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Abstract

The notions of invariant sets and ultimate bounds are important concepts in the analysis of dynamical systems and very
useful tools for the design of control systems. Several approaches have been reported for the characterisation of these sets,
including constructive methods for their computation and procedures to obtain different approximations. However, there are
shortcomings in those concepts, in the sense that no general probability distributions can be considered for the disturbances
affecting the system (which, for example, precludes the assumption of Gaussian distributions insofar as they are not bounded).
Motivated by those shortcomings, we propose in this paper the novel concepts of probabilistic ultimate bounds and probabilistic
invariant sets, which extend the notions of invariant sets and ultimate bounds to consider ‘containment in probability’, and
have the important feature of allowing stochastic noises with more general distributions, including the ubiquitous Gaussian
distribution, to be considered. We introduce some key definitions for these sets, establish their main properties and develop
methods for their computation. A numerical example illustrates the main ideas.
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1 Introduction

The notions of invariant sets and ultimate bounds have
proven to be important concepts in the analysis of the
behaviour of dynamical systems as well as very useful
tools for the design of control systems. For some basic
definitions of these concepts, including a historic per-
spective, the reader is referred to the classical references
on the topic, for example, the survey paper [2], and the
references therein, and the more recent monograph [3].
The characterisation of ultimate bounds and invariant
sets, constructive methods for their computation, and
procedures to obtain different approximations, can be
found in a number of references, including [1,8,9,12].

Paramount to the existence and compactness of these
sets, is that the disturbances affecting the system be
bounded. Take for example a typical linear systemmodel,
x(t + 1) = Ax(t) + w(t), with matrix A strictly sta-
ble. Obviously, no matter how much ‘shrinking’ effect
the term Ax(t) has, if the disturbance factor w(t) is not
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bounded, then nothing can be said about the bounded-
ness of the state x(t + 1) at the next time evolution of
the system. Clearly, this constitutes a shortcoming of
the notions of set invariance and ultimate bounds, in the
sense that no general probability distributions can be
considered for the disturbances affecting the system, in-
cluding Gaussian distributions—insofar as they are not
bounded. Motivated by the shortcoming of invariant sets
and ultimate bounds mentioned above, in the sense that
no general disturbance distributions can be considered,
we propose in this paper two novel concepts; namely,
probabilistic ultimate bounds (PUB) and probabilistic in-
variant sets (PIS) (that is, sets wherein relevant vari-
ables can be assured to remain with a given probability)
and investigate their properties. These sets extend the
concepts of invariant sets and ultimate bounds (which
are inherently deterministic concepts), to consider ‘con-
tainment in probability’, and have the important feature
of allowing stochastic noises with more general distribu-
tions, including the ubiquitous Gaussian distribution, to
be considered.

In this paper we introduce some key definitions, establish
the main properties and develop methods for the com-
putation of these sets. A key factor that motivated the
developments of this paper was to obtain explicit charac-
terisations of the introduced sets that are conceptually
simple and computationally efficient. A numerical exam-
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ple is provided to illustrate themain ideas. A preliminary
version of this work has been reported in the conference
paper [7], in which only Gaussian distributions were con-
sidered for the system disturbances. The present paper
extends that work by generalising the treatment to ar-
bitrary probability distribution functions. For complete-
ness, the Gaussian case—resulting in tighter bounds—is
presented here as well, as a particular case of the general
result.

It is envisaged that an important number of applica-
tions and constructs could be developed utilising these
newly introduced concepts, allowing, for example, the
extension of existing methods to cases where currently
they cannot be applied due to the unboundedness of the
disturbances. We discuss briefly below some related lit-
erature where the concepts and characterisations intro-
duced in this paper could be useful and/or complemen-
tary. The survey paper [4] provides a broad perspective
of Probabilistic Robust Control, focusing on control de-
signmethods based on the interplay between uncertainty
randomisation and convex optimisation. Stochastic de-
velopments in Model Predictive Control include, for ex-
ample, the work in [5], where bounds are imposed on the
probability of violation of the state constraints. In [11],
the problem of finding the optimal control policy that
maximises the probability of the state to belong to a
given sequence of sets within a finite time horizon is con-
sidered (an important difference with the work reported
here is that [11] deals with feedback policies, whereas we
are concerned with the problem of finding invariant sets
for open-loop dynamics; in addition, no explicit char-
acterisation of the sets is given in [11] that would al-
low further comparisons). In the rather different setting
of systems described by continuous-time stochastic dif-
ferential equations, the problem of Stochastic Input to
State Stability has been considered in, e.g., [6,10]. Suit-
able continuous-time extensions of the notions of invari-
ance introduced here could be useful in this context.

2 Definitions and Preliminary Background

We consider a discrete time LTI system of the form

x(t+ 1) = Ax(t) + w(t) (1)

with x(t), w(t) ∈ Rn. The disturbance vector w(t) is
formed by n independent noise processes, where each
of its components, wi(t), is an i.i.d. zero-mean white
random sequence. (Note, in particular, that this implies
that the covariance matrix of w(t) is a constant diagonal
matrix for all times t.) We assume that the nominal
system is asymptotically stable.

2.1 Expected Value and Covariance of x(t)

We will review here some basic facts that will be used
throughout the paper. We will denote with cov the oper-

ation that gives the covariance matrix of a random vec-
tor, and with var the operation that gives the variance
of a random scalar variable. Let us define the following
covariance matrices:

Σw , cov[w(t)] = E[w(t)wT (t)]

and

Σx(t) , cov[x(t)] = E[(x(t)−E[x(t)])(x(t)−E[x(t)])T ]
(2)

which are both symmetric positive semidefinitematrices.

Notice that we can compute

x(t0 +N) = ANx(t0) +

N−1
∑

j=0

Ajw(t0 +N − 1− j) (3)

Taking expected values on both sides, we obtain,

E[x(t0 +N)] = ANE[x(t0)]

+

N−1
∑

j=0

AjE[w(t0 +N − 1− j)] = ANx(t0) (4)

since we assume that x(t0) is given. Notice also that

lim
N→∞

(E[x(t0 +N)]) = 0 (5)

since A has all its eigenvalues inside the unit circle.

Computing the covariance at both sides of (3), we obtain

Σx(t0 +N) = cov[x(t0 +N)] = cov[ANx(t0)]

+

N−1
∑

j=0

cov[Ajw(t0 +N − 1− j)]

=

N−1
∑

j=0

AjΣwA
jT (6)

which provides an expression to compute the covariance
of the state at any instant of time. When matrix A has
all its eigenvalues inside the unit circle, it can be easily
shown that the latter expression converges as N → ∞.
Then, defining

Σx(∞) = lim
N→∞

Σx(t0 +N)

recalling that

x(t+N + 1) = Ax(t+N) + w(t+N)

and computing the covariance of the above expression
withN → ∞, we have that Σx , Σx(∞) can be obtained
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from the discrete Lyapunov equation

Σx = AΣxA
T +Σw (7)

2.2 Definition of PUB and PIS

We will next define the two novel notions we will be
concerned with in this paper.

Definition 1 (Probabilistic Ultimate Bounds)
Let 0 < p ≤ 1 and let S ⊂ Rn. We say that S is a
probabilistic ultimate bound (PUB) with probability p
for system (1) if for every initial state x(t0) = x0 ∈ Rn

there exist T = T (x0) ∈ N such that the probability
Pr[x(t) ∈ S] ≥ p for each t ≥ t0 + T .

Definition 2 (Probabilistic Invariant Sets) Let
0 < p ≤ 1 and let S ⊂ R

n. We say that S is a probabilis-
tic invariant set (PIS) with probability p for system (1)
if for any x(t) ∈ S the probability Pr[x(t + k) ∈ S] ≥ p
for each k > 0.

2.3 Some properties of PUB and PIS

We present here some basic properties derived from the
definitions introduced in the previous subsection. The
proof of the first result is straightforward and it is thus
omitted.

Lemma 3 If S is a PUB (PIS) with probability p for
(1), then it is also a PUB (PIS) with probability p̃ ≥ 0
for any p̃ < p.

Lemma 4 (PIS⇒PUB) Let S0 ⊂ Rn be a PIS for (1)
with probability p which contains the origin. Given ε > 0
we define Sε = {x : dist(x, S0) ≤ ε}. Then, Sε is a PUB
for (1) with probability p.

PROOF. Let x0 = x(t0) ∈ Rn be an arbitrary initial
state for (1), and let

x̃(t+ 1) = Ax̃(t) + w(t)

with x̃(t0) = 0. Since x̃(t0) ∈ S0 and S0 is a probabilistic
invariant set with probability p, then x̃(t) belongs to S0

with probability greater than or equal to p for all t > t0.

Define x̂(t) , x(t) − x̃(t). Then, x̂(t) verifies x̂(t+ 1) =
Ax̂(t) with x̂(t0) = x0. Since A is stable, given ε > 0
there exists T = T (ε) such that

‖x̂(t)‖ = ‖x(t)− x̃(t)‖ ≤ ε

for all t > t0 + T .

Let t > t0 + T . Notice that

x̃(t) ∈ S0 ⇒ dist(x(t), S0) ≤ ‖x(t)− x̃(t)‖ ≤ ε

which implies that x(t) ∈ Sε.

Then, for all t > t0+T , Pr[x(t) ∈ Sε] ≥ Pr[x̃(t) ∈ S0] ≥
p which concludes the proof. 2

Lemma 5 (Intersection of PUB) Let S1 be a PUB
with probability p1 for system (1) and let S2 be a PUB
with probability p2 for the same system, with p1+p2 > 1.
Then, the set S = S1 ∩ S2 is a PUB with probability
p = p1 + p2 − 1.

PROOF. Given x(t0) = x0, there exist T1 and T2 such
that Pr[x(t) ∈ S1] ≥ p1 for each t ≥ T1 and Pr[x(t) ∈

S2] ≥ p2 for each t ≥ T2. Let T , max(T1, T2).

Then, for each t ≥ T , we know that

Pr[x(t) /∈ S1] ≤ 1− p1

and
Pr[x(t) /∈ S2] ≤ 1− p2

Then,

Pr[x(t) /∈ S1 ∨ x(t) /∈ S2] ≤ Pr[x(t) /∈ S1] + Pr[x(t) /∈ S2]

≤ 2− p1 − p2

Finally,

Pr[x(t) ∈ S] = Pr[x(t) ∈ S1 ∧ x(t) ∈ S2]

= 1− Pr[x(t) /∈ S1 ∨ x(t) /∈ S2]

≥ p1 + p2 − 1

which concludes the proof. 2

Lemma 6 (Intersection of PIS) Let S1 be a PIS with
probability p1 for system (1) and let S2 be a PIS with
probability p2 for the same system, with p1 + p2 > 1.
Then, the set S = S1 ∩ S2 is a PIS with probability p =
p1 + p2 − 1.

PROOF. The proof of this lemma is very similar to
that of Lemma 5. 2

Corollary 7 (Intersection of several PUB/PIS)
Let {Si}

r

i=1
be a collection of PUB (PIS) for system

(1) with probabilities pi, i = 1, . . . , r, respectively, with
∑r

i=1
pi > (r − 1). Then, the set S = ∩r

i=1
Si is a PUB

(PIS) with probability p =
∑r

i=1
pi − (r − 1).
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PROOF. The proof follows from a direct application
of induction to the result of Lemma 5 (respectively,
Lemma 6) for the case of PUB (respectively, PIS). 2

Lemma 8 (Union of PUB) Let S1 be a PUB with
probability p1 for system (1) and let S2 be a PUB with
probability p2 for the same system, then the set S1 ∪ S2

is a PUB with probability p = max{p1, p2}.

PROOF. Given any x(t0) ∈ R
n there exist T1 and T2

such that:

Pr[x(t) ∈ S1 ∪ S2] ≥ Pr[x(t) ∈ S1] ≥ p1, ∀t ≥ T1

and

Pr[x(t) ∈ S1 ∪ S2] ≥ Pr[x(t) ∈ S2] ≥ p2, ∀t ≥ T2

These two inequalities imply that

Pr[x(t) ∈ S1 ∪ S2] ≥ max{p1, p2}, ∀t ≥ max{T1, T2}

which concludes the proof. 2

Lemma 9 (Union of PIS) Let S1 be a PIS with prob-
ability p1 for system (1) and let S2 be a PIS with prob-
ability p2 for the same system, then the set S1 ∪ S2 is a
PIS with probability p = min{p1, p2}.

PROOF. Given x(t0) ∈ S1 ∪ S2, we have that either
x(t0) ∈ S1 or x(t0) ∈ S2.

If x(t0) ∈ S1 then, for any t > t0 we have

Pr[x(t) ∈ S1 ∪ S2] ≥ Pr[x(t) ∈ S1] ≥ p1 ≥ min{p1, p2}

If x(t0) ∈ S2 then, for any t > t0 we have

Pr[x(t) ∈ S1 ∪ S2] ≥ Pr[x(t) ∈ S2] ≥ p2 ≥ min{p1, p2}

In either case, we have Pr[x(t) ∈ S1 ∪S2] ≥ min{p1, p2}
for all t > t0, which completes the proof. 2

Corollary 10 (Union of several PUB/PIS) Let
{Si}

r

i=1
be a collection of PUB (PIS) for system (1) with

probabilities pi, i = 1, . . . , r. Then, the set S = ∪r
i=1

Si is
a PUB (PIS) with probability p = max{pi : i = 1, . . . , r}
(p = min{pi : i = 1, . . . , r}).

PROOF. The proof follows from a direct application
of induction to the result of Lemma 8 (respectively,
Lemma 9) for the case of PUB (respectively, PIS). 2

Remark 11 When pi = 1, i = 1, . . . , r, Corollaries 7
and 10 say that the intersection and the union of deter-
ministic invariant sets are deterministic invariant sets,
which is a well known result.

3 Computation of Probabilistic Ultimate
Bounds

We propose here a method to compute Probabilistic
Ultimate Bounds for (1) based on the covariance ob-
tained in (7).We develop first a method based on Cheby-
shev’s inequality which can be used for stochastic pro-
cesses w(t) with arbitrary distributions. We will then
give tighter bounds for the special case of Gaussian noise.

In all the developments that follow, given a parameter
(probability) p such that 0 < p < 1, we will define n
parameters p̃i such that

0 < p̃i < 1, i = 1, . . . , n;

n
∑

i=1

p̃i = 1− p (8)

Also, for a vector x, xi denotes its ith component, and
for a square matrix Σ, the notation [Σ]i,i indicates its
ith diagonal element.

3.1 General Distribution

Theorem 12 (PUB Computation – General
Case) Consider the system (1). Assume that all the
eigenvalues of A ∈ Rn×n lie strictly inside the unit circle
and suppose that w(t) is zero-mean white noise with co-
variance matrix Σw. Let 0 < p < 1 and p̃i, i = 1, . . . , n,
be defined as in (8). Then, for any ε > 0, the set
S = {x : |xi| ≤ bi + ε; i = 1, . . . , n} is a probabilistic
ultimate bound for the system with probability p, where

bi ,

√

[Σx]i,i
p̃i

; i = 1, . . . , n

and Σx is the solution of the discrete Lyapunov equation
(7).

PROOF. Let Σx(t) be defined as in (2). The term
[Σx(t)]i,i represents the variance of xi(t). Using Cheby-
shev’s inequality on this component, it results that

Pr[|xi(t)− E[xi(t)]| ≥ bi + ε/2] ≤
[Σx(t)]i,i
(bi + ε/2)2

(9)

Taking into account that Σx(t) → Σx as t → ∞, there
exists Ta sufficiently large such that for all t > Ta it
results

[Σx(t)]i,i
(bi + ε/2)2

≤
[Σx]i,i
b2i

= p̃i (10)

Also, since E[xi(t)] → 0 when t → ∞, there exists Tb

sufficiently large such that for all t > Tb it results

|E[xi(t)]| < ε/2
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and then, for all t > Tb, it is true that

Pr[|xi(t)| ≥ bi + ε] = Pr[|xi(t)| − ε/2 ≥ bi + ε/2]

≤ Pr[|xi(t)| − |E[xi(t)]| ≥ bi + ε/2]

≤ Pr[|xi(t)− E[xi(t)]| ≥ bi + ε/2]

Substituting this last inequality into the left hand side
of (9) and replacing the right hand side with (10), we
obtain

Pr[|xi(t)| > bi + ε] ≤ Pr[|xi(t)| ≥ bi + ε] ≤ p̃i (11)

which holds for all t > Ti , max(Ta, Tb).

Repeating this analysis for all the components of x(t),
and taking T = maxi(Ti), it results that Inequality (11)
holds for all t > T and for i = 1, . . . , n.

Then,

Pr[x(t) /∈ S] ≤

n
∑

i=1

Pr[|xi(t)| > bi + ε] ≤

n
∑

i=1

p̃i = 1− p

(12)
Thus,

Pr[x(t) ∈ S] ≥ p

for all t > T , which completes the proof. 2

Remark 13 Theorem 12 provides a general but possibly
conservative result. It is based on Chebyshev’s inequality,
which is in general conservative since it holds for arbi-
trary distributions. Also, it does not exploit the knowl-
edge of the whole covariance matrix of x(t). Thus, an-
other source of conservatism is that, in the estimation of
Pr[x(t) /∈ S] in (12), this probability is bounded with the
sum of the probabilities that the individual components,
xi, become larger than the corresponding bounds, with-
out taking into account the correlation between individual
components.

3.2 Gaussian Distribution

The following theorem, valid for the special case of a
Gaussian white noise, provides tighter bounds than
those of Theorem 12. The latter is achieved by resorting
to specific properties of Gaussian distributions, without
the need to employ Chebyshev’s inequality.

Theorem 14 (PUB Computation – Gaussian
Noise) Consider the system (1). Assume that all the
eigenvalues of A ∈ Rn×n lie strictly inside the unit cir-
cle and suppose that w(t) is zero-mean white Gaussian
noise with covariance matrix Σw. Let 0 < p < 1 and p̃i,
i = 1, . . . , n, be defined as in (8). Then, for any ε > 0, the
set S = {x : |xi| ≤ bi + ε; i = 1, . . . , n} is a probabilistic
ultimate bound for the system with probability p, where

bi ,
√

2[Σx]i,ierf
−1(1 − p̃i); i = 1, . . . , n (13)

and where Σx is the solution of the Lyapunov Equation

(7) and erf is the error function: erf(z) , 2√
π

∫ z

0
e−ζ2

dζ.

PROOF. The proof can be found in [7]. 2

4 Computation of Probabilistic Invariant Sets

Here, again, we first propose a method to compute
probabilistic invariant sets for (1) that can be used for
stochastic processes w(t) with arbitrary distributions,
and then we provide a method for the particular case of
Gaussian noises. In the rest of the developments we will
assume the matrix A in (1) to be diagonalisable 1 and
we will denote by ρ(A) the spectral radius of A (that is,
the maximum of the absolute values of the eigenvalues
of A). The symbol � will denote the elementwise in-
equality between two vectors, i.e., for α, β ∈ Rn, α � β
if and only if αi ≤ βi, i = 1, . . . , n. For a matrix M
with complex entries, M∗ will denote the conjugate
transpose of M .

4.1 General Distribution

Theorem 15 (PIS Computation – General Case)
Consider the system (1), where matrix A is assumed to
be diagonalisable and satisfying ρ(A) < 1. Suppose that
w(t) is zero-mean white noise with covariance matrixΣw.
Let 0 < p < 1 and p̃i, i = 1, . . . , n, be defined as in (8).
Then, the set S = {x : |V −1x| � b} is a probabilistic
invariant set for the system with probability p, where V
is a similarity transformation such that

Λ = diag(λ1, . . . , λn) = V −1AV

is the Jordan decomposition of matrix A, and the com-
ponents of b = [b1 . . . bn]

T are computed according to

bi ,

√

[Σv]i,i
p̃i

1

(1− |λi|)
; i = 1, . . . , n

with

Σv = V −1Σw(V
−1)∗

1 In an important number of applications, the matrix A

in (1) is given by some closed-loop matrix, e.g., Ã − B̃K or

Ã− LC̃ [where (Ã, B̃, C̃) is the open-loop system and K is
a feedback gain, L is an observer gain, etc.]. Under standard

controllability and observability conditions on (Ã, B̃, C̃) the
design of K, L, etc., can be readily done by pole placement
techniques so that the assumptions on A made here are,
without loss of generality, satisfied.
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PROOF. With the linear transformationx(t) = V z(t),
system (1) becomes

z(t+ 1) = Λz(t) + V −1w(t) (14)

with z ∈ Cn, w(t) ∈ Rn, V −1 ∈ Cn×n, and Λ ∈ Cn×n

being a diagonal matrix.

Defining v(t) , V −1w(t), the covariance of v(t) results
Σv = V −1Σw(V

−1)∗, and the i–th component of (14) is

zi(t+ 1) = λizi(t) + vi(t) (15)

Then,

zi(t0 +N) = λN
i zi(t0) +

N−1
∑

j=0

λj
i vi(t0 +N − 1− j) (16)

The expected value of this last expression is

E[zi(t0 +N)] = λN
i zi(t0)

since we assume that z(t0) = V −1x(t0) is given. From
(16), the variance of zi(t0 +N) is

var[zi(t0 +N)] =

N−1
∑

j=0

|λj
i |

2var[vi(t0 +N − 1− j)]

=
(1− |λi|

2N )[Σv]i,i
1− |λi|2

(17)

Suppose that x(t0) ∈ S. Thus, |z(t0)| = |V −1x(t0)| � b
and |zi(t0)| ≤ bi. Then, it results that

|E[zi(t0 +N)]| = |λN
i zi(t0)| ≤ |λi|

Nbi (18)

From Inequality (18), it follows that

Pr[|zi(t0 +N)| ≥ bi]

= Pr[|zi(t0 +N)| − |λi|
Nbi ≥ bi(1 − |λi|

N )]

≤ Pr[|zi(t0 +N)| − |E[zi(t0 +N)]| ≥ bi(1− |λi|
N )]

≤ Pr[|zi(t0 +N)− E[zi(t0 +N)]| ≥ bi(1− |λi|
N )]

Chebyshev’s inequality establishes that

Pr
[

|zi(t0 +N)− E[zi(t0 +N)]| ≥ bi(1 − |λi|
N )

]

≤
var[zi(t0 +N)]

b2i (1− |λi|N )2
(19)

and then it results that

Pr[|zi(t0 +N)| ≥ bi] ≤
(1 − |λi|

2N )[Σv]i,i
(1− |λi|2)b2i (1 − |λi|N )2

=
(1 + |λi|

N )[Σv]i,i
(1− |λi|2)b2i (1 − |λi|N )

≤
(1 + |λi|)[Σv]i,i

(1− |λi|2)b2i (1 − |λi|)

=
[Σv]i,i

(1− |λi|)2b2i
= p̃i

for all N ≥ 1; where we have used the expression in (17)
for var[zi(t0 + N)], simple algebraic steps to simplify
the above expressions, the definition of bi given in the
statement of the theorem, and in the inequality between
the second and third row terms we have used the fact
that the term on the second row decreases with N and
achieves its maximum at N = 1. Then, it results that
Pr[|zi(t0 +N)| > bi] ≤ Pr[|zi(t0 +N)| ≥ bi] ≤ p̃i. Thus,
the probability

Pr[|z(t+N)| 6� b] ≤

n
∑

i=1

Pr[|zi(t0 +N)| > bi]

≤

n
∑

i=1

p̃i = 1− p

for all N ≥ 1, and then,

Pr[|z(t+N)| � b] = Pr[|V −1x(t+N)| � b]

= Pr[x(t+N) ∈ S] ≥ p

which proves that the set S is a probabilistic invariant
set with probability p. 2

4.2 Gaussian Distribution

Here we again obtain tighter bounds for the case of Gaus-
sian noises by replacing the use of Chebyshev’s inequal-
ity with specific properties of Gaussian distributions.

Theorem 16 (PIS Computation – Gaussian
Noise) Consider the system (1), where matrix A is as-
sumed to be diagonalisable and satisfying ρ(A) < 1. Let

Λ = diag(λ1, . . . , λn) = V −1AV

be the Jordan decomposition of matrix A. Suppose that
w(t) is zero-mean white Gaussian noise with covariance
matrix Σw. Let 0 < p < 1 and p̃i, i = 1, . . . , n, be defined
as in (8) with the restriction that for each pair of complex
conjugate eigenvalues λi, λj = λ̄i, we take p̃i = p̃j.
Then, the set S = {x : |V −1x| � b} is a probabilistic
invariant set for the system with probability p, where the
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components of b = [b1 . . . bn]
T are computed according

to

bi ,

√

2[Σv]i,i

(1− |λi|)
erf−1(1− p̃i); i = 1, . . . , n

with
Σv = V −1Σw(V

−1)∗

PROOF. The proof can be found in [7]. 2

Remark 17 Definitions 1 and 2 of PUB and PIS are
general and can be accomplished by sets of arbitrary
shape. However, Theorems 12–16 only provide ways to
compute polytopic PUB and PIS.

Besides the fact that the calculations of polytopic PUB
and PIS are simple and lead to explicit formulas, there are
several practical applications in which polytopic invariant
sets play a key role such as fault tolerant control....

Yet, analogous results to those of Theorems 12–16 may
eventually be obtained for PUB and PIS of different
shape. For instance, it can be considered the problem of
finding the PUB/PIS with minimum volume, or find-
ing the PUB/PIS that turn to be optimal in some other
sense. However, those results are beyond the goals of the
present work.

5 Example

We consider the system

x(t + 1) = Ax(t) +Bv(t) =

[

0 0.6

0.3 −0.5

]

x(t) +

[

0

1

]

v(t)

(20)
where v(t) is zero-mean white Gaussian noise with vari-
ance Σv = 1. Taking into account that a Gaussian noise
is unbounded, under the standard definitions in the lit-
erature, the system is not ultimately bounded. We shall
then try to compute a probabilistic ultimate bound with
probability p = 0.99.

Defining w(t) , Bv(t), the covariance matrix of w(t)
can be computed as

Σw = BσvB
T =

[

0 0

0 1

]

(21)

Now, in order to apply Theorem 14, we take

p̃1 = p̃2 = 0.005

and then, for any ε > 0, the set S = {x : |xi| ≤ bi +
ε; i = 1, 2} with b1 = 2.1602, b2 = 3.6004 is a PUB with
probability p = 0.99 for the system.

In order to verify the correctness and to check for the
potential conservatism of the result, we performed sev-
eral long time simulations of the system (up to time
t = 1× 106) and we found in all the cases that between
0.9% and 0.93% of the samples of x(t) were outside the
computed set. Theorem 14 states that the probability
that a sample be outside the set is less than 1%, which
agrees very closely with the simulation results.

We then recomputed the probabilistic ultimate bound
sets for different choices of p̃i satisfying (8). Figure 1
shows the results for three different sets of parameters.
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3

4

5
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x
2

Fig. 1. PUBs for p̃1 = 0.001, p̃2 = 0.009 (dashed),
p̃1 = 0.005, p̃2 = 0.005 (solid) and p̃1 = 0.009, p̃2 = 0.001
(dash–dotted)

We note that the intersection of these sets, equal to the
intersection of just two of them (the one indicated with
dashed lines and the one indicated with dash-dotted
lines) is also a PUBwith probability 0.98 (see Lemma 5).
We remark that the smallest ultimate bounds are ob-
tained in the limiting cases (see (13)) when p̃1 → 0.01 =
1−p, p̃2 → 0 (smallest bound on x1, whereas the bound
on x2 tends to infinity), and p̃1 → 0, p̃2 → 0.01 = 1− p
(smallest bound on x2, whereas the bound on x1 tends to
infinity), and that the intersection of the sets obtained
in these two limiting cases is visually indistinguishable
from the intersection of the ones indicated in Figure 1
with dashed and dash-dotted lines.

We also computed a PISwith probability p = 0.99 for the
system. For that goal, we set p̃1 = p̃2 = 0.005 obtaining
a set

S = {x : |V −1x| � b}

with

V =

[

0.9272 −0.6285

0.3746 0.7778

]

; b =

[

2.4347

10.5633

]

Figure 2 plots the PIS and the PUB previously obtained.
We note here that from Lemma 4 we have that the PIS

7



−10 −8 −6 −4 −2 0 2 4 6 8 10
−15

−10

−5

0

5

10

15

x1

x
2

Fig. 2. PIS (solid) and PUB (dashed) for
p̃1 = 0.005, p̃2 = 0.005

(enlarged by an ǫ > 0, which can be arbitrarily small) is
also a PUB with probability 0.99. Thus, Lemma 5 tells
us that the intersection of the two sets of Figure 2 is also
a PUB with probability 0.98.

As in the PUB case, we can obtain different PIS chang-
ing the values for p̃1, p̃2. Figure 3 shows the PIS obtained
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Fig. 3. PIS for p̃1 = 0.005, p̃2 = 0.005 (solid)
p̃1 = 0.001, p̃2 = 0.009 (dashed) and p̃1 = 0.009, p̃2 = 0.001
(dash–dotted)

for three different choices of p̃1, p̃2. Here again the in-
tersection of these three sets (equal to the intersection
of just two of them) gives a PIS with probability 0.98
(Lemma 6). Similar remarks to the ones made in connec-
tion to the PUB sets of Figure 1, regarding the limiting
cases for these sets (smallest bounds), apply here to the
PIS of Figure 3.

6 Conclusions

We have proposed the novel concepts of probabilistic
ultimate bounds and probabilistic invariant sets. These
concepts extend the notions of invariant sets and ulti-
mate bounds to consider ‘containment in probability’,

and are intended to alleviate some of the shortcomings
of the latter concepts, since they allow stochastic noises
with more general distributions, including the ubiqui-
tousGaussian distribution, to be considered.We have in-
troduced some key definitions for these sets, established
their main properties and developed methods for their
computation. A numerical example has been included to
illustrate the main ideas.
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