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tIn this paper, based on the methodology of dis
rete event simulation of 
ontinuous systems via QuantizedState Systems (QSS), a new se
ond order approximation, 
alled Se
ond-Order Quantized State Systems (QSS2),is proposed. This new approximation, whi
h satis�es the same stability and 
onvergen
e properties that werededu
ed for QSS in previous works, also allows to redu
e the number of 
al
ulations with respe
t to the formermethod. It is shown that in the parti
ular 
ase of Linear Time-Invariant (LTI) Systems, the QSS2 
an be exa
tlyrepresented by a DEVS model and in nonlinear systems an approximated DEVS model 
an be also obtained.For the LTI 
ase, a 
losed formula giving the ne
essary quantization that allows a
hieving a bound in the errorduring the whole simulation is dedu
ed. This formula, whi
h stands for both QSS and QSS2 approa
hes, alsoproves that for any quantization the error is always bounded.Finally, all the mentioned results are veri�ed and illustrated through the simulation of linear and nonlinearexamples, where some advantages over the 
lassi
 dis
rete time methods 
an be observed.Keywords: Simulation of ODE's, Dis
rete Event Simulation, DEVS, Quantized State Systems.1 Introdu
tionThe 
omplexity that 
arries the analyti
al resolution of di�erential equations and the impossibility of obtaining
losed expressions for their solutions, ex
ept in Linear Time Invariant (LTI) systems and a very small 
lass ofnonlinear systems, has motivated the development of several numeri
al methods to obtain approximate solutions.The basi
 tool used by the 
lassi
 numeri
al methods is the dis
retization of the time variable. This dis
retiza-tion 
an be either 
onstant or variable and a

ording to this feature, the algorithms are 
alled �xed step or variablestep methods respe
tively (Press et al., 1986). In both 
ases, the resulting simulation model 
onstitutes a Dis
reteTime System.Re
ently, di�erent methods have been being developed where the time dis
retization is avoided. As a result,instead of arriving to Dis
rete Time they arrive to Dis
rete Event simulation models within the DEVS formalismframework (Zeigler, 1976), (Zeigler et al., 2000).One possible way to obtain dis
rete event simulation models is repla
ing the time dis
retization by the quan-tization of the 
ontinuous system state variables. This is the idea followed by Zeigler (Zeigler and Lee, 1998) andthe de�nition of Quantized Systems. Although this method implies a formal transformation of a 
ontinuous modelinto a dis
rete event system, it has a problem related to the presen
e of an in�nite number of events in a �niteinterval of time. This di�
ulty was solved with the addition of hysteresis in the quantization and the de�nition ofQuantized State Systems in (Kofman and Jun
o, 2001b).A QSS 
an be obtained from a 
ontinuous system after adding it quantizers with hysteresis whi
h transform thestate traje
tories into pie
ewise 
onstant fun
tions so that they 
an be represented by a sequen
e of events 
arrying1



their su

essive values. In the mentioned work it is shown that QSS 
an be exa
tly simulated by DEVS models.As it is also proven there, the QSS also 
onserve some stability properties of the original systems. The simulationvia QSS shows some advantages with respe
t to 
lassi
al dis
rete time algorithms related to the redu
tion ofthe 
omputational 
osts and the possibilities of dealing with hybrid systems under a unique formalism. Anotherimportant feature of QSS is the 
apability of de
oupling 
ertain 
lasses of stru
tural singularities that are very
ommon in systems of equations derived from obje
t oriented modelling paradigms su
h as Bond Graphs (Kofmanand Jun
o, 2001a).Despite these advantages, the QSS simulation 
annot a
hieve a good a

ura
y without a signi�
ant in
rease inthe number of 
al
ulations. This is due to the fa
t that the method performs only a �rst order approximation.In this work, following the line opened with the de�nition of QSS and the proof of their stability properties,a se
ond order approa
h is presented and the mentioned properties are studied in LTI systems in order to obtain
losed formulas relating the quantization and the bounds of the error 
ommitted during the simulation.The se
ond order approa
h is based on the introdu
tion of First Order Quantizers. These quantizers givepie
ewise linear output traje
tories, whi
h are represented by sequen
es of events 
arrying their su

essive valuesand slopes. At this point, Giambiasi's work must be mentioned, sin
e his de�nition of GDEVS (Giambiasi et al.,2000) gives a way of representing pie
ewise polynomial traje
tories by segments of events.The paper is organized as follows. In Se
tion 2 the main de�nitions and properties of QSS are re
alled. Then,the se
ond order approximation (QSS2) is introdu
ed in Se
tion 3 and its main properties are dedu
ed. Afterthat, the DEVS model related to a QSS2 is built in Se
tion 4. This DEVS model is presented as the 
oupling ofsubmodels 
orresponding to integrators and stati
 fun
tions.In a previous general study of stability an algorithm to obtain the quantization that guarantees a desiredbound in the �nal error was dedu
ed. In Se
tion 5, working with LTI system, that algorithm is repla
ed by a
losed formula giving the quantization that assures a
hieving a desired bound in the error not only at the end butalso during the whole simulation.All these results are applied to the simulation of some linear and nonlinear examples in Se
tion 6 and �nally,in Se
tion 7 the QSS and QSS2 performan
es are 
ompared.2 Quantized State SystemsQuantized State Systems (QSS) are 
ontinuous time systems where ea
h state variable is modi�ed by a quantizationfun
tion equipped with hysteresis.Before re
alling the formal de�nition of QSS, the 
on
ept of quantization fun
tion with hysteresis will beintrodu
ed.2.1 Quantization Fun
tionsLet D = fd0; d1; :::; drg be a set of real numbers where di�1 < di with 1 � i � r and let x 2 
 be a 
ontinuoustraje
tory, where x : R ! R. Let b : 
� t0 ! 
 be a mapping and let q = b(x; t0) where the traje
tory q for t � t0satis�es q(t) = 8>><>>: dm if t = t0di+1 if x(t) = di+1 ^ q(t�) = di ^ i < rdi�1 if x(t) = di � " ^ q(t�) = di ^ i > 0q(t�) otherwise (1)and m = 8<: 0 if x(t0) < d0r if x(t0) � drj if dj � x(t0) < dj+12



Then, the map b is a Quantization Fun
tion with Hysteresis. The width of the hysteresis window is ". The valuesd0 and dr are the lower and upper saturation values. Figure 1 shows a typi
al quantization fun
tion with uniformquantization intervals.
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x(t)Figure 1: Quantization Fun
tion with hysteresisA fundamental property of a Quantized Fun
tion with hysteresis is given by the following inequality.d0 � x(t) � dr ) jq(t)� x(t)j = jb(x(t)) � x(t)j � max1�i�r(di � di�1; ") (2)2.2 QSS related to a State Equation SystemConsider the State Equation System given by:� _x(t) = f(x(t); u(t))y(t) = g(x(t); u(t)) (3)This is a typi
al representation of Di�erential Equation Systems, where the 
omponents of the ve
tors x, u and yare 
alled state, input and output variables, respe
tively. This kind of equations allows the representation of most
ontinuous systems.Related to this system, an asso
iated QSS is de�ned as follows:� _x(t) = f(q(t); u(t))y(t) = g(q(t); u(t)) (4)where q(t) and x(t) are related (
omponentwise) by quantization fun
tions with hysteresis. The 
omponents ofthe ve
tor q(t) are 
alled quantized variables. Figure 2 shows a blo
k diagram of a QSS.2.3 Properties of QSSThe most signi�
ant properties of the QSS are related to the form of the traje
tories. Provided that the inputshave pie
ewise 
onstant traje
tories and the fun
tion f is 
ontinuous and bounded in any bounded domain, thefollowing properties are satis�ed:� The quantized variables have pie
ewise 
onstant traje
tories� The state variable derivatives have also pie
ewise 
onstant traje
tories3
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Figure 2: Blo
k Diagram of a generi
 QSS� The state variables have 
ontinuous pie
ewise linear traje
toriesFigure 3 shows typi
al traje
tories in a QSS.
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Figure 3: Typi
al traje
tories in a QSSAs a 
onsequen
e of these properties the QSS 
an be exa
tly simulated by a dis
rete event model within theDEVS formalism framework.QSS have other important 
onvergen
e and stability properties that will be re
alled later. The DEVS modelrelated to a QSS and the proof of the mentioned properties 
an be found in (Kofman and Jun
o, 2001b). ThatDEVS model also shows formaly the way of exa
tly simulating a QSS.3 The Se
ond Order ApproximationAs it was mentioned above, the approa
h of QSS 
onstitutes a �rst order simulation method. Thus, it does notallow to a
hieve a good a

ura
y without in
reasing 
onsiderably the number of 
al
ulations.4



This se
tion introdu
es a new method that results in a se
ond order approximation and 
onserves most of theproperties that where shown for QSS.3.1 The First Order QuantizerIn most appli
ations of QSS, the distan
e between quantization levels is taken equal to the hysteresis width. Thereason for this 
hoi
e is that both terms must be taken as big as possible in order to redu
e the 
omputational 
ostsbut the error introdu
ed by the quantization is bounded by the maximum between them, as it 
an be dedu
edfrom equation (2). Thus, the best solution is taking them equal to ea
h other (Kofman et al., 2001).When a quantizer has the same hysteresis and quantum size, it 
an be seen as a fun
tion that produ
es apie
ewise 
onstant output traje
tory that 
hanges when the di�eren
e with the input value rea
hes some threshold.This threshold is given by the quantum size or the hysteresis width.Using this idea, a new �rst order quantization fun
tion 
an be de�ned as a fun
tion that gives a pie
ewise linearoutput traje
tory, whose value and slope 
hange when the di�eren
e between this output and the input be
omesbigger than 
ertain threshold. Figure 4 illustrates this idea.
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Figure 4: Input and Output traje
tories in a First Order quantizerAn output line starts from the input value with some slope and then, when that line and the input traje
torydi�er from ea
h other in a quantity �q, the output is represented by a new line starting from the new input value.There are several possibilities to 
hoose the slope of the output lines, but only two of them will be 
onsideredhere. The �rst one is to take the derivative of the input traje
tory as the slope of the output line (Figure 5a). These
ond possibility is to use a previous output value to extrapolate the line (Figure 5b).Although the �rst 
hoi
e 
onstitutes a better approximation and it is easier to implement, the se
ond one maybe 
onvenient in 
ases where the 
ommuni
ation 
osts are 
riti
al be
ause in this 
ase the information about theslope 
an be obtained looking at the su

essive values that de�ne the traje
tory while in the �rst 
ase, the valueof the slope has to be transmitted to the rest of the system.Then, for both approa
hes, the relationship between the input x(t) and the output q(t) of a �rst order quantizer
an be writen as follows: q(t) = � x(t) if t = t0 _ jq(t�)� x(t�)j = �qq(tj) +mj(t� tj) otherwise (5)5



PSfrag repla
ements (a) (b)Figure 5: Di�erent possibilities for the 
hoi
e of the slopewith the sequen
e t0; : : : ; tj ; : : : de�ned astj+1 = min(tjt > tj ^ jx(tj) +mj(t� tj)� x(t)j = �q) (6)The slopes, 
onsidering the �rst possibility (i.e. taking the derivative of the input variable), 
an be 
al
ulateda

ording to m0 = 0; mj = _x(t�j ) j = 1; : : : ; k; : : : (7)while for the se
ond 
hoi
e we de�nem0 = 0; mj = x(tj)� x(tj�1)tj � tj�1 j = 1; : : : ; k; : : : (8)When two traje
tories x(t) and q(t) satisfy the relationships given by the previous equations we will saythat those variables are related by a �rst order quantization fun
tion. A fundamental property of a �rst orderquantization fun
tion is given by the following inequality:jx(t)� q(t)j � �q 8t � t0 (9)3.2 Se
ond-Order Quantized State Systems (QSS2)The addition of quantizers at the output of the 
ontinuous system integrators transforms it into a QSS. When�rst order quantizers are used instead of zero order quantizers, the resulting systems will be 
alled Se
ond OrderQuantized State Systems or QSS2.These new systems 
an be still represented by equation (4), but now the 
omponents of x(t) and q(t) are relatedby �rst-order quantization fun
tions. Figure 6 shows a blo
k diagram representation of QSS2.The QSS2 properties are quite similar to the properties of QSS. In fa
t, the stability and 
onvergen
e proofs in(Kofman and Jun
o, 2001b) are still satis�ed by QSS2 sin
e they are based on the representation (4) (whi
h holdsfor QSS2) and the inequality (2), whi
h is veri�ed by the QSS2 with the form of the inequality (9).However, there is an important di�eren
e between QSS and QSS2 related to the traje
tory forms. In generalQSS2, all we 
an 
laim is that the quantized variables q(t) will have pie
ewise linear traje
tories. But in QSS2related to linear systems the state traje
tories will be pie
ewise paraboli
 with pie
ewise linear derivatives.Due to this reason, it will be possible to �nd DEVS models that exa
tly represent the behaviour of QSS2related to generi
 linear time invariant systems. Unfortunately, QSS2 related to general nonlinear systems do nothave exa
t representation in terms of DEVS. However, as it will be explained later, the method 
an also be appliedin the simulation of these nonlinear 
ases.
6
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Figure 6: Blo
k Diagram of a generi
 QSS23.3 Traje
tories in a QSS2As it was mentioned above, the quantized variable traje
tories of QSS2 are pie
ewise linear. It was alsosaid thatin linear time invariant systems the state derivatives have pie
ewise linear traje
tories while the state derivativeshave pie
ewise paraboli
 traje
tories. The following theorems give su�
ient 
onditions and prove these properties.Although we will deal with the �rst 
hoi
e of the slope (7) all the properties dedu
ed here 
an be easily extendedfor the other 
ase.Theorem 1. Given the QSS2 de�ned in (4) with f 
ontinuous and bounded in any bounded domain and u(t) beingbounded, the traje
tories of q(t) are pie
ewise linear while they remain inside a bounded region.Proof. Let qi(t) and xi(t) denote the traje
tory of the i-th 
omponent of q(t) and x(t) respe
tively. Sin
e xi(t) andqi(t) are related by a �rst order quantization fun
tion, the last traje
tory 
an be written asqi(t) = � xi(t) if t = t0 _ jq(t�)� x(t�)j = �qqi(tj) +mj(t� tj) otherwise (10)with the sequen
e t0; : : : ; tj ; : : : de�ned a

ording totj+1 = min(tjt > tj ^ jxi(tj) +mj(t� tj)� xi(t)j = �qi) (11)and where, a

ording to (7), we havem0 = 0; mj = _xi(t�j ) j = 1; : : : ; k; : : : (12)Although equation (10) implies that qi(t) is formed by se
tions of lines, in order to assure that it is pie
e-wise linear it is also ne
essary to prove that the sequen
e t0; : : : ; tj ; : : : ; does not 
ontain an in�nite number of
omponents in a �nite interval of time.Sin
e it was assumed that q(t) is bounded over some interval of time [t0; tf ℄, and taking into a

ount thehypothesis made about f and the fa
t that u(t) is bounded, we havejfi(q(t); u(t))j � Fi t0 � t � tf (13)From (12) we have jmj j � jfi(q(t); u(t))j � Fi (14)
7



Thus, the slope results always bounded by a 
onstant Fi. From (11) we have�qi = jxi(tj) +mj(tj+1 � tj)� xi(tj+1)j� jxi(tj+1)� xi(tj)jtj+1 � tj (tj+1 � tj) + jmjj(tj+1 � tj)� jmj+1j(tj+1 � tj) + jmjj(tj+1 � tj)� 2Fi(tj+1 � tj)Finally, it results that tj+1 � tj � �qi2Fi (15)This inequality implies that the sequen
e t0; : : : ; tj ; : : : ; has a minimum time between su

essive 
omponents andit is impossible to have an in�nite number of 
omponents in a �nite interval of time. As a 
onsequen
e of this, thetraje
tories of q(t) are pie
ewise linear.Theorem 2. In a QSS2 related to a LTI system with bounded pie
ewise linear inputs, the traje
tories of thederivatives of the state variables are pie
ewise linear when the quantized variables remain in a bounded region.Proof. In LTI systems we have f = Ax+Bu and then, the hypothesis of 
ontinuity and boundedness formulatedin Theorem 1 are satis�ed. Taking into a

ount the assumptions on the input and quantized variable traje
toriesit 
an be easily seen that the mentioned theorem holds and then, the quantized variables have pie
ewise lineartraje
tories.A LTI system 
an be expressed as follows _x(t) = Ax(t) +Bu(t) (16)where A is the evolution matrix of the original and B is 
alled the input matrix. Then, the asso
iated QSS2satis�es _x(t) = Aq(t) +Bu(t) (17)where x(t) and q(t) are related 
omponentwise by �rst order quantization fun
tions.Sin
e q(t) and u(t) have pie
ewise linear traje
tories, it is 
lear that the traje
tories of _x(t) are also pie
ewiselinearA 
orollary of this theorem is that in the 
ase of QSS2 related to LTI systems, the state variables have pie
ewiseparaboli
 traje
tories, as it was mentioned before.The pie
ewise 
onstant and pie
ewise linear traje
tories of a QSS allow its DEVS representation, as it is shownin (Kofman and Jun
o, 2001b). In a similar way, the pie
ewise linear and pie
ewise paraboli
 traje
tories will allowto �nd a DEVS model that exa
tly represents the behaviour of a QSS2 asso
iated to a LTI system.4 DEVS Representation of QSS2The DEVS model of QSS built in (Kofman and Jun
o, 2001b) was based on the use of events representing the
hanges in the values of the variables. Here, in a similar way, the 
hanges in the slopes and values of the traje
torieswill be represented by events 
arrying the new values and slopes of the 
orresponding variables.In this se
tion we will deal with the 
ase in whi
h the slopes are 
hosen equal to the derivative of the inputvariable of the quantizers (see Figure 5a). The other 
ase is quite similar, but there the events does not need torepresent the slopes. However, in that 
ase, the partition into submodels be
omes more 
ompli
ated.The DEVS model will be de�ned as a 
oupling of �rst order quantized integrators (integrators with a �rst orderquantizer at the output) and two systems that 
al
ulate the evolution fun
tion (f) and the output fun
tion (g)(see Figure 7). 8
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Figure 7: Partition into sub-models of the QSS24.1 DEVS model of a First Order Quantized IntegratorThe following DEVS model represents the behaviour of a First Order Quantized Integrator with a pie
ewise linearinput traje
tory.Mj =< X;S; Y; Æint; Æext; �; ta >; where:X = R � R � finportsg = R � R � f1gS = R � R � R � R � R � R+0 1Y = R � R � foutportsg = R � R � f1gÆint(u;mu; x; q;mq; �) = (u+mu � �;mu; x+ u � � + mu2 �2; x+ u � � + mu2 �2; u+mu � �; �0)Æext(u;mu; x; q;mq; �; e; v;mv ; port) = (v;mv; x+ u � e+ mu2 e2; q +mq � e;mq; �̂)�(u;mu; x; q;mq; �) = (x+ u � � + mu2 �2; u+mu � �; 1)ta(u;mu; x; q;mq; �) = �where �0 = ( q2�qmu if mu 6= 01 otherwise (18)and �̂ 
an be 
al
ulated as the least positive solution ofjx+ u � e+ mu2 e2 + v � �̂ + mv2 �̂2 � (q +mq � e+mq�̂)j = �q (19)The input and output events are 
onstituted by numbers representing the value, slope and port of the 
orre-sponding traje
tory. The state s 2 S saves the last input value and slope (u and mu), the 
urrent value of thestate variable (x), the last output value and slope (q and mq) and the time to the next output event (�).The internal transition fun
tion 
al
ulates the new state after an output event and the external transitionfun
tion does the same but after an input event. Here, the equations (18) and (19) 
al
ulates the time to the nextevent, whi
h is equal to the time when the di�eren
e between the traje
tories of x(t) and q(t) be
omes equal to�q. Finally, the output fun
tion (�) gives the output value and slope.4.2 DEVS model of the stati
 fun
tionsThe fun
tions f(x; u) and g(x; u) are stati
 fun
tions. In order to simplify their representation, they will be
onsidered as the 
oupling of their s
alar 
omponents. 9



The DEVS model asso
iated to a generi
 s
alar fun
tion fi(z1; :::; zq), will be the following:Fi =< X;S; Y; Æint; Æext; �; ta >; where:X = (R � R) � finportsg = (R � R) � f1; :::; qgS = (R � R � R)q � R+0 1Y = (R � R) � foutportsg = (R � R) � f1gÆint((z1;mz1 ; 
1); :::; (zq ;mzq ; 
q); �) = ((z1;mz1 ; 
1); :::; (zq ;mzq ; 
q);1)Æext((z1;mz1 ; 
1); :::; (zq ;mzq ; 
q); �; e; v;mv; port) = ((z01;m0z1 ; 
01); :::; (z0q ;m0zq ; 
0q); 0)�((z1;mz1 ; 
1); :::; (zq ;mzq ; 
q); �) = (fi(z01; :::; z0q); 
1mz1 + :::+ 
qmzq ; 1)ta((z1;mz1 ; 
1); :::; (zq ;mzq ; 
q); �) = �with z0j = � v if j = portzj +mzje otherwisem0zj = � mv if j = portmzj otherwise
0j = 8<: fi(z +mze)� fi(z0)zj +mzje� z0j if j = port ^ zj +mzje� z0j 6= 0
j otherwise (20)If the fun
tion fi is linear, this DEVS model exa
tly represents its behavior. The equation (20) 
al
ulates the
oe�
ients that multiply the input traje
tory slopes. In the linear 
ase they will 
oin
ide with the 
oe�
ients Ai;jand Bi;j 
orresponding to the evolution and input matri
es respe
tively.In the nonlinear 
ase, the output traje
tory of the fun
tion fi will not be pie
ewise linear. However, thetraje
tory given by the DEVS model, whi
h is interpreted as pie
ewise linear, 
onstitutes a good approximation tothe true output. The reason of this is that the 
oe�
ients 
j , 
al
ulated with (20), are 
losed to the 
orrespondingpartial derivatives of fi evaluated at the points given by the input traje
tories. Thus, we 
an a�rm that the DEVSmodel of a stati
 fun
tion 
an be applied to general nonlinear fun
tions and general nonlinear systems 
an besimulated under the QSS2 approa
h.The 
omplete DEVS model related to a QSS2 will be formed by the 
oupling of submodels 
orresponding to�rst order quantized integrators and stati
 fun
tions.5 Convergen
e and stability propertiesAs it was mentioned before, the 
onvergen
e and stability properties that were proven for QSS are based on thefa
t that these systems 
an be writen a

ording to (4) satisfying the inequality (2). QSS2 
an be also representedby (4), where the last inequality takes the parti
ular form of (9).Thus, the QSS2 approximation will satisfy thesame 
onvergen
e and stability properties.The problem is that in the nonlinear 
ases the DEVS model does not represent exa
tly the behavior of theQSS2. As a 
onsequen
e, it 
annot be a�rmed that in general nonlinear systems the se
ond order approximatingDEVS model shows that properties.The mentioned properties 
an be synthesized as follows.� Under 
ertain 
onditions, the solutions of a QSS (or QSS2) asso
iated to a 
ontinuous system 
onverge tothe solutions of the last one when the quantization goes to zero (Convergen
e).10



� It is always possible to �nd a quantization so that the solutions of the QSS (QSS2) asso
iated to an asymp-toti
ally stable 
ontinuous system �nish inside an arbitrary small region around the equilibrium points of theoriginally 
ontinuous system (Stability).The �rst property guarantees that an arbitrarily small error 
an be a
hieved during the whole simulation. These
ond one, not only assures that the �nal error 
an be bounded by some given value but it also allows �nding thequantization that a
hieves that purpose by following some algorithm.It is interesting to join both properties so that we are able to �nd a quantization that assures having a minimumerror during the whole simulation. Unfortunately, this 
annot be done for general nonlinear 
ases, but it 
an besolved for LTI systems as it will be shown.The parti
ularization of the stability properties to LTI systems in simulation methods is an important tasksin
e it allows giving a measure of the relationship between the error and the dis
retization to be applied. Thereis a well known result in dis
rete time methods whi
h says that the appli
ation of Euler's method to a stable LTIsystems has a bounded error when the step size h satis�es:h < 2�max (21)being �max the maximum eigenvalue of the evolution matrix (A) (The formula stands only if all the eigenvalues ofA are real. When there are 
omplex eigenvalues it adopts a di�erent form).Although the inequality (21) only holds for LTI systems, it 
an be also approximately applied to generalnonlinear systems using the linearized systems (through the Ja
obian matrix of the fun
tion f). The validity ofthe linearized models in simulation 
an be justi�ed taking into a

ount that there are only small 
hanges in thevariables during su

essive steps. Thus, after ea
h step, the traje
tories stay inside the region where the linearizedmodel 
onstitutes a good approximation.In this se
tion an analogous formula to (21) will be dedu
ed for QSS and QSS2 related to LTI systems. It willbe shown that independently of the quantization, the error never diverges and the mentioned formula will give abound of the error during the whole simulation.5.1 Error in LTI systemsConsider the following linear time invariant system_~x(t) = A~x(t) +Bu(t) (22)Then, the asso
iated QSS (QSS2) will have the following expression:_x(t) = A(x(t) + �x) +Bu(t) (23)where �x(t) = q(t)� x(t), being q(t) the quantized version of x(t). Thus, the error e(t) = x(t)� ~x(t) satis�es:_e(t) = A(e+�x) (24)Sin
e the initial 
ondition ~x(t0) = x0 is suppossed to be known, we 
an take x(t0) = ~x(t0) = x0 and our goal willbe studying the evolution of e(t) starting from the initial 
ondition e(t0) = 0.Taking into a

ount (2) and (9), the ele
tion of the quantum size (and the hysteresis width in QSS) for ea
hvariable is equivalent to the 
hoi
e of a bound for the 
orresponding 
omponent of �x. Hen
e, in the followingtheorems, the ne
essary 
onditions for the 
hoi
e of that bounds will be given in order to guarantee that ea
h
omponent ei(t) in e(t) remains bounded by some maximum desired error in the 
orresponding variable xi(t).Formally, the bounds �q1; � � � ;�qn will be obtained so that the 
onditionj�xi(t)j � �qi i = 1; � � � ; n11



assures that jej(t)j � �ej 8t � t0; j = 0; � � � ; nor equivalently, that the ve
torial inequality1 j�x(t)j � �qimplies that je(t)j � �e (25)with e(t0) = 0.Here, �q is the ve
tor of quantum sizes and �e is the ve
tor of maximum desired errors.Theorem 3. Consider the system (24) being A a s
alar with its real 
omponent being negative. When e(t0) = 0,the 
ondition given by (25) 
an be guaranteed by taking�q = jRe(A)jjAj �e (26)Proof. If A is a real number the proof is straightforward sin
e when e(t) = �e = �q � �x, from (24) we see that_e(t) � 0. Similarly, when e(t) = ��e, it results _e(t) � 0. Thus, e(t) 
annot abandon the interval [��e;�e℄.For the 
omplex 
ase, we de�ne e(t) = r(t) � ej�(t)Then (24) 
an be rewritten as: ddt(r � ej�) = A(r � ej� +�x)_rej� + jrej� _� = A(r � ej� +�x)and then, _r + jr _� = A(r +�x � e�j�)= A � r +A�x � e�j�Taking only the real 
omponents of the last equation we have_r = Re(A) � r + Re(A�x � e�j�)� Re(A) � r + jAjj�xj� Re(A) � r + jAjj�qjConsidering that r(t) = je(t)j and the using the equation (26), it results thatddt je(t)j � Re(A) � je(t)j+ jAj jRe(A)jjAj �e= Re(A)(je(t)j ��e)Sin
e Re(A) is negative and je(t0)j = 0, je(t)j 
annot be
ome greater than �e.In the real 
ase, this theorem expresses that the error in a stable �rst order system is bounded by the quanti-zation size. In the 
omplex 
ase, it does not have any meaning. However, it will be useful for later results.1We say that a � b when ai � bi for all the 
omponents of the ve
tors a and b12



Theorem 4. Consider the system of (24) being A a diagonal matrix with Re(Ai;i) < 0 . When e(t0) = 0, the
ondition given by (25) 
an be guaranteed taking2�q = diag( jRe(Ai;i)jjAi;ij )�eProof. The proof is straightforward applying the theorem 3 for ea
h 
omponent of e(t).Theorem 5. Consider the system of (24) being A a diagonalizable Hurwitz3 matrix. When e(t0) = 0, the 
onditiongiven by (25) 
an be guaranteed taking �q so thatjV j � diag( j�ijjRe(�i)j) � jV �1j�q = T�q � �e (27)where V is the eigenve
tor matrix and �i are the eigenvalues of the matrix A, that is 4V �1 �A � V = diag(�i) (28)Proof. Let be e(t) = V w(t). Thus, from (24) it resultsV _w(t) = A(V w +�x)and then _w(t) = V �1AV (w + V �1�x) = V �1AV (w +�xw) (29)and j�xw(t)j = jV �1�xj � jV �1j � j�xj � jV �1j�qFrom (28) V �1AV is a diagonal matrix. Thus the system (29) satis�es the theorem 4. From this theorem and thelast inequality we have jw(t)j � diag( j�ijjRe(�i)j) � jV �1j�qIt results from the de�nition of w(t) thatje(t)j = jV w(t)j � jV j � diag( j�ijjRe(�i)j ) � jV �1j�q = T�q � �ewhi
h 
ompletes the proof.The inequality (27) 
an be satis�ed using di�erent sets of bounds �q. A formula that allows satisfying that
ondition is the following �qi = 1n minj (�ejTji ) (30)2The expression diag(Ai;i) refers to the diagonal matrix formed with the 
omponents Ai;i in its diagonal.3A n � n matrix is said to be Hurwitz when all its eigenvalues have negative real 
omponent (i.e. the system _x = Ax + Bu isasymptoti
ally stable)4j � j denotes the 
omponentwise moduli of the 
orresponding matrix or ve
tor.
13



5.2 Some remarks about the resultsThe theorem 5 and the equation (30) give a pra
ti
al formula to 
al
ulate the quantization that assures that theerror in ea
h variable never be
omes bigger than 
ertain bound �ej . However, that formula requires the 
al
ulationof the eigenve
tors of the matrix A. If that eigenve
tors are 
al
ulated, the exa
t solution of (22) 
an be obtained(at least when the input is not very 
ompli
ated) and then the simulation might be
ome unne
essary (ex
ept forthe 
ase in whi
h the goal is simulating a system for di�erent and 
omplex input traje
tories).In spite of this, the analysis shows important theoreti
al properties with pra
ti
al and 
on
eptual 
onsequen
es.In one hand, it 
an be seen that the error is bounded by a linear fun
tion of the quantization. Thus, pra
ti
al rulesto modify the quantization in order to obtain more adequate results 
an be easily dedu
ed. The identi�
ation ofthe relationship between the error and the step size in dis
rete time simulation methods 
onstitutes the basis forthe development of variable step size algorithms. In our 
ase, the mentioned analysis 
an 
onstitute the basis forthe future formulation of adaptive quantization methods.Another property that 
an be dedu
ed from the analysis done whi
h was already mentioned is that for anyarbitrary quantization, the error will be bounded during the whole simulation. In 
lassi
 dis
rete time algorithms,this is distin
tive property of impli
it methods. However, in QSS and QSS2 there is no impli
it formula, whi
h
onstitutes an important advantage from the point of view of the 
omputational 
osts. This is probably the mostimportant feature of the QSS and QSS2 methods.It is also interesting to mention that the formula (27) only involves geometri
al parameters of the system (theeigenve
tors and the ratio of the real part to the absolute value of the eigenvalues). The relationship betweenthe error and the quantization does not depend on the speed of the system as it o

urs in dis
rete time methods(
onsider inequality (21) in Euler's method, for instan
e). This is 
oherent with the fa
t that in quantized statesystems the time dis
retization is repla
ed by the dis
retization of the state variables.Although all the analysis in this se
tion was made over linear systems, it was already mentioned that simulationinvolves a su

ession of lo
al problems. This is, there are not important variations between su

essive steps orevents and then, the linearized models of nonlinear systems 
onsitute good approximations in most 
ases. Thus,the results obtained here 
an be approximately extended to general nonlinear systems.6 Examples and Simulation Results6.1 A simple linear exampleIn this �rst example, we will verify the validity of Theorem 5 using the results of the QSS simulation example in(Kofman and Jun
o, 2001b). There, the following system 
orresponding to a RLC serial 
ir
uit was introdu
ed.8><>: _x1 = 1Lx2_x2 = U � 1Cx1 � RLx2y = 1Lx2 (31)Using the parameters R = 100:01; L = 0:01; C = 0:01, a 
onstant input U = 100 and a uniform quantization of10�2 and 10�4 in x1 and x2 respe
tively, the use of QSS gave the output traje
tory of Figure 8.The evolution matrix A is A = � 0 100�100 �10001 �and its 
orresponding eigenve
tor and eigenvalues matri
es result:V = � 1 �0:01�0:01 1 � ; diag(�i) = � �1 00 �10000 �14
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an be assured that the error in x2(t) 
annot be greater than 0:0003. Then, the error in the variabley(t) = 100 � x2(t), 
annot be
ome greater than 0:03. In fa
t,as it is shown in Figure 9, the error 
al
ulated usingthe exa
t solution of the system equations is always less than 6 � 10�3.PSfrag repla
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6.2 The se
ond order method in a nonlinear exampleThe famous se
ond order Lotka-Volterra's model is a nonlinear system of di�erential equations that tries to repre-sent the evolution of the population of two spe
ies, prey and predator, in a 
ommon habitat. Due to the nonlinearityof the system, this is a 
ase in whi
h an analyti
 solution for the general 
ase 
annot be obtained.The following set of state equations 
onstitutes one possible representation of the mentioned system� _x1 = �x1 + �x1x2 � �x21_x2 = �mx2 + �x1x2where the variables x1 and x2 represent the population of preys and predators respe
tively.The system was simulated using QSS2 with a quantization of �q1 = �q2 = 0:001. The parameters taken were� = 0:1, � = 0:01, � = 0:01, m = 0:4, � = 0:5 and the initial 
ondition adopted was x1(0) = x2(0) = 10. Theresults are shown in Figures 10 and 11.
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tFigure 11: Number of predators in Lotka-Volterra's modelThe simulation was performed with 211 internal transitions in the �rst integrator and 264 in the se
ond, whi
hgives a total of 475 steps. These results were 
ompared with the traje
tories obtained using Heun's method, the16




lassi
 se
ond order �xed step method. The step size used in Heun's method was 0:63 so that it performed thesame number of steps. Figure 12 shows a part of those traje
tories and the �true� traje
tory. The �true� traje
torywas obtained using the �fth order Dormand-Prin
e method with a step size of 0:1.
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ording to Heun's method, QSS2 and the �true� traje
tory.The absolute error of the QSS2 and Heun's method during the simulation is shown in Figure 13. The use ofQSS2 a
hieves a 
onsiderable redu
tion of the maximum error. However, the error does not 
onverge to zero as inHeun's method.In spite of the la
k of 
onvergen
e, the results obtained with QSS2 simulation are mu
h more reliable than theresults with Heun's method sin
e the error is bounded during the whole simulation. Here we 
an see that thisproperty dedu
ed for LTI systems in Se
tion 5 is still veri�ed in nonlinear examples.
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6.3 QSS2 in a high order linear modelThe 
ir
uit of Figure 14 represents an RLC transmission line. This model is useful to study the performan
eof integrated 
ir
uits transmitting data at a very fast rate. Although the length of the wires is only of a few
entimetters, the high frequen
y of the signal produ
es that the delays introdu
ed by the wires 
annot be ignoredand the transmission line theory must be applied.The transmission line models are usually des
ribed as systems of partial di�eren
ial equations. However, they
an be approximatted by lumped models where the distributed e�e
ts of 
apa
ity, indu
tan
e and resistan
e arerepresented by a 
as
ade of single 
apa
itors, indu
tors and resistors, as Figure 14 shows.PSfrag repla
ements Vin VoutRRR LLL CCCFigure 14: RLC Transmission LineIn order to 
onstitute a good approximation, the RLC model must be formed by several se
tions. As a
onsequen
e of this, it results in a high order ordinary di�erential equation.In (Ismail et al., 1999) an example 
omposed by �ve se
tions of RLC 
ir
uits is introdu
ed. The resistan
e,indu
tan
e and 
apa
itan
e values used there 
orresponds to real parameters. The model obtained is a tenth orderlinear system, where the evolution matrix (A) 
an be written as follows:
A = 266666664 �R=L �1=L 0 0 0 0 0 0 0 01=C 0 �1=C 0 0 0 0 0 0 00 1=L �R=L �1=L 0 0 0 0 0 00 0 1=C 0 �1=C 0 0 0 0 0... ... ... ... ... ... ... ... ... ...0 0 0 0 0 0 0 0 1=C 0

377777775 (32)The mentioned system was simulated applying a trapezoidal input wave. The input and output traje
toriesare shown in Figure 15.The parameters used were R = 80
, C = 0:2pF and L = 20nH. These parameters 
orrespond to a transmissionline of one 
entimetter divided in �ve se
tions, where the resistan
e, 
apa
itan
e and indu
tan
e are 400
=
m,1pF=
m and 100nH=
m respe
tively.The trapezoidal input has a rising time tr = 10ps. The quantization adopted was �v = 4mV in the statevariables representing voltages and �i = 10�A in the state variables representing 
urrents. That quantization,a

ording to (27), assures that the maximum error is smaller than 250mV in the variable Vout.The simulation took a total of 2536 steps (between 198 and 319 internal transitions at ea
h integrator) toobtain the �rst 3:2ns of the system traje
tories.The experiment was repeated using a quantization 100 times smaller, whi
h assures having a maximum errorin Vout of 2:5mV . This new simulation was performed with a total of 26883 internal transitions.The 
omparision of the results of both experiments (Figure 16) shows that the di�eren
e between the traje
toriesnever be
omes greater than 14:5mV whi
h implies that the error in the �rst simulation was not greater than 17mV .In this 
ase, the theoreti
al predi
tion of the error (the bound was 250mV ) was quite 
onservative (this 
an beeasily understood taking into a

ount that the theoreti
al bound of the error holds for any input traje
tory andfor any initial 
ondition). 18
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e in Vout using two di�erent quantization sizesAlthough the number of steps (2536) seems to be quite big, it is important to take into a

ount that ea
h steponly involves 
al
ulations at three integrators (the integrator that performs the internal transition and the twointegrators dire
tly 
onne
ted to its output). This is due to the parti
ular form of the matrix A (whi
h is sparse).It is important to mention that any �xed step dis
rete time method should use a step size of about 1ps in orderto obtain a good representation of the input signal sin
e its rising time is very short (mainly if we are interestingin the behaviour of the system during the rising time). As a result, the number of steps would be 3200 or greaterwith ea
h step involving 
al
ulations over all the state variables.7 Final remarks7.1 QSS2 vs. QSSIt was shown that QSS and QSS2 satisfy the same stability and 
onvergen
e properties. Moreover, using thesame quantization, they have exa
tly the same bound for the error during the whole simulation of a LTI system.19



However, the simulation using QSS2 requires mu
h less steps than a simulation using QSS for the same quantization(i.e. for the same error bound).The 
ause of the redu
tion of the number of steps 
an be found in the 
omparision of the �gures 4 and 17. Thenumber of steps used by a QSS to represent the same traje
tory with the same quantization size (�q) is mu
hgreater than the used by the QSS2. The key is that using the information of the slope in QSS2 the time requiredto obtain a di�eren
e equal to �q with respe
to to the input traje
tory be
omes mu
h greater.
PSfrag repla
ements InputOutput�q

Figure 17: Input and Output traje
tories in a Zero Order quantizerIn Lotka-Volterra's example, the simulation via QSS using the same quantization would have taken more than10000 internal transitions at ea
h integrator5. This number, 
ompared against the 264 and 211 steps performedby the QSS2 simulation shows 
learly the advantage of the new method.The di�eren
e between the performan
e of QSS and QSS2 be
omes greater as well as the quantization is takensmaller. In fa
t the number of internal transitions in QSS is approximately proportional to the inverse of thequantization size while in QSS2 it is approximately proportional to the square root of that number (see equation(18)). This relationship is veri�ed in the example of the transmission line, where the use of a quantization 100times smaller resulted in an in
rement of about 10 times in the number of steps.In order to quantify the advantages of QSS2 with respe
t to QSS a simple linear system was simulated usingboth methods and di�erent quantum sizes. The mentioned system is8<: _x1 = x2_x2 = 1� x1 � x2y = x2 (33)Figure 18 
ompares the CPU time in the simulation for di�erent quanta in both methods. QSS shows a betterperforman
e for big quantizations but when the quantization be
omes smaller QSS2 redu
es 
onsiderably the
omputational 
osts. In fa
t, for �q = 0:0001 the se
ond order method is 40 times faster than QSS.7.2 Hysteresis in QSS2The addition of hysteresis to the zero order quantizer was ne
essary in order to avoid arriving to illegitimate DEVSmodels (Kofman and Jun
o, 2001b) but in QSS2 it seems to be absent. However, the hysteresis is also presentsin
e it is impli
it in the equations (5) and (6) whi
h de�ne the �rst order quantizer and in the equation (19)
orresponding to the DEVS model of the �rst order quantized integrator.5This number 
an be obtained 
omparing the amplitude of the traje
tories and the quantization size 0:00120
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an be interpreted as both, the quantization size and the hysteresis width. Thehysteresis 
an be seen in the following example.Consider a �rst order quantizer that produ
es an output event (i.e. its input and output values be
ome thesame) with a slope equal to zero. Assume that after that, the input value starts rising and then falling again. Ifthere were not hysteresis, when the input value rea
hes the output value the quantizer would produ
e a new event(that is what would happen in a quantizer without hysteresis). However, a

ording to (6) that new event will notbe produ
ed until the di�eren
e between the input and output variables rea
hes the value �q. This is equivalentto what happens in a zero order quantizer with hysteresis window " = �q.8 Con
lusionsThe se
ond order method solves one of the most important problems of the previous dis
rete event based integrationalgorithms sin
e it 
an a
hieve a good a

ura
y without an ex
esive in
rement in the number of steps.The theoreti
al analysis showed that the approximation via QSS2 satis�es the same stability and 
onvergen
eproperties that were proven for QSS. In addition, a new property was dedu
ed for both methods when they areapplied to the simulation of LTI systems. That property assures that the use of QSS or QSS2 produ
es a boundederror during the whole simulation whi
h is proportional to the quantization. In fa
t, the inequality (27) gives a
losed formula to obtain the mentioned bound as a fun
tion of the system parameters. It is also important tomention that the bound does not depend on the input traje
tories or the initial 
onditions.This result implies that the quantization 
onstitutes a measure of the error at any time of the simulation. Sin
ethe forms of the traje
tories in QSS and QSS2 are well known (they are pie
ewise linear or pie
ewise paraboli
),that information 
an be used to obtain the exa
t value of the quantized traje
tories not only at the event timesbut also at any intermediate time. Generally, in 
lassi
 dis
rete time methods the bound of the error is dedu
edonly for one step (typi
ally using Taylor's series) and there is no information about the error 
ommitted whenintermediate values are interpolated.Although the mentioned result was obtained for LTI systems, it 
an be approximately extended to nonlinearsystems as it was dis
ussed in se
tion 5 and veri�ed through the Lotka-Volterra's example.With respe
t to the future work, the theorem 5 should be 
ompleted for general Hurwitz matri
es (i.e. in
ludingthe non diagonalizable 
ases) and it would be desirable to �nd a formal proof of what was mentioned in the previousparagraph related to nonlinear systems. 21



The QSS and QSS2 methods 
an be generalized (QSSn) using higher order polynomials for the representationof the traje
tories. The use of su
h higher order methods should result in an important redu
tion of the numberof steps. However, a new problem might appear here sin
e the equation (19) will turn into an equation of order n.When n is bigger than 3 the resolution be
omes quite di�
ult.Another important future task is the introdu
tion of adaptive quantization. The idea is similar to what is doneby the variable step algorithms, that is, varying the step size a

ording to some estimation of the error. In thatway, we 
an obtain a method in whi
h the user does not have to 
hoose the quantization. It would be automati
ally
hosen by the algorithm a

ording to the desired error. The adaptive quantization might be also used to avoidthe �nal os
illations in the quantized solutions (using �xed quantization the solutions does not 
onverge to theequilibrium point but they remain in a region around that point as it is was mentioned before). A result that 
anbe useful for this goal 
an be found in (Bro
kett and Liberzon, 2000), where the authors show that a system withquantizers 
an rea
h the equilibrium point if the quantization size is redu
ed as well as the traje
tories get 
loserto that point.Finally, the use of the methodology in the example of the transmission line showed some advantages that mightbe applied to more general distributed parameters systems. Taking into a

ount that here the resulting DEVSmodel 
orresponding to the QSS (QSS2) 
an be built as the 
oupling of several identi
al submodels (asso
iated toea
h se
tion of the system), the 
ombination of the method with the work made on Cell-DEVS (Wainer, 2000) 
anresult in an interesting appli
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