
A Seond Order Approximation for DEVS Simulation of ContinuousSystemsErnesto KofmanLaboratorio de Sistemas Dinámios - FCEIA - Universidad Naional de RosarioRiobamba 245 bis - (2000) Rosario - ArgentinaEmail: ekofman�eie.feia.unr.edu.arAbstratIn this paper, based on the methodology of disrete event simulation of ontinuous systems via QuantizedState Systems (QSS), a new seond order approximation, alled Seond-Order Quantized State Systems (QSS2),is proposed. This new approximation, whih satis�es the same stability and onvergene properties that werededued for QSS in previous works, also allows to redue the number of alulations with respet to the formermethod. It is shown that in the partiular ase of Linear Time-Invariant (LTI) Systems, the QSS2 an be exatlyrepresented by a DEVS model and in nonlinear systems an approximated DEVS model an be also obtained.For the LTI ase, a losed formula giving the neessary quantization that allows ahieving a bound in the errorduring the whole simulation is dedued. This formula, whih stands for both QSS and QSS2 approahes, alsoproves that for any quantization the error is always bounded.Finally, all the mentioned results are veri�ed and illustrated through the simulation of linear and nonlinearexamples, where some advantages over the lassi disrete time methods an be observed.Keywords: Simulation of ODE's, Disrete Event Simulation, DEVS, Quantized State Systems.1 IntrodutionThe omplexity that arries the analytial resolution of di�erential equations and the impossibility of obtaininglosed expressions for their solutions, exept in Linear Time Invariant (LTI) systems and a very small lass ofnonlinear systems, has motivated the development of several numerial methods to obtain approximate solutions.The basi tool used by the lassi numerial methods is the disretization of the time variable. This disretiza-tion an be either onstant or variable and aording to this feature, the algorithms are alled �xed step or variablestep methods respetively (Press et al., 1986). In both ases, the resulting simulation model onstitutes a DisreteTime System.Reently, di�erent methods have been being developed where the time disretization is avoided. As a result,instead of arriving to Disrete Time they arrive to Disrete Event simulation models within the DEVS formalismframework (Zeigler, 1976), (Zeigler et al., 2000).One possible way to obtain disrete event simulation models is replaing the time disretization by the quan-tization of the ontinuous system state variables. This is the idea followed by Zeigler (Zeigler and Lee, 1998) andthe de�nition of Quantized Systems. Although this method implies a formal transformation of a ontinuous modelinto a disrete event system, it has a problem related to the presene of an in�nite number of events in a �niteinterval of time. This di�ulty was solved with the addition of hysteresis in the quantization and the de�nition ofQuantized State Systems in (Kofman and Juno, 2001b).A QSS an be obtained from a ontinuous system after adding it quantizers with hysteresis whih transform thestate trajetories into pieewise onstant funtions so that they an be represented by a sequene of events arrying1



their suessive values. In the mentioned work it is shown that QSS an be exatly simulated by DEVS models.As it is also proven there, the QSS also onserve some stability properties of the original systems. The simulationvia QSS shows some advantages with respet to lassial disrete time algorithms related to the redution ofthe omputational osts and the possibilities of dealing with hybrid systems under a unique formalism. Anotherimportant feature of QSS is the apability of deoupling ertain lasses of strutural singularities that are veryommon in systems of equations derived from objet oriented modelling paradigms suh as Bond Graphs (Kofmanand Juno, 2001a).Despite these advantages, the QSS simulation annot ahieve a good auray without a signi�ant inrease inthe number of alulations. This is due to the fat that the method performs only a �rst order approximation.In this work, following the line opened with the de�nition of QSS and the proof of their stability properties,a seond order approah is presented and the mentioned properties are studied in LTI systems in order to obtainlosed formulas relating the quantization and the bounds of the error ommitted during the simulation.The seond order approah is based on the introdution of First Order Quantizers. These quantizers givepieewise linear output trajetories, whih are represented by sequenes of events arrying their suessive valuesand slopes. At this point, Giambiasi's work must be mentioned, sine his de�nition of GDEVS (Giambiasi et al.,2000) gives a way of representing pieewise polynomial trajetories by segments of events.The paper is organized as follows. In Setion 2 the main de�nitions and properties of QSS are realled. Then,the seond order approximation (QSS2) is introdued in Setion 3 and its main properties are dedued. Afterthat, the DEVS model related to a QSS2 is built in Setion 4. This DEVS model is presented as the oupling ofsubmodels orresponding to integrators and stati funtions.In a previous general study of stability an algorithm to obtain the quantization that guarantees a desiredbound in the �nal error was dedued. In Setion 5, working with LTI system, that algorithm is replaed by alosed formula giving the quantization that assures ahieving a desired bound in the error not only at the end butalso during the whole simulation.All these results are applied to the simulation of some linear and nonlinear examples in Setion 6 and �nally,in Setion 7 the QSS and QSS2 performanes are ompared.2 Quantized State SystemsQuantized State Systems (QSS) are ontinuous time systems where eah state variable is modi�ed by a quantizationfuntion equipped with hysteresis.Before realling the formal de�nition of QSS, the onept of quantization funtion with hysteresis will beintrodued.2.1 Quantization FuntionsLet D = fd0; d1; :::; drg be a set of real numbers where di�1 < di with 1 � i � r and let x 2 
 be a ontinuoustrajetory, where x : R ! R. Let b : 
� t0 ! 
 be a mapping and let q = b(x; t0) where the trajetory q for t � t0satis�es q(t) = 8>><>>: dm if t = t0di+1 if x(t) = di+1 ^ q(t�) = di ^ i < rdi�1 if x(t) = di � " ^ q(t�) = di ^ i > 0q(t�) otherwise (1)and m = 8<: 0 if x(t0) < d0r if x(t0) � drj if dj � x(t0) < dj+12



Then, the map b is a Quantization Funtion with Hysteresis. The width of the hysteresis window is ". The valuesd0 and dr are the lower and upper saturation values. Figure 1 shows a typial quantization funtion with uniformquantization intervals.
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x(t)Figure 1: Quantization Funtion with hysteresisA fundamental property of a Quantized Funtion with hysteresis is given by the following inequality.d0 � x(t) � dr ) jq(t)� x(t)j = jb(x(t)) � x(t)j � max1�i�r(di � di�1; ") (2)2.2 QSS related to a State Equation SystemConsider the State Equation System given by:� _x(t) = f(x(t); u(t))y(t) = g(x(t); u(t)) (3)This is a typial representation of Di�erential Equation Systems, where the omponents of the vetors x, u and yare alled state, input and output variables, respetively. This kind of equations allows the representation of mostontinuous systems.Related to this system, an assoiated QSS is de�ned as follows:� _x(t) = f(q(t); u(t))y(t) = g(q(t); u(t)) (4)where q(t) and x(t) are related (omponentwise) by quantization funtions with hysteresis. The omponents ofthe vetor q(t) are alled quantized variables. Figure 2 shows a blok diagram of a QSS.2.3 Properties of QSSThe most signi�ant properties of the QSS are related to the form of the trajetories. Provided that the inputshave pieewise onstant trajetories and the funtion f is ontinuous and bounded in any bounded domain, thefollowing properties are satis�ed:� The quantized variables have pieewise onstant trajetories� The state variable derivatives have also pieewise onstant trajetories3
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Figure 2: Blok Diagram of a generi QSS� The state variables have ontinuous pieewise linear trajetoriesFigure 3 shows typial trajetories in a QSS.
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Figure 3: Typial trajetories in a QSSAs a onsequene of these properties the QSS an be exatly simulated by a disrete event model within theDEVS formalism framework.QSS have other important onvergene and stability properties that will be realled later. The DEVS modelrelated to a QSS and the proof of the mentioned properties an be found in (Kofman and Juno, 2001b). ThatDEVS model also shows formaly the way of exatly simulating a QSS.3 The Seond Order ApproximationAs it was mentioned above, the approah of QSS onstitutes a �rst order simulation method. Thus, it does notallow to ahieve a good auray without inreasing onsiderably the number of alulations.4



This setion introdues a new method that results in a seond order approximation and onserves most of theproperties that where shown for QSS.3.1 The First Order QuantizerIn most appliations of QSS, the distane between quantization levels is taken equal to the hysteresis width. Thereason for this hoie is that both terms must be taken as big as possible in order to redue the omputational ostsbut the error introdued by the quantization is bounded by the maximum between them, as it an be deduedfrom equation (2). Thus, the best solution is taking them equal to eah other (Kofman et al., 2001).When a quantizer has the same hysteresis and quantum size, it an be seen as a funtion that produes apieewise onstant output trajetory that hanges when the di�erene with the input value reahes some threshold.This threshold is given by the quantum size or the hysteresis width.Using this idea, a new �rst order quantization funtion an be de�ned as a funtion that gives a pieewise linearoutput trajetory, whose value and slope hange when the di�erene between this output and the input beomesbigger than ertain threshold. Figure 4 illustrates this idea.
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Figure 4: Input and Output trajetories in a First Order quantizerAn output line starts from the input value with some slope and then, when that line and the input trajetorydi�er from eah other in a quantity �q, the output is represented by a new line starting from the new input value.There are several possibilities to hoose the slope of the output lines, but only two of them will be onsideredhere. The �rst one is to take the derivative of the input trajetory as the slope of the output line (Figure 5a). Theseond possibility is to use a previous output value to extrapolate the line (Figure 5b).Although the �rst hoie onstitutes a better approximation and it is easier to implement, the seond one maybe onvenient in ases where the ommuniation osts are ritial beause in this ase the information about theslope an be obtained looking at the suessive values that de�ne the trajetory while in the �rst ase, the valueof the slope has to be transmitted to the rest of the system.Then, for both approahes, the relationship between the input x(t) and the output q(t) of a �rst order quantizeran be writen as follows: q(t) = � x(t) if t = t0 _ jq(t�)� x(t�)j = �qq(tj) +mj(t� tj) otherwise (5)5



PSfrag replaements (a) (b)Figure 5: Di�erent possibilities for the hoie of the slopewith the sequene t0; : : : ; tj ; : : : de�ned astj+1 = min(tjt > tj ^ jx(tj) +mj(t� tj)� x(t)j = �q) (6)The slopes, onsidering the �rst possibility (i.e. taking the derivative of the input variable), an be alulatedaording to m0 = 0; mj = _x(t�j ) j = 1; : : : ; k; : : : (7)while for the seond hoie we de�nem0 = 0; mj = x(tj)� x(tj�1)tj � tj�1 j = 1; : : : ; k; : : : (8)When two trajetories x(t) and q(t) satisfy the relationships given by the previous equations we will saythat those variables are related by a �rst order quantization funtion. A fundamental property of a �rst orderquantization funtion is given by the following inequality:jx(t)� q(t)j � �q 8t � t0 (9)3.2 Seond-Order Quantized State Systems (QSS2)The addition of quantizers at the output of the ontinuous system integrators transforms it into a QSS. When�rst order quantizers are used instead of zero order quantizers, the resulting systems will be alled Seond OrderQuantized State Systems or QSS2.These new systems an be still represented by equation (4), but now the omponents of x(t) and q(t) are relatedby �rst-order quantization funtions. Figure 6 shows a blok diagram representation of QSS2.The QSS2 properties are quite similar to the properties of QSS. In fat, the stability and onvergene proofs in(Kofman and Juno, 2001b) are still satis�ed by QSS2 sine they are based on the representation (4) (whih holdsfor QSS2) and the inequality (2), whih is veri�ed by the QSS2 with the form of the inequality (9).However, there is an important di�erene between QSS and QSS2 related to the trajetory forms. In generalQSS2, all we an laim is that the quantized variables q(t) will have pieewise linear trajetories. But in QSS2related to linear systems the state trajetories will be pieewise paraboli with pieewise linear derivatives.Due to this reason, it will be possible to �nd DEVS models that exatly represent the behaviour of QSS2related to generi linear time invariant systems. Unfortunately, QSS2 related to general nonlinear systems do nothave exat representation in terms of DEVS. However, as it will be explained later, the method an also be appliedin the simulation of these nonlinear ases.
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Figure 6: Blok Diagram of a generi QSS23.3 Trajetories in a QSS2As it was mentioned above, the quantized variable trajetories of QSS2 are pieewise linear. It was alsosaid thatin linear time invariant systems the state derivatives have pieewise linear trajetories while the state derivativeshave pieewise paraboli trajetories. The following theorems give su�ient onditions and prove these properties.Although we will deal with the �rst hoie of the slope (7) all the properties dedued here an be easily extendedfor the other ase.Theorem 1. Given the QSS2 de�ned in (4) with f ontinuous and bounded in any bounded domain and u(t) beingbounded, the trajetories of q(t) are pieewise linear while they remain inside a bounded region.Proof. Let qi(t) and xi(t) denote the trajetory of the i-th omponent of q(t) and x(t) respetively. Sine xi(t) andqi(t) are related by a �rst order quantization funtion, the last trajetory an be written asqi(t) = � xi(t) if t = t0 _ jq(t�)� x(t�)j = �qqi(tj) +mj(t� tj) otherwise (10)with the sequene t0; : : : ; tj ; : : : de�ned aording totj+1 = min(tjt > tj ^ jxi(tj) +mj(t� tj)� xi(t)j = �qi) (11)and where, aording to (7), we havem0 = 0; mj = _xi(t�j ) j = 1; : : : ; k; : : : (12)Although equation (10) implies that qi(t) is formed by setions of lines, in order to assure that it is piee-wise linear it is also neessary to prove that the sequene t0; : : : ; tj ; : : : ; does not ontain an in�nite number ofomponents in a �nite interval of time.Sine it was assumed that q(t) is bounded over some interval of time [t0; tf ℄, and taking into aount thehypothesis made about f and the fat that u(t) is bounded, we havejfi(q(t); u(t))j � Fi t0 � t � tf (13)From (12) we have jmj j � jfi(q(t); u(t))j � Fi (14)
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Thus, the slope results always bounded by a onstant Fi. From (11) we have�qi = jxi(tj) +mj(tj+1 � tj)� xi(tj+1)j� jxi(tj+1)� xi(tj)jtj+1 � tj (tj+1 � tj) + jmjj(tj+1 � tj)� jmj+1j(tj+1 � tj) + jmjj(tj+1 � tj)� 2Fi(tj+1 � tj)Finally, it results that tj+1 � tj � �qi2Fi (15)This inequality implies that the sequene t0; : : : ; tj ; : : : ; has a minimum time between suessive omponents andit is impossible to have an in�nite number of omponents in a �nite interval of time. As a onsequene of this, thetrajetories of q(t) are pieewise linear.Theorem 2. In a QSS2 related to a LTI system with bounded pieewise linear inputs, the trajetories of thederivatives of the state variables are pieewise linear when the quantized variables remain in a bounded region.Proof. In LTI systems we have f = Ax+Bu and then, the hypothesis of ontinuity and boundedness formulatedin Theorem 1 are satis�ed. Taking into aount the assumptions on the input and quantized variable trajetoriesit an be easily seen that the mentioned theorem holds and then, the quantized variables have pieewise lineartrajetories.A LTI system an be expressed as follows _x(t) = Ax(t) +Bu(t) (16)where A is the evolution matrix of the original and B is alled the input matrix. Then, the assoiated QSS2satis�es _x(t) = Aq(t) +Bu(t) (17)where x(t) and q(t) are related omponentwise by �rst order quantization funtions.Sine q(t) and u(t) have pieewise linear trajetories, it is lear that the trajetories of _x(t) are also pieewiselinearA orollary of this theorem is that in the ase of QSS2 related to LTI systems, the state variables have pieewiseparaboli trajetories, as it was mentioned before.The pieewise onstant and pieewise linear trajetories of a QSS allow its DEVS representation, as it is shownin (Kofman and Juno, 2001b). In a similar way, the pieewise linear and pieewise paraboli trajetories will allowto �nd a DEVS model that exatly represents the behaviour of a QSS2 assoiated to a LTI system.4 DEVS Representation of QSS2The DEVS model of QSS built in (Kofman and Juno, 2001b) was based on the use of events representing thehanges in the values of the variables. Here, in a similar way, the hanges in the slopes and values of the trajetorieswill be represented by events arrying the new values and slopes of the orresponding variables.In this setion we will deal with the ase in whih the slopes are hosen equal to the derivative of the inputvariable of the quantizers (see Figure 5a). The other ase is quite similar, but there the events does not need torepresent the slopes. However, in that ase, the partition into submodels beomes more ompliated.The DEVS model will be de�ned as a oupling of �rst order quantized integrators (integrators with a �rst orderquantizer at the output) and two systems that alulate the evolution funtion (f) and the output funtion (g)(see Figure 7). 8
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Figure 7: Partition into sub-models of the QSS24.1 DEVS model of a First Order Quantized IntegratorThe following DEVS model represents the behaviour of a First Order Quantized Integrator with a pieewise linearinput trajetory.Mj =< X;S; Y; Æint; Æext; �; ta >; where:X = R � R � finportsg = R � R � f1gS = R � R � R � R � R � R+0 1Y = R � R � foutportsg = R � R � f1gÆint(u;mu; x; q;mq; �) = (u+mu � �;mu; x+ u � � + mu2 �2; x+ u � � + mu2 �2; u+mu � �; �0)Æext(u;mu; x; q;mq; �; e; v;mv ; port) = (v;mv; x+ u � e+ mu2 e2; q +mq � e;mq; �̂)�(u;mu; x; q;mq; �) = (x+ u � � + mu2 �2; u+mu � �; 1)ta(u;mu; x; q;mq; �) = �where �0 = ( q2�qmu if mu 6= 01 otherwise (18)and �̂ an be alulated as the least positive solution ofjx+ u � e+ mu2 e2 + v � �̂ + mv2 �̂2 � (q +mq � e+mq�̂)j = �q (19)The input and output events are onstituted by numbers representing the value, slope and port of the orre-sponding trajetory. The state s 2 S saves the last input value and slope (u and mu), the urrent value of thestate variable (x), the last output value and slope (q and mq) and the time to the next output event (�).The internal transition funtion alulates the new state after an output event and the external transitionfuntion does the same but after an input event. Here, the equations (18) and (19) alulates the time to the nextevent, whih is equal to the time when the di�erene between the trajetories of x(t) and q(t) beomes equal to�q. Finally, the output funtion (�) gives the output value and slope.4.2 DEVS model of the stati funtionsThe funtions f(x; u) and g(x; u) are stati funtions. In order to simplify their representation, they will beonsidered as the oupling of their salar omponents. 9



The DEVS model assoiated to a generi salar funtion fi(z1; :::; zq), will be the following:Fi =< X;S; Y; Æint; Æext; �; ta >; where:X = (R � R) � finportsg = (R � R) � f1; :::; qgS = (R � R � R)q � R+0 1Y = (R � R) � foutportsg = (R � R) � f1gÆint((z1;mz1 ; 1); :::; (zq ;mzq ; q); �) = ((z1;mz1 ; 1); :::; (zq ;mzq ; q);1)Æext((z1;mz1 ; 1); :::; (zq ;mzq ; q); �; e; v;mv; port) = ((z01;m0z1 ; 01); :::; (z0q ;m0zq ; 0q); 0)�((z1;mz1 ; 1); :::; (zq ;mzq ; q); �) = (fi(z01; :::; z0q); 1mz1 + :::+ qmzq ; 1)ta((z1;mz1 ; 1); :::; (zq ;mzq ; q); �) = �with z0j = � v if j = portzj +mzje otherwisem0zj = � mv if j = portmzj otherwise0j = 8<: fi(z +mze)� fi(z0)zj +mzje� z0j if j = port ^ zj +mzje� z0j 6= 0j otherwise (20)If the funtion fi is linear, this DEVS model exatly represents its behavior. The equation (20) alulates theoe�ients that multiply the input trajetory slopes. In the linear ase they will oinide with the oe�ients Ai;jand Bi;j orresponding to the evolution and input matries respetively.In the nonlinear ase, the output trajetory of the funtion fi will not be pieewise linear. However, thetrajetory given by the DEVS model, whih is interpreted as pieewise linear, onstitutes a good approximation tothe true output. The reason of this is that the oe�ients j , alulated with (20), are losed to the orrespondingpartial derivatives of fi evaluated at the points given by the input trajetories. Thus, we an a�rm that the DEVSmodel of a stati funtion an be applied to general nonlinear funtions and general nonlinear systems an besimulated under the QSS2 approah.The omplete DEVS model related to a QSS2 will be formed by the oupling of submodels orresponding to�rst order quantized integrators and stati funtions.5 Convergene and stability propertiesAs it was mentioned before, the onvergene and stability properties that were proven for QSS are based on thefat that these systems an be writen aording to (4) satisfying the inequality (2). QSS2 an be also representedby (4), where the last inequality takes the partiular form of (9).Thus, the QSS2 approximation will satisfy thesame onvergene and stability properties.The problem is that in the nonlinear ases the DEVS model does not represent exatly the behavior of theQSS2. As a onsequene, it annot be a�rmed that in general nonlinear systems the seond order approximatingDEVS model shows that properties.The mentioned properties an be synthesized as follows.� Under ertain onditions, the solutions of a QSS (or QSS2) assoiated to a ontinuous system onverge tothe solutions of the last one when the quantization goes to zero (Convergene).10



� It is always possible to �nd a quantization so that the solutions of the QSS (QSS2) assoiated to an asymp-totially stable ontinuous system �nish inside an arbitrary small region around the equilibrium points of theoriginally ontinuous system (Stability).The �rst property guarantees that an arbitrarily small error an be ahieved during the whole simulation. Theseond one, not only assures that the �nal error an be bounded by some given value but it also allows �nding thequantization that ahieves that purpose by following some algorithm.It is interesting to join both properties so that we are able to �nd a quantization that assures having a minimumerror during the whole simulation. Unfortunately, this annot be done for general nonlinear ases, but it an besolved for LTI systems as it will be shown.The partiularization of the stability properties to LTI systems in simulation methods is an important tasksine it allows giving a measure of the relationship between the error and the disretization to be applied. Thereis a well known result in disrete time methods whih says that the appliation of Euler's method to a stable LTIsystems has a bounded error when the step size h satis�es:h < 2�max (21)being �max the maximum eigenvalue of the evolution matrix (A) (The formula stands only if all the eigenvalues ofA are real. When there are omplex eigenvalues it adopts a di�erent form).Although the inequality (21) only holds for LTI systems, it an be also approximately applied to generalnonlinear systems using the linearized systems (through the Jaobian matrix of the funtion f). The validity ofthe linearized models in simulation an be justi�ed taking into aount that there are only small hanges in thevariables during suessive steps. Thus, after eah step, the trajetories stay inside the region where the linearizedmodel onstitutes a good approximation.In this setion an analogous formula to (21) will be dedued for QSS and QSS2 related to LTI systems. It willbe shown that independently of the quantization, the error never diverges and the mentioned formula will give abound of the error during the whole simulation.5.1 Error in LTI systemsConsider the following linear time invariant system_~x(t) = A~x(t) +Bu(t) (22)Then, the assoiated QSS (QSS2) will have the following expression:_x(t) = A(x(t) + �x) +Bu(t) (23)where �x(t) = q(t)� x(t), being q(t) the quantized version of x(t). Thus, the error e(t) = x(t)� ~x(t) satis�es:_e(t) = A(e+�x) (24)Sine the initial ondition ~x(t0) = x0 is suppossed to be known, we an take x(t0) = ~x(t0) = x0 and our goal willbe studying the evolution of e(t) starting from the initial ondition e(t0) = 0.Taking into aount (2) and (9), the eletion of the quantum size (and the hysteresis width in QSS) for eahvariable is equivalent to the hoie of a bound for the orresponding omponent of �x. Hene, in the followingtheorems, the neessary onditions for the hoie of that bounds will be given in order to guarantee that eahomponent ei(t) in e(t) remains bounded by some maximum desired error in the orresponding variable xi(t).Formally, the bounds �q1; � � � ;�qn will be obtained so that the onditionj�xi(t)j � �qi i = 1; � � � ; n11



assures that jej(t)j � �ej 8t � t0; j = 0; � � � ; nor equivalently, that the vetorial inequality1 j�x(t)j � �qimplies that je(t)j � �e (25)with e(t0) = 0.Here, �q is the vetor of quantum sizes and �e is the vetor of maximum desired errors.Theorem 3. Consider the system (24) being A a salar with its real omponent being negative. When e(t0) = 0,the ondition given by (25) an be guaranteed by taking�q = jRe(A)jjAj �e (26)Proof. If A is a real number the proof is straightforward sine when e(t) = �e = �q � �x, from (24) we see that_e(t) � 0. Similarly, when e(t) = ��e, it results _e(t) � 0. Thus, e(t) annot abandon the interval [��e;�e℄.For the omplex ase, we de�ne e(t) = r(t) � ej�(t)Then (24) an be rewritten as: ddt(r � ej�) = A(r � ej� +�x)_rej� + jrej� _� = A(r � ej� +�x)and then, _r + jr _� = A(r +�x � e�j�)= A � r +A�x � e�j�Taking only the real omponents of the last equation we have_r = Re(A) � r + Re(A�x � e�j�)� Re(A) � r + jAjj�xj� Re(A) � r + jAjj�qjConsidering that r(t) = je(t)j and the using the equation (26), it results thatddt je(t)j � Re(A) � je(t)j+ jAj jRe(A)jjAj �e= Re(A)(je(t)j ��e)Sine Re(A) is negative and je(t0)j = 0, je(t)j annot beome greater than �e.In the real ase, this theorem expresses that the error in a stable �rst order system is bounded by the quanti-zation size. In the omplex ase, it does not have any meaning. However, it will be useful for later results.1We say that a � b when ai � bi for all the omponents of the vetors a and b12



Theorem 4. Consider the system of (24) being A a diagonal matrix with Re(Ai;i) < 0 . When e(t0) = 0, theondition given by (25) an be guaranteed taking2�q = diag( jRe(Ai;i)jjAi;ij )�eProof. The proof is straightforward applying the theorem 3 for eah omponent of e(t).Theorem 5. Consider the system of (24) being A a diagonalizable Hurwitz3 matrix. When e(t0) = 0, the onditiongiven by (25) an be guaranteed taking �q so thatjV j � diag( j�ijjRe(�i)j) � jV �1j�q = T�q � �e (27)where V is the eigenvetor matrix and �i are the eigenvalues of the matrix A, that is 4V �1 �A � V = diag(�i) (28)Proof. Let be e(t) = V w(t). Thus, from (24) it resultsV _w(t) = A(V w +�x)and then _w(t) = V �1AV (w + V �1�x) = V �1AV (w +�xw) (29)and j�xw(t)j = jV �1�xj � jV �1j � j�xj � jV �1j�qFrom (28) V �1AV is a diagonal matrix. Thus the system (29) satis�es the theorem 4. From this theorem and thelast inequality we have jw(t)j � diag( j�ijjRe(�i)j) � jV �1j�qIt results from the de�nition of w(t) thatje(t)j = jV w(t)j � jV j � diag( j�ijjRe(�i)j ) � jV �1j�q = T�q � �ewhih ompletes the proof.The inequality (27) an be satis�ed using di�erent sets of bounds �q. A formula that allows satisfying thatondition is the following �qi = 1n minj (�ejTji ) (30)2The expression diag(Ai;i) refers to the diagonal matrix formed with the omponents Ai;i in its diagonal.3A n � n matrix is said to be Hurwitz when all its eigenvalues have negative real omponent (i.e. the system _x = Ax + Bu isasymptotially stable)4j � j denotes the omponentwise moduli of the orresponding matrix or vetor.
13



5.2 Some remarks about the resultsThe theorem 5 and the equation (30) give a pratial formula to alulate the quantization that assures that theerror in eah variable never beomes bigger than ertain bound �ej . However, that formula requires the alulationof the eigenvetors of the matrix A. If that eigenvetors are alulated, the exat solution of (22) an be obtained(at least when the input is not very ompliated) and then the simulation might beome unneessary (exept forthe ase in whih the goal is simulating a system for di�erent and omplex input trajetories).In spite of this, the analysis shows important theoretial properties with pratial and oneptual onsequenes.In one hand, it an be seen that the error is bounded by a linear funtion of the quantization. Thus, pratial rulesto modify the quantization in order to obtain more adequate results an be easily dedued. The identi�ation ofthe relationship between the error and the step size in disrete time simulation methods onstitutes the basis forthe development of variable step size algorithms. In our ase, the mentioned analysis an onstitute the basis forthe future formulation of adaptive quantization methods.Another property that an be dedued from the analysis done whih was already mentioned is that for anyarbitrary quantization, the error will be bounded during the whole simulation. In lassi disrete time algorithms,this is distintive property of impliit methods. However, in QSS and QSS2 there is no impliit formula, whihonstitutes an important advantage from the point of view of the omputational osts. This is probably the mostimportant feature of the QSS and QSS2 methods.It is also interesting to mention that the formula (27) only involves geometrial parameters of the system (theeigenvetors and the ratio of the real part to the absolute value of the eigenvalues). The relationship betweenthe error and the quantization does not depend on the speed of the system as it ours in disrete time methods(onsider inequality (21) in Euler's method, for instane). This is oherent with the fat that in quantized statesystems the time disretization is replaed by the disretization of the state variables.Although all the analysis in this setion was made over linear systems, it was already mentioned that simulationinvolves a suession of loal problems. This is, there are not important variations between suessive steps orevents and then, the linearized models of nonlinear systems onsitute good approximations in most ases. Thus,the results obtained here an be approximately extended to general nonlinear systems.6 Examples and Simulation Results6.1 A simple linear exampleIn this �rst example, we will verify the validity of Theorem 5 using the results of the QSS simulation example in(Kofman and Juno, 2001b). There, the following system orresponding to a RLC serial iruit was introdued.8><>: _x1 = 1Lx2_x2 = U � 1Cx1 � RLx2y = 1Lx2 (31)Using the parameters R = 100:01; L = 0:01; C = 0:01, a onstant input U = 100 and a uniform quantization of10�2 and 10�4 in x1 and x2 respetively, the use of QSS gave the output trajetory of Figure 8.The evolution matrix A is A = � 0 100�100 �10001 �and its orresponding eigenvetor and eigenvalues matries result:V = � 1 �0:01�0:01 1 � ; diag(�i) = � �1 00 �10000 �14
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6.2 The seond order method in a nonlinear exampleThe famous seond order Lotka-Volterra's model is a nonlinear system of di�erential equations that tries to repre-sent the evolution of the population of two speies, prey and predator, in a ommon habitat. Due to the nonlinearityof the system, this is a ase in whih an analyti solution for the general ase annot be obtained.The following set of state equations onstitutes one possible representation of the mentioned system� _x1 = �x1 + �x1x2 � �x21_x2 = �mx2 + �x1x2where the variables x1 and x2 represent the population of preys and predators respetively.The system was simulated using QSS2 with a quantization of �q1 = �q2 = 0:001. The parameters taken were� = 0:1, � = 0:01, � = 0:01, m = 0:4, � = 0:5 and the initial ondition adopted was x1(0) = x2(0) = 10. Theresults are shown in Figures 10 and 11.
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lassi seond order �xed step method. The step size used in Heun's method was 0:63 so that it performed thesame number of steps. Figure 12 shows a part of those trajetories and the �true� trajetory. The �true� trajetorywas obtained using the �fth order Dormand-Prine method with a step size of 0:1.
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6.3 QSS2 in a high order linear modelThe iruit of Figure 14 represents an RLC transmission line. This model is useful to study the performaneof integrated iruits transmitting data at a very fast rate. Although the length of the wires is only of a fewentimetters, the high frequeny of the signal produes that the delays introdued by the wires annot be ignoredand the transmission line theory must be applied.The transmission line models are usually desribed as systems of partial di�erenial equations. However, theyan be approximatted by lumped models where the distributed e�ets of apaity, indutane and resistane arerepresented by a asade of single apaitors, indutors and resistors, as Figure 14 shows.PSfrag replaements Vin VoutRRR LLL CCCFigure 14: RLC Transmission LineIn order to onstitute a good approximation, the RLC model must be formed by several setions. As aonsequene of this, it results in a high order ordinary di�erential equation.In (Ismail et al., 1999) an example omposed by �ve setions of RLC iruits is introdued. The resistane,indutane and apaitane values used there orresponds to real parameters. The model obtained is a tenth orderlinear system, where the evolution matrix (A) an be written as follows:
A = 266666664 �R=L �1=L 0 0 0 0 0 0 0 01=C 0 �1=C 0 0 0 0 0 0 00 1=L �R=L �1=L 0 0 0 0 0 00 0 1=C 0 �1=C 0 0 0 0 0... ... ... ... ... ... ... ... ... ...0 0 0 0 0 0 0 0 1=C 0

377777775 (32)The mentioned system was simulated applying a trapezoidal input wave. The input and output trajetoriesare shown in Figure 15.The parameters used were R = 80
, C = 0:2pF and L = 20nH. These parameters orrespond to a transmissionline of one entimetter divided in �ve setions, where the resistane, apaitane and indutane are 400
=m,1pF=m and 100nH=m respetively.The trapezoidal input has a rising time tr = 10ps. The quantization adopted was �v = 4mV in the statevariables representing voltages and �i = 10�A in the state variables representing urrents. That quantization,aording to (27), assures that the maximum error is smaller than 250mV in the variable Vout.The simulation took a total of 2536 steps (between 198 and 319 internal transitions at eah integrator) toobtain the �rst 3:2ns of the system trajetories.The experiment was repeated using a quantization 100 times smaller, whih assures having a maximum errorin Vout of 2:5mV . This new simulation was performed with a total of 26883 internal transitions.The omparision of the results of both experiments (Figure 16) shows that the di�erene between the trajetoriesnever beomes greater than 14:5mV whih implies that the error in the �rst simulation was not greater than 17mV .In this ase, the theoretial predition of the error (the bound was 250mV ) was quite onservative (this an beeasily understood taking into aount that the theoretial bound of the error holds for any input trajetory andfor any initial ondition). 18
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However, the simulation using QSS2 requires muh less steps than a simulation using QSS for the same quantization(i.e. for the same error bound).The ause of the redution of the number of steps an be found in the omparision of the �gures 4 and 17. Thenumber of steps used by a QSS to represent the same trajetory with the same quantization size (�q) is muhgreater than the used by the QSS2. The key is that using the information of the slope in QSS2 the time requiredto obtain a di�erene equal to �q with respeto to the input trajetory beomes muh greater.
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The QSS and QSS2 methods an be generalized (QSSn) using higher order polynomials for the representationof the trajetories. The use of suh higher order methods should result in an important redution of the numberof steps. However, a new problem might appear here sine the equation (19) will turn into an equation of order n.When n is bigger than 3 the resolution beomes quite di�ult.Another important future task is the introdution of adaptive quantization. The idea is similar to what is doneby the variable step algorithms, that is, varying the step size aording to some estimation of the error. In thatway, we an obtain a method in whih the user does not have to hoose the quantization. It would be automatiallyhosen by the algorithm aording to the desired error. The adaptive quantization might be also used to avoidthe �nal osillations in the quantized solutions (using �xed quantization the solutions does not onverge to theequilibrium point but they remain in a region around that point as it is was mentioned before). A result that anbe useful for this goal an be found in (Brokett and Liberzon, 2000), where the authors show that a system withquantizers an reah the equilibrium point if the quantization size is redued as well as the trajetories get loserto that point.Finally, the use of the methodology in the example of the transmission line showed some advantages that mightbe applied to more general distributed parameters systems. Taking into aount that here the resulting DEVSmodel orresponding to the QSS (QSS2) an be built as the oupling of several idential submodels (assoiated toeah setion of the system), the ombination of the method with the work made on Cell-DEVS (Wainer, 2000) anresult in an interesting appliation.ReferenesBrokett, R. and Liberzon, D. (2000). Quantized feedbak stabilization of linear systems. IEEE Trans. Automat.Contr., 45:1279�1289.Giambiasi, N., Esude, B., and Ghosh, S. (2000). GDEVS: A generalized Disrete Event spei�ation for auratemodeling of dynami systems. Transations of SCS, 17(3):120�134.Ismail, Y., Friedman, E., and Neves, J. (1999). Figures of merit to haraterize the importane of On-Chipindutane. IEEE Trans. on VLSI Systems, 7(4):442�449.Kofman, E. and Juno, S. (2001a). Quantized Bond Graphs: An Approah for Disrete Event Simulation ofPhysial Systems. In Proeedings of ICBGM'01, pages 369�374, Phoenix.Kofman, E. and Juno, S. (2001b). Quantized State Systems. A DEVS Approah for Continuous System Simulation.Transations of SCS, 18(3).Kofman, E., Lee, J., and Zeigler, B. (2001). DEVS Representation of Di�erential Equation Systems. Review ofReent Advanes. In Proeedings of ESS'01.Press, W., Flannery, B., Teukolsky, S., and Vetterling, W. (1986). Numerial Reipes. Cambridge: CambridgeUniversity Press.Wainer, G. (2000). Improved ellular models with Parallel Cell DEVS. Transations of SCS, 17(2):73�88.Zeigler, B. (1976). Theory of Modeling and Simulation. John Wiley & Sons, New York.Zeigler, B., Kim, T., and Praehofer, H. (2000). Theory of Modeling and Simulation. Seond edition. AademiPress, New York.Zeigler, B. and Lee, J. (1998). Theory of quantized systems: formal basis for DEVS/HLA distributed simulationenvironment. In SPIE Proeedings, pages 49�58. 22


