quantization function of Eq.(4) and Figure 1 by a first-order
quantization function of Eq.(5) and Figure 2.

Consequently, the quantized state trajectories qi(t) are piecewise linear and each segment starts
with a value and slope equal to those of the corresponding state xi(t). When both trajectories
differ by ∆Qj , a new segment of qi(t) starts.

It was shown that in QSS2, the number of steps grows with the square root of the accuracy.
Thus, if we want to improve the accuracy by a factor of 100, QSS2 performs only 10 times more
steps.

The third order QSS3 method is identical to QSS2, except that it replaces the first order
quantization function by the second order quantization function of Eq.(6) and Figure 3.

A second order quantization function generates an output piecewise parabolic trajectory , whose
value, slope and second slope change when the difference between the output and input of the
function becomes bigger than the quantum. Each output segment starts with the same value,
slope and quadratic slope than the input.

It was shown that in QSS3, the number of steps grows with the cubic root of the accuracy.
Thus, if we want to improve the accuracy by a factor of 1000, QSS3 performs only 10 times more
steps.

Besides QSS2 and QSS3, there exist linearly implicit QSS methods of orders 2 (LIQSS2) and
3 (LIQSS3) which are particularly suitable to simulate stiff systems [14], while having definitions
very similar to those of QSS2 and QSS3.
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5 Activity of Order n

In this section we generalize the concept of activity so that it can be applied in the context of
higher order quantization functions like those used in QSS2 and QSS3 methods.

Before introducing the new definition of activity of order n, we present a definition of n–th
order quantization.

5.1 n–th order quantization

The ideas behind first and second order quantization functions presented in Section 3.2 can be
generalized to define the n–th order quantization function.

Given an input signal xi(t) and a piecewise polynomial output signal qi(t), we say that they
are related by a n–th–order quantization function with quantum ∆Qi if they satisfy

qi(t) = qi(tj) + c1,j · (t− tj) + c2,j · (t− tj)
2 + · · ·+ cn,tj .(t− tj)

n for tj ≤ t < tj+1 (9a)

with the sequence tj defined by

tj+1 = min
t>tj

t subject to |qi(tj)+c1,j ·(t−tj)+c2,j ·(t−tj)
2+· · ·+cn,tj .(t−tj)

n−xi(t)| = ∆Qi (9b)

and the coefficients cm,j computed as:

cm,j =
1

m!

dmxi

dtm
(tj) (9c)

The latter requires all derivatives of xi(t) to exist at least up the order of the quantization
scheme, i.e., n.

5.2 Analytical derivation of Activity of Order n

In this section we develop an analytical expression for activity of order n.

The original definition of activity [6] given by Eq.(1) integrates the rate of change
∣

∣

∣

dxi(t)
dt

∣

∣

∣

experienced by a continuous time signal xi(t) in a given interval of time.
When qi(t) is a piecewise constant approximation of xi(t) (i.e., the result of a quantization

function of order zero), the rate of change
∣

∣

∣

dxi(t)
dt

∣

∣

∣
coincides with the rate at which the difference

∆xi = |qi(t)−xi(t)| grows (while qi(t) remains constant). Consequently, as soon as a quantum ∆Qi

is chosen, the number of constant sections required to approximate the signal gets immediately
determined by the division of the activity by the quantum size. We refer to this activity as activity
of order zero.

However, if qi(t) is obtained from a quantization function of order n − 1 with n ≥ 2, the rate
at which the difference |qi(t)− xi(t)| grows follows a different law:

∆xi(t) = xi(t)− qi(t) = xi(t)−
[

xi(tj) +
dxi(tj)

dt
· (t− tj) + · · ·+ dn−1xi(tj)

dtn−1
· (t− tj)

n−1

(n− 1)!

]

(10)

where tj is the time of the last discontinuity of qi(t).
Evidently, for the same given accuracy, the number of sections of polynomials up to order n−1

required to approximate the signal requires a reformulation.
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We proceed as follows. Replacing xi(t) in Eq.(10) by its Taylor series expansion:

xi(t) = xi(tj) +
dxi(tj)

dt
· (t− tj) + · · ·+ dnxi(tj)

dtn
· (t− tj)

n

n!
+ · · ·

it results that

∆xi(t) =
dnxi(tj)

dtn
· (t− tj)

n

n!
+

dn+1xi(tj)

dtn+1
· (t− tj)

n+1

(n+ 1)!
+ · · ·

When the difference t− tj is small or when the n–th derivative of x(t) is constant (as it happens
in QSSn methods) the difference between qi(t) and xi(t) results:

∆xi(t) ≈
dnxi(tj)

dtn
· (t− tj)

n

n!
(11)

After t = tj , the next discontinuity in qi(t) occurs at t = tj+1, where |∆xi(t)| = ∆Qi. Then, from
Eq.(11) it results that

∆Qi ≈
∣

∣

∣

∣

dnxi(tj)

dtn

∣

∣

∣

∣

· (tj+1 − tj)
n

n!

Dividing the latter by ∆Qi and computing the 1/n power at both sides, it results

1 ≈
∣

∣

∣

∣

∣

dnxi(tj)
dtn

n!

∣

∣

∣

∣

∣

1/n

·
(

1

∆Qi

)1/n

· (tj+1 − tj)

This equation holds for j = 0, · · · , k − 1 in the interval (t0, tk). Then, we can compute the
summation for j at both sides:

k−1
∑

j=0

1 ≈
k−1
∑

j=0

∣

∣

∣

∣

∣

dnxi(tj)
dtn

n!

∣

∣

∣

∣

∣

1/n

·
(

1

∆Qi

)1/n

· (tj+1 − tj)

and approximating the summatory by the integral, we finally obtain

k ≈
(

1

∆Qi

)1/n ∫ tk

t0

∣

∣

∣

∣

∣

dnxi(t)
dtn

n!

∣

∣

∣

∣

∣

1/n

dt

which provides an expression for the number of discontinuities in qi(t) on the interval (t0, tk).
From this last expression, it makes sense to define the n–th order activity of the signal xi(t) on

the interval (t0, tf) as

A
(n)
xi(t0,tf )

,

∫ tf

t0

∣

∣

∣

∣

∣

dnxi(t)
dtn

n!

∣

∣

∣

∣

∣

1/n

dt (12)

In that way, given a continuous time signal xi(t) we can estimate the number of discontinuities for
an approximation of order n using a quantum ∆Qi as:

k
(n)
xi(t0,tf )

(∆Qi) ≈
A

(n)
xi(t0,tf )

(∆Qi)1/n
(13)

The following is a list of considerations about Eq.(12) and some of its relevant implications:
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• When n = 1 Eq.(12) coincides with the original definition of activity of Eq.(1) and the
formulae for estimating the number of discontinuities given by Eqs. (13) and (2) become
identical.

• With Eq.(12) we also extended to the n–th order the concept that the activity measure is
a property inherent to a signal, in contrast to the number of discontinuities computed by
Eq.(13), which depends on the choice of the quantum size according the required accuracy.

• While the activity of order 1 measures the rate of change of the continuous signal, the activity
of n–th order takes into account the rate of change of the signal’s derivatives.

• Eq.(12) generalizes the original definitions and results found in [22] that foresee applications
of continuous activity beyond the efficient simulation of differential equations, e.g. to im-
provements in techniques of data sensing, data compression, communication in multi–stage
computations, or spatial quantization.

6 Examples

In this section we apply the new concept of activity of order n on two simple linear systems.

6.1 A first order linear system

The first order linear system:
ẋ(t) = a · x(t)

has solution x(t) = x(0) · ea·t.
The n–th order activity of the solution x(t) is, according to Eq.(12),

A
(n)
x(0,tf )

= n · |1− ea·tf/n| ·
∣

∣

∣

x0

n!

∣

∣

∣

1/n

(14)

When a is negative and |a · tf | >> n it results that

A
(n)
x(0,tf )

≈ n ·
∣

∣

∣

∣

x(0)

n!

∣

∣

∣

∣

1/n

Notice that the activity in this case is independent on the eigenvalue a.
Using the parameter a = −1, initial condition x(0) = 1 and a final time tf = 5 the activities of

order 1, 2, and 3, according to Eq.(14), result

A
(1)
x(0,tf )

= 0.993262; A
(2)
x(0,tf )

= 1.298128; A
(3)
x(0,tf )

= 1.339137 (15)

We simulated the system with QSS1, QSS2 and QSS3 methods using in each case quanta
∆Q = 10−2, ∆Q = 10−4 and ∆Q = 10−6. Then, we compared the number of steps performed by
each method with the number of steps predicted by Eq.(13). The results are shown in Table 1.

6.1.1 Analysis of the results

The results agree with the theoretical predictions. There are only two cases in which the results
do not coincide: the QSS1 simulation with a small quantum and the QSS3 simulation with a large
quantum.
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QSS1 QSS2 QSS3

k(1) = A(1)

∆Q Steps k(2) = A(2)
√
∆Q

Steps k(3) = A(3)

(∆Q)1/3
Steps

∆Q = 10−2 99.3262 100 12.981 13 6.2157 12
∆Q = 10−4 9932.62 9933 129.81 130 28.8508 28
∆Q = 10−6 993262 983881 1298.1 1298 133.914 133

Table 1: Theoretical and real number of quantum crossings.

In the first case, the steps are very small (there are more than 980000 steps in 5 seconds). As
a consequence, the round–off errors become significant.

In the second case, the difference is due to the fact that QSS3 starts with a first order approxi-
mation (in the first step it does not have information about the first derivative) and then it follows
with a second order one. Only after the third step it really performs a third order approximation.

It is also important to recall that QSS methods usually introduce some spurious oscillations,
i.e., oscillations of the numerical solution that do not exist in the analytical solution. The presence
of spurious oscillations provoke additional steps that are not predicted by the activity of the
analytical solution (i.e., the activity of the numerical solution may be larger than the activity of
the analytical solution).

6.2 A second order stiff system

Stiff systems are a class of dynamical systems where slow and fast dynamics coexist. Stiffness
enforces classic explicit numerical solvers to use very small steps in order to obtain numerically
stable solutions.

Unfortunately, non–stiff quantization–based algorithms, such as QSS methods, experience simi-
lar difficulties. When a stiff system is solved by a QSS method, spurious high frequency oscillations
appear in the numerical solution [3, 15, 14]. In this context, we call spurious oscillations to those
that are exhibited by the numerical solution but are not present in the analytical solution.

Due to these oscillations, the activity of the numerical solution results much higher than the
activity of the analytical solution. Thus, the number of steps performed by non–stiff QSS methods
loose any relation with the theoretical figures predicted by Eq.(13).

However, a special branch of state-quantization based methods has been recently developed
that efficiently simulate many stiff systems. Backward and Linearly Implicit QSS methods (BQSS,
LIQSS) [15, 14] tend to eliminate the spurious oscillations.

In this example, we consider the following second order system that illustrates these facts

ẋ1 = 0.01 · x2(t)

ẋ2 = −100 · x1(t)− 100 · x2(t) + u
(16)

The system above has eigenvalues λ1 ≈ −0.01 and λ2 ≈ −99.99, which implies that it is a stiff
system. Its analytical solution has the following structure:

x1(t) = c1 · eλ1·t + c2 · eλ2·t + c3

x2(t) = c4 · eλ1·t + c5 · eλ2·t + c6
(17)

with coefficients ci (i = 1, . . . , 6) depending on the initial conditions x1(0), x2(0) and the con-
stant input term u.

The n–th order activity of the solutions x1(t) and x2(t) results, according to Eq.(12), as follows:
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Selecting initial conditions x1(0) = 0, x2(0) = 20 and the input1 u = 2000 + 200/9 we obtain
c1 = 0.0000224287, c2 = 20.2222, c3 = 0, c4 = −0.224265, c5 = 20.2243, c6 = 0.

Finally, for a final simulation time of tf = 500, the theoretical activity for orders of approxi-
mation n = 1 to 3 results as follows:

A
(1)
1 ≈ 21; A

(2)
1 ≈ 5.8; A

(3)
1 ≈ 3.7 (19)

for variable x1(t), and

A
(1)
2 ≈ 20.3; A

(2)
2 ≈ 6.5; A

(3)
2 ≈ 4.6 (20)

for variable x2(t).
As in the previous example, we simulated the system with quantization–based methods of

orders n=1 to 3. This time around, besides using QSS methods we also simulated using the LIQSS
family for stiff systems.

We grouped the experiments according to the order n, adopting an initial quantum of ∆Qi = 1
and a final quantum of ∆Qi = 10−3·n with decrements by one order of magnitude.

Finally, we compared the number of steps performed by QSS and LIQSS methods against what
is predicted by Eq.(13). The results are shown in Tables 2, 3 and 4 and analyzed below.

Number of steps at q1 Number of steps at q2

k(1) = A(1)

∆Qi
QSS1 LIQSS1 k(1) = A(1)

∆Qi
QSS1 LIQSS1

∆Qi = 1 21 21 20 20.3 17279 24
∆Qi = 10−1 200.1 202 201 203.1 17224 206
∆Qi = 10−2 2008.6 2010 2009 2031.2 16256 2032
∆Qi = 10−3 20086 20087 20086 20312.4 26657 20287

Table 2: First order non-stiff (QSS1) and stiff (LIQSS1) methods. Theoretical and real number of
steps.

6.2.1 Analysis of results

We analyze the behavior of the quantized state variables q1 and q2 present in the quantized version
of system (16):

ẋ1(t) = 0.01 · q2(t)
ẋ2(t) = −100 · q1(t)− 100 · q2(t) + u

(21)

1The input value u was chosen so that it is not a multiple of the quantum ∆Qi. Otherwise, under certain
conditions, the first order accurate QSS1 may not exhibit spurious oscillations, as analyzed in [3]
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Number of steps at q1 Number of steps at q2

k(2) = A(2)
√
∆Qi

QSS2 LIQSS2 k(2) = A(2)
√
∆Qi

QSS2 LIQSS2

∆Qi = 1 5.8 10 7 6.5 65453 10
∆Qi = 10−1 18.5 19 19 20.6 65443 21
∆Qi = 10−2 58.4 58 59 65 65440 65
∆Qi = 10−3 184.9 184 184 205.8 65412 207
∆Qi = 10−4 584.4 585 585 650.8 65379 650
∆Qi = 10−5 1848.1 1848 1848 2058 65257 2095
∆Qi = 10−6 5844.4 5842 5843 6507.7 64056 7506

Table 3: Second order stiff and non-stiff methods. Theoretical and real number of steps.

Number of steps at q1 Number of steps at q2

k(3) = A(3)

(∆Qi)1/3
QSS3 LIQSS3 k(3) = A(3)

(∆Qi)1/3
QSS3 LIQSS3

∆Qi = 1 3.7 412 9 4.6 92391 11
∆Qi = 10−1 8 412 12 10 92395 16
∆Qi = 10−2 17.1 412 17 21.6 92397 27
∆Qi = 10−3 36.5 413 36 46.5 92384 50
∆Qi = 10−4 79.6 409 79 100.2 92393 101
∆Qi = 10−5 171.5 394 171 215.9 92415 212
∆Qi = 10−6 369.5 439 369 465.2 92458 461
∆Qi = 10−7 796.1 783 795 1002.2 92511 996
∆Qi = 10−8 1715.1 1715 1713 2159.1 92721 2154
∆Qi = 10−9 3695.1 3693 3692 4651.7 93169 4651

Table 4: Third order stiff and non-stiff methods. Theoretical and real number of steps.

First order methods

In Table 2, for the quantized state variable q1 we can observe how, as expected, as ∆Q decreases
the QSS1 Steps grow approximately linearly with the growth in the precision demand.

In contrast, the QSS1 Steps for the quantized variable q2 appear unrelated with the accuracy
settings and are dominated by large numbers.

Figures 4 and 5 explain this fact. The presence of fast spurious oscillations in q2(t) is the reason
for the number of steps performed by that variable. These oscillations appear only in q2(t) because
the expression of ẋ2(t) in Eq.(21) contains a large term −100 · q2(t) and consequently, a change in
q2(t) provokes a large change in ẋ2(t) which soon provokes a new change in q2(t).

The congruence between the theoretical activity and the practical number of QSS1 Steps is
therefore very good for q1, although unrecognizable for q2.

Meanwhile, Figure 6 shows the evolution of q1(t) and q2(t) using the LIQSS1 approximation.
LIQSS methods were designed to efficiently simulate stiff systems avoiding spurious oscillations,
which in this case disappeared.

Consequently, in Table 2, the LIQSS1 method retains for both quantized variables the corre-
spondence between theoretical activity and number of LIQSS1 Steps as the precision grows.

The analysis above evidences how activity acts as a theoretical baseline (in fact, as a lower
bound) against which the performance of quantization–based methods can be compared.

Second and third order methods.

14



-5

0

5

10

15

20

25

0 50 100 150 200 250 300 350 400 450 500

Figure 4: QSS1 solution of the stiff system of Eq.(16) with ∆Qi = 1 showing spurious oscillations
on q2(t)
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Figure 5: QSS1 solution of the stiff system of Eq.(16) with ∆Qi = 1 showing spurious oscillations
on q2(t) (detail)

The considerations made before for first order methods also apply to higher order algorithms.
Tables 3 and 4 show the expected evolution of QSS2 Steps and QSS3 Steps for q1 as the precision

grows, except when the quantum is large in QSS3. Here, the problem is that the large spurious
oscillations in the slope of q2(t) are reflected in the second derivative ẍ1(t) and thus QSS3 performs
several steps.

Otherwise, as expected, in the QSS2 case steps grow with the square root of the increment in
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Figure 6: LIQSS1 solution of the stiff system of Eq.(16) with ∆Qi = 1.

the precision, and in the QSS3 case with the cubic root. For q2 the number of practical steps again
do not adhere to any relation with the precision nor the theoretical activity, presenting very high
figures as a consequence of the already known spurious oscillations.

On the other hand, the stiff solvers LIQSS2 and LIQSS3 do not exhibit spurious oscillations and
the number of steps they perform is consistent with what is predicted by the theoretical activity.

7 Conclusions and open issues

We have presented a generalization of the concept of activity for continuous time signals. While
the original definition of activity [6] measures the rate of change of the signal, the new definition
of activity of n–th order takes into account the rate of change of its higher order derivatives.

By so doing, this new concept allows to estimate the number of steps performed not only by
first order quantization–based numerical integration algorithms such as QSS1, but also the number
of steps performed by higher order methods.

This fact was analyzed over two simple examples, where the number of steps performed by
the QSSn and LIQSSn algorithms and the theoretical estimations based on the activity of order n
agreed in most cases for different orders and accuracy settings.

The second example also evidenced that, when trying to simulate a stiff system with non–stiff
solvers like QSSn, spurious oscillations appear and the activity of the analytical and numerical
solutions are far away from each other. Consequently, the number of steps performed by the solver
is higher than what the activity predicts.

For this reason, the theoretical estimation provided by the activity of order n is in fact a lower
bound for the number of steps performed by an algorithm of order n. This lower bound can be
compared with the actual number of steps given by an algorithm measuring how suitable is that
algorithm for simulating the system.

We remark that the results presented in this work are, in principle, of theoretical value. The
exact computation of the activity of order n (including the original case of n = 1) requires knowing
the analytical solution of the system, which is impossible to obtain except for very simple cases.
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However, the new concept formalizes the relationship between activity and quantization–based
simulation of continuous systems for higher order algorithms. It also establishes a formal proof
about the relationship between computational costs (which depend on the number of steps per-
formed) and the accuracy of a simulation (which depends linearly on the quantum ∆Qi) for a
method of order n. Thus, after performing a simulation with a method of order n with a quantum
∆Qi, we now formally know that a new simulation with a quantum ∆Qi/M will perform n

√
M

times more steps (provided that the numerical and analytical activity are similar, i.e., that there
are not spurious oscillations).

Some possible next steps arise from the results presented in this work, which are open issues
for future research to be done in the activity area:

• Explore how the knowledge of the activity for each variable in a given system can be exploited
to derive optimal model partitioning and mapping to multiple parallel processing nodes
(cores, processors, servers) in order to maximize speedups as compared against a serial (single
node) simulation.

• Derive a possible definition of a vector activity that measures the complete activity of mul-
tidimensional signals. This measure should estimate the number of steps needed by classic
discrete time numerical algorithms. Then, a comparison between the vector activity and the
scalar activity in a system could be used to decide on the convenience of using discrete–time
or quantization–based numerical algorithms.

• As we mentioned above, computing the activity requires knowing the analytical solution of a
system. Work is needed on establishing conditions under which the activity can be directly
computed from a numerical solution.

• As suggested by a reviewer, it would be useful to study how n–th order activity can be
estimated from observations of a system’s behaviour as early or easily as possible, for instance,
determining (or approximating) bounds on the system’s n–th derivative, which would in turn
determine a bound on the theoretical minimum number of steps required to simulate the
system in a given time interval.

We are currently exploring some of these research lines.
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