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Abstract

In this paper, based on the methodology of discrete event simulation of continuous systems via Quantized
State Systems (QSS), a new second order approximation, called Second-Order Quantized State Systems (QSS2),
is proposed. This new approximation, which satisfies the same stability and convergence properties that were
deduced for QSS in previous works, also allows to reduce the number of calculations with respect to the former
method. It is shown that in the particular case of Linear Time-Invariant (LTI) Systems, the QSS2 can be exactly
represented by a DEVS model and in nonlinear systems an approximated DEVS model can be also obtained.
For the LTT case, a closed formula giving the necessary quantization that allows achieving a bound in the error
during the whole simulation is deduced. This formula, which stands for both QSS and QSS2 approaches, also
proves that for any quantization the error is always bounded.

Finally, all the mentioned results are verified and illustrated through the simulation of linear and nonlinear
examples, where some advantages over the classic discrete time methods can be observed.
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1 Introduction

The complexity that carries the analytical resolution of differential equations and the impossibility of obtaining
closed expressions for their solutions, except in Linear Time Invariant (LTI) systems and a very small class of
nonlinear systems, has motivated the development of several numerical methods to obtain approximate solutions.

The basic tool used by the classic numerical methods is the discretization of the time variable. This discretiza-
tion can be either constant or variable and according to this feature, the algorithms are called fized step or variable
step methods respectively (Press et al., 1986). In both cases, the resulting simulation model constitutes a Discrete
Time System.

Recently, different methods have been being developed where the time discretization is avoided. As a result,
instead of arriving to Discrete Time they arrive to Discrete Event simulation models within the DEVS formalism
framework (Zeigler, 1976), (Zeigler et al., 2000).

One possible way to obtain discrete event simulation models is replacing the time discretization by the quan-
tization of the continuous system state variables. This is the idea followed by Zeigler (Zeigler and Lee, 1998) and
the definition of Quantized Systems. Although this method implies a formal transformation of a continuous model
into a discrete event system, it has a problem related to the presence of an infinite number of events in a finite
interval of time. This difficulty was solved with the addition of hysteresis in the quantization and the definition of
Quantized State Systems in (Kofman and Junco, 2001b).

A QSS can be obtained from a continuous system after adding it quantizers with hysteresis which transform the
state trajectories into piecewise constant functions so that they can be represented by a sequence of events carrying



their successive values. In the mentioned work it is shown that QSS can be exactly simulated by DEVS models.
As it is also proven there, the QSS also conserve some stability properties of the original systems. The simulation
via QSS shows some advantages with respect to classical discrete time algorithms related to the reduction of
the computational costs and the possibilities of dealing with hybrid systems under a unique formalism. Another
important feature of QSS is the capability of decoupling certain classes of structural singularities that are very
common in systems of equations derived from object oriented modelling paradigms such as Bond Graphs (Kofman
and Junco, 2001a).

Despite these advantages, the QSS simulation cannot achieve a good accuracy without a significant increase in
the number of calculations. This is due to the fact that the method performs only a first order approximation.

In this work, following the line opened with the definition of QSS and the proof of their stability properties,
a second order approach is presented and the mentioned properties are studied in LTI systems in order to obtain
closed formulas relating the quantization and the bounds of the error committed during the simulation.

The second order approach is based on the introduction of First Order Quantizers. These quantizers give
piecewise linear output trajectories, which are represented by sequences of events carrying their successive values
and slopes. At this point, Giambiasi’s work must be mentioned, since his definition of GDEVS (Giambiasi et al.,
2000) gives a way of representing piecewise polynomial trajectories by segments of events.

The paper is organized as follows. In Section 2 the main definitions and properties of QSS are recalled. Then,
the second order approximation (QSS2) is introduced in Section 3 and its main properties are deduced. After
that, the DEVS model related to a QSS2 is built in Section 4. This DEVS model is presented as the coupling of
submodels corresponding to integrators and static functions.

In a previous general study of stability an algorithm to obtain the quantization that guarantees a desired
bound in the final error was deduced. In Section 5, working with LTI system, that algorithm is replaced by a
closed formula giving the quantization that assures achieving a desired bound in the error not only at the end but
also during the whole simulation.

All these results are applied to the simulation of some linear and nonlinear examples in Section 6 and finally,
in Section 7 the QSS and QSS2 performances are compared.

2 Quantized State Systems

Quantized State Systems (QSS) are continuous time systems where each state variable is modified by a quantization
function equipped with hysteresis.

Before recalling the formal definition of QSS, the concept of quantization function with hysteresis will be
introduced.

2.1 Quantization Functions

Let D = {do,d1,...,d;} be a set of real numbers where d;_; < d; with 1 < i < r and let z € Q be a continuous
trajectory, where z : R — R. Let b: Q x ¢y — €2 be a mapping and let ¢ = b(z, ty) where the trajectory ¢ for ¢t > ¢
satisfies

dm  if t =t
(t) _ diy1 if $(t) =dit1 N q(t*) =d; N1 <r (1)
1 dioy fz@t)=di—eAq(t™)=d;Ni>0
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m=< r ifz(ty) >d,
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Then, the map b is a Quantization Function with Hysteresis. The width of the hysteresis window is €. The values
dy and d, are the lower and upper saturation values. Figure 1 shows a typical quantization function with uniform
quantization intervals.
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Figure 1: Quantization Function with hysteresis

A fundamental property of a Quantized Function with hysteresis is given by the following inequality.

do < 2(t) < dr = [q(t) — 2(t)] = [b(z (1)) — 2(t)] < max (d; — di1,¢) (2)

2.2 QSS related to a State Equation System

Consider the State Equation System given by:

{ a(t) = f(z(t),u(t)) (3)
y(t) = g(z(t), u(t))

This is a typical representation of Differential Equation Systems, where the components of the vectors x, u and y
are called state, input and output variables, respectively. This kind of equations allows the representation of most

continuous systems.
Related to this system, an associated QSS is defined as follows:

i) = Fq(t)u(t))
{ — glq(t). u(t)) )

where ¢(t) and z(t) are related (componentwise) by quantization functions with hysteresis. The components of
the vector ¢(t) are called quantized variables. Figure 2 shows a block diagram of a QSS.

2.3 Properties of QSS

The most significant properties of the QSS are related to the form of the trajectories. Provided that the inputs
have piecewise constant trajectories and the function f is continuous and bounded in any bounded domain, the
following properties are satisfied:

e The quantized variables have piecewise constant trajectories

e The state variable derivatives have also piecewise constant trajectories
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Figure 2: Block Diagram of a generic QSS

e The state variables have continuous piecewise linear trajectories

Figure 3 shows typical trajectories in a QSS.
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Figure 3: Typical trajectories in a QSS

As a consequence of these properties the QSS can be exactly simulated by a discrete event model within the
DEVS formalism framework.

QSS have other important convergence and stability properties that will be recalled later. The DEVS model
related to a QSS and the proof of the mentioned properties can be found in (Kofman and Junco, 2001b). That
DEVS model also shows formaly the way of exactly simulating a QSS.

3 The Second Order Approximation

As it was mentioned above, the approach of QSS constitutes a first order simulation method. Thus, it does not
allow to achieve a good accuracy without increasing considerably the number of calculations.



This section introduces a new method that results in a second order approximation and conserves most of the
properties that where shown for QSS.

3.1 The First Order Quantizer

In most applications of QSS, the distance between quantization levels is taken equal to the hysteresis width. The
reason for this choice is that both terms must be taken as big as possible in order to reduce the computational costs
but the error introduced by the quantization is bounded by the maximum between them, as it can be deduced
from equation (2). Thus, the best solution is taking them equal to each other (Kofman et al., 2001).

When a quantizer has the same hysteresis and quantum size, it can be seen as a function that produces a
piecewise constant output trajectory that changes when the difference with the input value reaches some threshold.
This threshold is given by the quantum size or the hysteresis width.

Using this idea, a new first order quantization function can be defined as a function that gives a piecewise linear
output trajectory, whose value and slope change when the difference between this output and the input becomes
bigger than certain threshold. Figure 4 illustrates this idea.

Figure 4: Input and Output trajectories in a First Order quantizer

An output line starts from the input value with some slope and then, when that line and the input trajectory
differ from each other in a quantity Agq, the output is represented by a new line starting from the new input value.

There are several possibilities to choose the slope of the output lines, but only two of them will be considered
here. The first one is to take the derivative of the input trajectory as the slope of the output line (Figure 5a). The
second possibility is to use a previous output value to eztrapolate the line (Figure 5b).

Although the first choice constitutes a better approximation and it is easier to implement, the second one may
be convenient in cases where the communication costs are critical because in this case the information about the
slope can be obtained looking at the successive values that define the trajectory while in the first case, the value
of the slope has to be transmitted to the rest of the system.

Then, for both approaches, the relationship between the input z(¢) and the output () of a first order quantizer
can be writen as follows:

=) if t=toV]glt ) —z(t ) =A
alt) = { q(t;) +mj(t —t;) otherowiseq ! (5)
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Figure 5: Different possibilities for the choice of the slope

with the sequence to,...,t;,... defined as
tj41r = min(t[t > t; A |a(t;) +m;(t — ;) — z(t)| = Ag) (6)

The slopes, considering the first possibility (i.e. taking the derivative of the input variable), can be calculated
according to

m0:0, mj:i(tj_) jZl,...,k,... (7)

while for the second choice we define

z(tj) — z(tj—1)

my =0, m; =
T it

j=1,...,k,... (8)
When two trajectories z(t) and ¢(t) satisfy the relationships given by the previous equations we will say

that those variables are related by a first order quantization function. A fundamental property of a first order
quantization function is given by the following inequality:

[z(t) —q(t)| < Ag VYt >t (9)

3.2 Second-Order Quantized State Systems (QSS2)

The addition of quantizers at the output of the continuous system integrators transforms it into a QSS. When
first order quantizers are used instead of zero order quantizers, the resulting systems will be called Second Order
Quantized State Systems or QSS2.

These new systems can be still represented by equation (4), but now the components of z(t) and ¢(t) are related
by first-order quantization functions. Figure 6 shows a block diagram representation of QSS2.

The QSS2 properties are quite similar to the properties of QSS. In fact, the stability and convergence proofs in
(Kofman and Junco, 2001b) are still satisfied by QSS2 since they are based on the representation (4) (which holds
for QSS2) and the inequality (2), which is verified by the QSS2 with the form of the inequality (9).

However, there is an important difference between QSS and QSS2 related to the trajectory forms. In general
QSS2, all we can claim is that the quantized variables ¢(¢) will have piecewise linear trajectories. But in QSS2
related to linear systems the state trajectories will be piecewise parabolic with piecewise linear derivatives.

Due to this reason, it will be possible to find DEVS models that exactly represent the behaviour of QSS2
related to generic linear time invariant systems. Unfortunately, QSS2 related to general nonlinear systems do not
have exact representation in terms of DEVS. However, as it will be explained later, the method can also be applied
in the simulation of these nonlinear cases.
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Figure 6: Block Diagram of a generic QSS2

3.3 Trajectories in a QSS2

As it was mentioned above, the quantized variable trajectories of QSS2 are piecewise linear. It was alsosaid that
in linear time invariant systems the state derivatives have piecewise linear trajectories while the state derivatives
have piecewise parabolic trajectories. The following theorems give sufficient conditions and prove these properties.
Although we will deal with the first choice of the slope (7) all the properties deduced here can be easily extended
for the other case.

Theorem 1. Given the QSS2 defined in (4) with f continuous and bounded in any bounded domain and u(t) being
bounded, the trajectories of q(t) are piecewise linear while they remain inside a bounded region.

Proof. Let ¢;(t) and z;(t) denote the trajectory of the i-th component of ¢(t) and z(t) respectively. Since z;(¢) and
qi(t) are related by a first order quantization function, the last trajectory can be written as

() if t=1toV|g(t™) —=z(t7)| = Aq
ai(t) = { qi(t;) +m;(t —t;) otherwise (10)
with the sequence t,...,%;,... defined according to
tjt1 = min(t|t >t A |$i(tj) + mj(t - tj) - .’Ez(t)| = Aql) (11)
and where, according to (7), we have
m0:0, mj:x'i(t;) jZl,...,k,... (12)

Although equation (10) implies that ¢;(¢) is formed by sections of lines, in order to assure that it is piece-
wise linear it is also necessary to prove that the sequence tp,...,%¢;,..., does not contain an infinite number of
components in a finite interval of time.

Since it was assumed that ¢(t) is bounded over some interval of time [ty, %], and taking into account the
hypothesis made about f and the fact that u(t) is bounded, we have

[filg(®),u())| < F; to <t <ty (13)

From (12) we have
Im;l < |fi(q(2),w(t))] < Fi (14)



Thus, the slope results always bounded by a constant F;. From (11) we have

Agi = |wilty) +mj(tj —t5) — zi(tj)]
|zi(tj+1) — @i(t))]
< o t; (tjrr — 1) + [mg|(tj 11 —t7)
< mgal (B =) + [mgl (8 — 25)
< 2Fi(tje1 — 1)
Finally, it results that
Ag;
tivi —t; > — 15
j+1 ] = 2F7, ( )
This inequality implies that the sequence tg,...,%;,..., has a minimum time between successive components and
it is impossible to have an infinite number of components in a finite interval of time. As a consequence of this, the
trajectories of ¢(t) are piecewise linear. O

Theorem 2. In a QSS2 related to a LTI system with bounded piecewise linear inputs, the trajectories of the
derivatives of the state variables are piecewise linear when the quantized variables remain in a bounded region.

Proof. In LTI systems we have f = Az + Bu and then, the hypothesis of continuity and boundedness formulated
in Theorem 1 are satisfied. Taking into account the assumptions on the input and quantized variable trajectories
it can be easily seen that the mentioned theorem holds and then, the quantized variables have piecewise linear
trajectories.

A LTI system can be expressed as follows

&(t) = Az(t) + Bu(t) (16)

where A is the evolution matrix of the original and B is called the input matrix. Then, the associated QSS2
satisfies
%(t) = Aq(t) + Bu(t) (17)

where z(t) and ¢(t) are related componentwise by first order quantization functions.
Since ¢(t) and u(t) have piecewise linear trajectories, it is clear that the trajectories of #(t) are also piecewise
linear O

A corollary of this theorem is that in the case of QSS2 related to LTI systems, the state variables have piecewise
parabolic trajectories, as it was mentioned before.

The piecewise constant and piecewise linear trajectories of a QSS allow its DEVS representation, as it is shown
in (Kofman and Junco, 2001b). In a similar way, the piecewise linear and piecewise parabolic trajectories will allow
to find a DEVS model that exactly represents the behaviour of a QSS2 associated to a LTI system.

4 DEVS Representation of QSS2

The DEVS model of QSS built in (Kofman and Junco, 2001b) was based on the use of events representing the
changes in the values of the variables. Here, in a similar way, the changes in the slopes and values of the trajectories
will be represented by events carrying the new values and slopes of the corresponding variables.

In this section we will deal with the case in which the slopes are chosen equal to the derivative of the input
variable of the quantizers (see Figure 5a). The other case is quite similar, but there the events does not need to
represent the slopes. However, in that case, the partition into submodels becomes more complicated.

The DEVS model will be defined as a coupling of first order quantized integrators (integrators with a first order
quantizer at the output) and two systems that calculate the evolution function (f) and the output function (g)
(see Figure 7).
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Figure 7: Partition into sub-models of the QSS2

4.1 DEVS model of a First Order Quantized Integrator

The following DEVS model represents the behaviour of a First Order Quantized Integrator with a piecewise linear
input trajectory.

M; =< X, 85,Y, dint, Oext> Ay ta >, where:

X =R xR x {inports} = R x R x {1}

S=RxRxRxRxRxRS oo

Y =R X R x {outports} =R x R x {1}

m m
int (w, Moy, T, ¢, My, 0) = (u+mu-U,mu,x+u-a+7u02,x+u-0+TUUQ,U-l-mu‘UaU,)
My o “
5ext(uamuaxaqamqaO—aeavamvaport) = (Uam’vax +u-e+ 76 aQ+mq : e’mQ’U)
m
A(uamuawanmqva—) = ($+U'U+7u0'2,’u,+mu-0',l)
ta’(uammwaQaman) =0
where ~
2 .
o = m—uq if my #0 (18)
00 otherwise
and & can be calculated as the least positive solution of
m m
|x+u-e+7u62+v-6+7v&2—(q+mq-e+mq&)|:Aq (19)

The input and output events are constituted by numbers representing the value, slope and port of the corre-
sponding trajectory. The state s € S saves the last input value and slope (u and m,,), the current value of the
state variable (z), the last output value and slope (¢ and mg) and the time to the next output event (o).

The internal transition function calculates the new state after an output event and the external transition
function does the same but after an input event. Here, the equations (18) and (19) calculates the time to the next
event, which is equal to the time when the difference between the trajectories of z(¢) and ¢(¢) becomes equal to
Agq. Finally, the output function () gives the output value and slope.

4.2 DEVS model of the static functions

The functions f(z,u) and g(z,u) are static functions. In order to simplify their representation, they will be
considered as the coupling of their scalar components.



The DEVS model associated to a generic scalar function f;(z1, ..., 24), will be the following:

F; =< X, 5,Y, dint, dext, A, ta >, where:
X = (R x R) x {inports} = (R x R) x {1,...,q}
S=(RxRxR)? xR oo
Y = (R x R) x {outports} = (R x R) x {1}
5int((zlamzlacl)a ey (zqamzqacq)aa) = ((Zlamzlacl)a sy (anmzqacq)a OO)
5€Xt((217m21701)7 ] (ZQ7mzqacq)a g, e,v,mv,port) = ((Zivmlzlvcll)v ] (Z(Ipmlzqvc:])v 0)
A(z1,mz,¢1), o0y (2gs 2y ¢q), 0) = (fi(21, ...,z'('l),clmz1 + o+ egmy,, 1)
ta((z1, Mz, €1), o0 (29, Mz, Cq),0) = 0
with
p v if j =port
2 )
zj +mgye otherwise
/ m, if j = port
Mey = m otherwise
zj

filz+m.e) — fi(2)) .. . ' o
g Zj—i-mzje—z} if j=port\zj+mye—z; #0 (20)

Cj otherwise

If the function f; is linear, this DEVS model exactly represents its behavior. The equation (20) calculates the
coefficients that multiply the input trajectory slopes. In the linear case they will coincide with the coefficients A; ;
and B; j corresponding to the evolution and input matrices respectively.

In the nonlinear case, the output trajectory of the function f; will not be piecewise linear. However, the
trajectory given by the DEVS model, which is interpreted as piecewise linear, constitutes a good approximation to
the true output. The reason of this is that the coefficients c;, calculated with (20), are closed to the corresponding
partial derivatives of f; evaluated at the points given by the input trajectories. Thus, we can affirm that the DEVS
model of a static function can be applied to general nonlinear functions and general nonlinear systems can be
simulated under the QSS2 approach.

The complete DEVS model related to a QSS2 will be formed by the coupling of submodels corresponding to
first order quantized integrators and static functions.

5 Convergence and stability properties

As it was mentioned before, the convergence and stability properties that were proven for QSS are based on the
fact that these systems can be writen according to (4) satisfying the inequality (2). QSS2 can be also represented
by (4), where the last inequality takes the particular form of (9).Thus, the QSS2 approximation will satisfy the
same convergence and stability properties.

The problem is that in the nonlinear cases the DEVS model does not represent exactly the behavior of the
QSS2. As a consequence, it cannot be affirmed that in general nonlinear systems the second order approximating
DEVS model shows that properties.

The mentioned properties can be synthesized as follows.

e Under certain conditions, the solutions of a QSS (or QSS2) associated to a continuous system converge to
the solutions of the last one when the quantization goes to zero (Convergence).

10



e It is always possible to find a quantization so that the solutions of the QSS (QSS2) associated to an asymp-
totically stable continuous system finish inside an arbitrary small region around the equilibrium points of the
originally continuous system (Stability).

The first property guarantees that an arbitrarily small error can be achieved during the whole simulation. The
second one, not only assures that the final error can be bounded by some given value but it also allows finding the
quantization that achieves that purpose by following some algorithm.

It is interesting to join both properties so that we are able to find a quantization that assures having a minimum
error during the whole simulation. Unfortunately, this cannot be done for general nonlinear cases, but it can be
solved for LTT systems as it will be shown.

The particularization of the stability properties to LTI systems in simulation methods is an important task
since it allows giving a measure of the relationship between the error and the discretization to be applied. There
is a well known result in discrete time methods which says that the application of Euler’s method to a stable LTI
systems has a bounded error when the step size h satisfies:

2

h < (21)

>\maa:
being A\, the maximum eigenvalue of the evolution matrix (A) (The formula stands only if all the eigenvalues of
A are real. When there are complex eigenvalues it adopts a different form).

Although the inequality (21) only holds for LTI systems, it can be also approximately applied to general
nonlinear systems using the linearized systems (through the Jacobian matrix of the function f). The validity of
the linearized models in simulation can be justified taking into account that there are only small changes in the
variables during successive steps. Thus, after each step, the trajectories stay inside the region where the linearized
model constitutes a good approximation.

In this section an analogous formula to (21) will be deduced for QSS and QSS2 related to LTI systems. It will
be shown that independently of the quantization, the error never diverges and the mentioned formula will give a
bound of the error during the whole simulation.

5.1 Error in LTI systems
Consider the following linear time invariant system
#(t) = AZ(t) + Bu(t) (22)
Then, the associated QSS (QSS2) will have the following expression:
z(t) = A(z(t) + Az) + Bu(t) (23)
where Axz(t) = q(t) — z(t), being ¢(¢) the quantized version of x(t). Thus, the error e(t) = z(t) — Z(t) satisfies:
é(t) = A(e + Ax) (24)

Since the initial condition Z(tg) = xo is suppossed to be known, we can take z(tg) = Z(tp) = xo and our goal will
be studying the evolution of e(t) starting from the initial condition e(tg) = 0.

Taking into account (2) and (9), the election of the quantum size (and the hysteresis width in QSS) for each
variable is equivalent to the choice of a bound for the corresponding component of Az. Hence, in the following
theorems, the necessary conditions for the choice of that bounds will be given in order to guarantee that each
component e;(t) in e(t) remains bounded by some maximum desired error in the corresponding variable x;(t).

Formally, the bounds Agqy,--- , Ag, will be obtained so that the condition

|Az;(t)| <A¢;  i=1,---,n

11



assures that
lej(t)] < Aej YVt >ty, j=0,---,n
or equivalently, that the vectorial inequality®
|Az(t)] < Ag
implies that
le(t)] < Ae (25)
with e(tyg) = 0.

Here, Agq is the vector of quantum sizes and Ae is the vector of maximum desired errors.

Theorem 3. Consider the system (24) being A a scalar with its real component being negative. When e(ty) = 0,
the condition given by (25) can be guaranteed by taking

_ [Re(4)|

Proof. If A is a real number the proof is straightforward since when e(t) = Ae = Agq > Az, from (24) we see that
é(t) < 0. Similarly, when e(t) = —Ae, it results é(¢) > 0. Thus, e(¢) cannot abandon the interval [—Ae, Ae].
For the complex case, we define
e(t) = r(t) - e/%®

Then (24) can be rewritten as:

%(r-eﬁ) = A(r-&? + Ax)
el + jred?d = A(r- e’ + Ax)
and then,
P4 jr = A(r+Az-e )
= A r+AAg-e?’

Taking only the real components of the last equation we have

7 = Re(A)-r+Re(AAz - e7%)
Re(A) - r + |A||Az|

<
< Re(4)-r+|Al|lAq

Considering that r(t) = |e(¢)| and the using the equation (26), it results that

d [Re(4)]
—le(t)] < Re(A)-|e(t A A
el < Re()- o] + |4 Ty A
= Re(A)([e(t)] — Ae)
Since Re(A) is negative and |e(tg)] = 0, |e(t)| cannot become greater than Ae. O

In the real case, this theorem expresses that the error in a stable first order system is bounded by the quanti-
zation size. In the complex case, it does not have any meaning. However, it will be useful for later results.

IWe say that a < b when a; < b; for all the components of the vectors a and b
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Theorem 4. Consider the system of (24) being A a diagonal matriz with Re(A;;) < 0 . When e(ty) = 0, the
condition given by (25) can be guaranteed taking®

Re(A;;
Aq = diag(7| e(4ii)| )Ae
| Ai il
Proof. The proof is straightforward applying the theorem 3 for each component of e(t). O

Theorem 5. Consider the system of (24) being A a diagonalizable Hurwitz> matriz. When e(ty) = 0, the condition
given by (25) can be guaranteed taking Aq so that

|Ail

V|- dia
V1 diag(g .05

) [V Ag=TAq < Ae (27)

where V is the eigenvector matriz and \; are the eigenvalues of the matriz A, that is *

VL ALV = diag(\) (28)
Proof. Let be e(t) = Vw(t). Thus, from (24) it results

Vuw(t) = A(Vw + Ax)

and then
w(t) =V AV (w+ VT AZ) = VAV (w + Azy) (29)
and
|Azy ()] = [V Az < [V - |Az| < [VTHAg

From (28) V" 'AV is a diagonal matrix. Thus the system (29) satisfies the theorem 4. From this theorem and the
last inequality we have

: Al 1
jw(t)| < diag(=—=7) - [V"|Aq
| Re (Ai)]
It results from the definition of w(t) that
: |Ail 1
)= Vwlt)| <|V|-diag((=———=) - [V '|Ag=TAqg < A
(8] = [V (o) < V] diagli ) 1V 180 = TAq < Ac
which completes the proof. O

The inequality (27) can be satisfied using different sets of bounds Ag. A formula that allows satisfying that

condition is the following
1 Ae;
Ag; = — min ( 6
n j Tj;

) (30)

>The expression diag(A; ;) refers to the diagonal matrix formed with the components A;; in its diagonal.

3A n x n matrix is said to be Hurwitz when all its eigenvalues have negative real component (i.e. the system # = Az + Bu is
asymptotically stable)

*| - | denotes the componentwise moduli of the corresponding matrix or vector.
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5.2 Some remarks about the results

The theorem 5 and the equation (30) give a practical formula to calculate the quantization that assures that the
error in each variable never becomes bigger than certain bound Ae;. However, that formula requires the calculation
of the eigenvectors of the matrix A. If that eigenvectors are calculated, the exact solution of (22) can be obtained
(at least when the input is not very complicated) and then the simulation might become unnecessary (except for
the case in which the goal is simulating a system for different and complex input trajectories).

In spite of this, the analysis shows important theoretical properties with practical and conceptual consequences.
In one hand, it can be seen that the error is bounded by a linear function of the quantization. Thus, practical rules
to modify the quantization in order to obtain more adequate results can be easily deduced. The identification of
the relationship between the error and the step size in discrete time simulation methods constitutes the basis for
the development of variable step size algorithms. In our case, the mentioned analysis can constitute the basis for
the future formulation of adaptive quantization methods.

Another property that can be deduced from the analysis done which was already mentioned is that for any
arbitrary quantization, the error will be bounded during the whole simulation. In classic discrete time algorithms,
this is distinctive property of implicit methods. However, in QSS and QSS2 there is no implicit formula, which
constitutes an important advantage from the point of view of the computational costs. This is probably the most
important feature of the QSS and QSS2 methods.

It is also interesting to mention that the formula (27) only involves geometrical parameters of the system (the
eigenvectors and the ratio of the real part to the absolute value of the eigenvalues). The relationship between
the error and the quantization does not depend on the speed of the system as it occurs in discrete time methods
(consider inequality (21) in Euler’s method, for instance). This is coherent with the fact that in quantized state
systems the time discretization is replaced by the discretization of the state variables.

Although all the analysis in this section was made over linear systems, it was already mentioned that simulation
involves a succession of local problems. This is, there are not important variations between successive steps or
events and then, the linearized models of nonlinear systems consitute good approximations in most cases. Thus,
the results obtained here can be approximately extended to general nonlinear systems.

6 Examples and Simulation Results

6.1 A simple linear example

In this first example, we will verify the validity of Theorem 5 using the results of the QSS simulation example in
(Kofman and Junco, 2001b). There, the following system corresponding to a RLC serial circuit was introduced.

1151 = %.’EQ
$'2 =U - %1‘1 — %1‘2 (31)
y = %332

Using the parameters R = 100.01, L = 0.01,C = 0.01, a constant input U = 100 and a uniform quantization of
1072 and 10~* in z; and zy respectively, the use of QSS gave the output trajectory of Figure 8.
The evolution matrix A is
Ao [ 0 100 ]

—100 —10001

and its corresponding eigenvector and eigenvalues matrices result:
1 —0.01 . -1 0
V= [ —0.01 1 ] i diag(hi) = [ 0 —10000 ]
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Figure 8: Output trajectory y(¢) in the QSS simulation of (31)

Applying the equation (27) we have:

|Ail

TAq = |V|- diag( Re(\)]
)

)V Ag ~

1.0002  0.02 0.01 | 0.01
0.02  1.0002 0.0001 | — | 0.0003

Thus, it can be assured that the error in z3(¢) cannot be greater than 0.0003. Then, the error in the variable
y(t) = 100 - zo(t), cannot become greater than 0.03. In fact,as it is shown in Figure 9, the error calculated using
the exact solution of the system equations is always less than 6 - 1073,

x10~3

Figure 9: Error in the QSS simulation of (31)

In this example it can be seen that the bound obtained using the equation (27) is satisfied and it is not very
conservative.
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6.2 The second order method in a nonlinear example

The famous second order Lotka-Volterra’s model is a nonlinear system of differential equations that tries to repre-
sent the evolution of the population of two species, prey and predator, in a common habitat. Due to the nonlinearity
of the system, this is a case in which an analytic solution for the general case cannot be obtained.

The following set of state equations constitutes one possible representation of the mentioned system

T ex1 +axixo — ax%
1"2 = —mxo + ,6$1$2

where the variables x; and s represent the population of preys and predators respectively.

The system was simulated using QSS2 with a quantization of Ag; = Agy = 0.001. The parameters taken were
e =01, a =001, 0 =001, m =04, 8 =0.5 and the initial condition adopted was z1(0) = z2(0) = 10. The
results are shown in Figures 10 and 11.
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Figure 10: Number of preys in Lotka Volterra’s model

12

T2
10 +

Figure 11: Number of predators in Lotka-Volterra’s model

The simulation was performed with 211 internal transitions in the first integrator and 264 in the second, which
gives a total of 475 steps. These results were compared with the trajectories obtained using Heun’s method, the
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classic second order fixed step method. The step size used in Heun’s method was 0.63 so that it performed the
same number of steps. Figure 12 shows a part of those trajectories and the “true” trajectory. The “true” trajectory
was obtained using the fifth order Dormand-Prince method with a step size of 0.1.

5.405

T1
5.4 |
5.395
5.39 |
5.385
5.38 |
5.375
5.37 |
5.365

5.36 -

5.355

Figure 12: Number of preys according to Heun’s method, QSS2 and the “true” trajectory.

The absolute error of the QSS2 and Heun’s method during the simulation is shown in Figure 13. The use of
(QSS2 achieves a considerable reduction of the maximum error. However, the error does not converge to zero as in
Heun’s method.

In spite of the lack of convergence, the results obtained with QSS2 simulation are much more reliable than the
results with Heun’s method since the error is bounded during the whole simulation. Here we can see that this
property deduced for LTI systems in Section 5 is still verified in nonlinear examples.

x10—3

Figure 13: Error in Heun and QSS2 simulation of Lotka-Volterra’s model
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6.3 QSS2 in a high order linear model

The circuit of Figure 14 represents an RLC transmission line. This model is useful to study the performance
of integrated circuits transmitting data at a very fast rate. Although the length of the wires is only of a few
centimetters, the high frequency of the signal produces that the delays introduced by the wires cannot be ignored
and the transmission line theory must be applied.

The transmission line models are usually described as systems of partial differencial equations. However, they
can be approximatted by lumped models where the distributed effects of capacity, inductance and resistance are
represented by a cascade of single capacitors, inductors and resistors, as Figure 14 shows.

Figure 14: RLC Transmission Line

In order to constitute a good approximation, the RLC model must be formed by several sections. As a
consequence of this, it results in a high order ordinary differential equation.

In (Ismail et al., 1999) an example composed by five sections of RLC circuits is introduced. The resistance,
inductance and capacitance values used there corresponds to real parameters. The model obtained is a tenth order
linear system, where the evolution matrix (A) can be written as follows:

T _R/L —1/L 0 0 0 000 0 0
1/c 0 —1/C 0 0 000 0 0
0 1L —R/L 1)L 0 000 0 0

A=1 0o 1/ 0 -1/C 000 0 0 (32)
0 0 0 0 0 00 0 1/C 0|

The mentioned system was simulated applying a trapezoidal input wave. The input and output trajectories
are shown in Figure 15.

The parameters used were R = 80€2, C' = 0.2pF and L = 20nH. These parameters correspond to a transmission
line of one centimetter divided in five sections, where the resistance, capacitance and inductance are 400Q2/cm,
1pF/em and 100nH /cm respectively.

The trapezoidal input has a rising time ¢, = 10ps. The quantization adopted was Av = 4mV in the state
variables representing voltages and Ai = 10uA in the state variables representing currents. That quantization,
according to (27), assures that the maximum error is smaller than 250mV in the variable V.

The simulation took a total of 2536 steps (between 198 and 319 internal transitions at each integrator) to
obtain the first 3.2ns of the system trajectories.

The experiment was repeated using a quantization 100 times smaller, which assures having a maximum error
in Vg of 2.5mV . This new simulation was performed with a total of 26883 internal transitions.

The comparision of the results of both experiments (Figure 16) shows that the difference between the trajectories
never becomes greater than 14.5mV which implies that the error in the first simulation was not greater than 17mV.
In this case, the theoretical prediction of the error (the bound was 250mV’) was quite conservative (this can be
easily understood taking into account that the theoretical bound of the error holds for any input trajectory and
for any initial condition).
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Figure 15: QSS2 simulation results in a RLC transmission line
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Figure 16: Difference in V,; using two different quantization sizes

Although the number of steps (2536) seems to be quite big, it is important to take into account that each step
only involves calculations at three integrators (the integrator that performs the internal transition and the two
integrators directly connected to its output). This is due to the particular form of the matrix A (which is sparse).

It is important to mention that any fixed step discrete time method should use a step size of about 1ps in order
to obtain a good representation of the input signal since its rising time is very short (mainly if we are interesting
in the behaviour of the system during the rising time). As a result, the number of steps would be 3200 or greater
with each step involving calculations over all the state variables.

7 Final remarks

7.1 QSS2 vs. QSS

It was shown that QSS and QSS2 satisfy the same stability and convergence properties. Moreover, using the
same quantization, they have exactly the same bound for the error during the whole simulation of a LTI system.
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However, the simulation using QSS2 requires much less steps than a simulation using QSS for the same quantization
(i.e. for the same error bound).

The cause of the reduction of the number of steps can be found in the comparision of the figures 4 and 17. The
number of steps used by a QSS to represent the same trajectory with the same quantization size (Agq) is much
greater than the used by the QSS2. The key is that using the information of the slope in QSS2 the time required
to obtain a difference equal to Ag with respecto to the input trajectory becomes much greater.

Figure 17: Input and Output trajectories in a Zero Order quantizer

In Lotka-Volterra’s example, the simulation via QSS using the same quantization would have taken more than
10000 internal transitions at each integrator®. This number, compared against the 264 and 211 steps performed
by the QSS2 simulation shows clearly the advantage of the new method.

The difference between the performance of QSS and QSS2 becomes greater as well as the quantization is taken
smaller. In fact the number of internal transitions in QSS is approximately proportional to the inverse of the
quantization size while in QSS2 it is approximately proportional to the square root of that number (see equation
(18)). This relationship is verified in the example of the transmission line, where the use of a quantization 100
times smaller resulted in an increment of about 10 times in the number of steps.

In order to quantify the advantages of QQSS2 with respect to QSS a simple linear system was simulated using
both methods and different quantum sizes. The mentioned system is

3?3.1 = T9
$'2 =1- r1 — T2 (33)
Yy =2

Figure 18 compares the CPU time in the simulation for different quanta in both methods. QSS shows a better
performance for big quantizations but when the quantization becomes smaller QSS2 reduces considerably the
computational costs. In fact, for Ag = 0.0001 the second order method is 40 times faster than QSS.

7.2 Hysteresis in QSS2

The addition of hysteresis to the zero order quantizer was necessary in order to avoid arriving to illegitimate DEVS
models (Kofman and Junco, 2001b) but in QSS2 it seems to be absent. However, the hysteresis is also present
since it is implicit in the equations (5) and (6) which define the first order quantizer and in the equation (19)
corresponding to the DEVS model of the first order quantized integrator.

>This number can be obtained comparing the amplitude of the trajectories and the quantization size 0.001
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Figure 18: CPU time vs. quantum size in QSS and QSS2 simulation

In QSS2, the quantization Ag can be interpreted as both, the quantization size and the hysteresis width. The
hysteresis can be seen in the following example.

Consider a first order quantizer that produces an output event (i.e. its input and output values become the
same) with a slope equal to zero. Assume that after that, the input value starts rising and then falling again. If
there were not hysteresis, when the input value reaches the output value the quantizer would produce a new event
(that is what would happen in a quantizer without hysteresis). However, according to (6) that new event will not
be produced until the difference between the input and output variables reaches the value Ag. This is equivalent
to what happens in a zero order quantizer with hysteresis window £ = Ag.

8 Conclusions

The second order method solves one of the most important problems of the previous discrete event based integration
algorithms since it can achieve a good accuracy without an excesive increment in the number of steps.

The theoretical analysis showed that the approximation via QSS2 satisfies the same stability and convergence
properties that were proven for QSS. In addition, a new property was deduced for both methods when they are
applied to the simulation of LTI systems. That property assures that the use of QSS or QSS2 produces a bounded
error during the whole simulation which is proportional to the quantization. In fact, the inequality (27) gives a
closed formula to obtain the mentioned bound as a function of the system parameters. It is also important to
mention that the bound does not depend on the input trajectories or the initial conditions.

This result implies that the quantization constitutes a measure of the error at any time of the simulation. Since
the forms of the trajectories in QSS and QSS2 are well known (they are piecewise linear or piecewise parabolic),
that information can be used to obtain the exact value of the quantized trajectories not only at the event times
but also at any intermediate time. Generally, in classic discrete time methods the bound of the error is deduced
only for one step (typically using Taylor’s series) and there is no information about the error committed when
intermediate values are interpolated.

Although the mentioned result was obtained for LTI systems, it can be approximately extended to nonlinear
systems as it was discussed in section 5 and verified through the Lotka-Volterra’s example.

With respect to the future work, the theorem 5 should be completed for general Hurwitz matrices (i.e. including
the non diagonalizable cases) and it would be desirable to find a formal proof of what was mentioned in the previous
paragraph related to nonlinear systems.
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The QSS and QSS2 methods can be generalized (QSSn) using higher order polynomials for the representation
of the trajectories. The use of such higher order methods should result in an important reduction of the number
of steps. However, a new problem might appear here since the equation (19) will turn into an equation of order n.
When n is bigger than 3 the resolution becomes quite difficult.

Another important future task is the introduction of adaptive quantization. The idea is similar to what is done
by the variable step algorithms, that is, varying the step size according to some estimation of the error. In that
way, we can obtain a method in which the user does not have to choose the quantization. It would be automatically
chosen by the algorithm according to the desired error. The adaptive quantization might be also used to avoid
the final oscillations in the quantized solutions (using fixed quantization the solutions does not converge to the
equilibrium point but they remain in a region around that point as it is was mentioned before). A result that can
be useful for this goal can be found in (Brockett and Liberzon, 2000), where the authors show that a system with
quantizers can reach the equilibrium point if the quantization size is reduced as well as the trajectories get closer
to that point.

Finally, the use of the methodology in the example of the transmission line showed some advantages that might
be applied to more general distributed parameters systems. Taking into account that here the resulting DEVS
model corresponding to the QSS (QSS2) can be built as the coupling of several identical submodels (associated to
each section of the system), the combination of the method with the work made on Cell-DEVS (Wainer, 2000) can
result in an interesting application.
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