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Abstract

This work introduces a novel and simple way of designing MPC schemes
that ensure practical stability under less restrictive assumptions than those
of existing approaches. The terminal control invariant set required by most
stabilizing MPC formulations is replaced by a pair of simpler inner and outer
sets, which are not invariant but satisfy a weaker condition. The advantage
of using this pair of sets instead of a classical invariant set is the flexibility
in their design and ultimately the simplicity. Two key modifications, one
in the stage cost function and other related to a constraint, are introduced
in the optimal control problem that MPC solves at each time. It is shown
that convergence to the outer set, which is the target region, is ensured
within finite-time and that the proposed MPC scheme can keep controlling
the system in the target set without requiring a different local controller. A
numerical example with a nonlinear model of an inverted pendulum is used
to illustrate these results.
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1. Introduction

Model Predictive Control (MPC) is one of the most employed advanced
control techniques in industry. MPC computes the control actions as the
result of an underlying optimization problem, which relies on model-based
predictions of the future behavior of the plant and considers hard constraints
on control and states [28]. The concept of receding horizon policy (RHP)
turns MPC into a realizable optimization-based controller. RHP consists of
solving a tractable optimization problem over a finite horizon at each time,
yielding a series of control actions, of which only the first one is applied. The
horizon is then “shifted” at the next time step and the process is repeated for
the new system state, effectively closing the loop and enhancing robustness.
The historical challenge (from a theoretical perspective) has been to propose
MPC formulations that stabilize the closed-loop system, whilst guaranteeing
recursive feasibility of the sequence of optimization problems solved on-line,
with the largest possible domain of attraction [27]. Since the seminal work
of [24], a plethora of approaches have been proposed, which not only address
closed-loop stability but also focus on overcoming the limitations of the orig-
inal ideas, including enlarging the domain of attraction [23], relaxing the
terminal conditions [12], re-parametrizations of the control degrees of free-
dom [1], and avoiding the explicit (and many times prohibitive) computation
of sets and functions.

A standard technique to establish closed-loop stability of MPC schemes
is by using the optimal value function of the underlying optimal control
problem as a Lyapunov function candidate [16, 24]. To address recursive
feasibility, a typical method is to incorporate a group of terminal conditions,
more specifically, a terminal cost which is a control Lyapunov function in a
terminal region where the final predicted state is forced to belong to. This
terminal region has to be a control invariant set for the system, which means
that if the state enters this set, then there exists a feasible control input that
can keep it inside that set.

The Multi-Parametric Toolbox 3.0 [14] is an interesting tool to obtain
these terminal costs and sets for certain types of systems, namely linear time
invariant, piecewise affine and mixed logical dynamical. Nevertheless, when
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considering general nonlinear dynamics, procedures are not so well estab-
lished. The conventional methodology involves obtaining first these terminal
elements for the linearized system and then compensating for the correspond-
ing linearization error. Methods for continuous [25, 7] and discrete-time
[17, 32] cases were developed using this idea. Other works considered a
different approach to approximate the nonlinear dynamics using linear dif-
ference inclusions [15, 9]. More recently and based on finite-step control
Lyapunov functions [19], the work of [20] presented a framework to obtain
cyclically time-varying terminal costs and sets for discrete-time nonlinear
MPC (NMPC). Building upon this, the authors of [11] developed the sta-
bilizing NMPC toolbox that, among other things, is intended to compute
ellipsoidal terminal sets and quadratic terminal costs.

The aforementioned terminal constraint for the last predicted state to
belong to an invariant set [24] has been used in [29] to prove that feasibil-
ity (rather than optimality) is enough for ensuring stability and finite-time
convergence. The authors of that work propose, among other controllers, op-
timal and suboptimal versions of a “dual-mode” MPC strategy with a stage
cost function L(x, u) ≥ ℓ(∥(x, u)∥) for all x ̸∈ Ω and for all u ∈ U , where ℓ(s)
is a K-function, Ω is the target set, and U is a bounded input set. They also
assume that L(x, hL(x)) = 0 for all x ∈ Ω, where hL(x) is a control law local
to Ω, and that for the system in closed-loop with u = hL(x), Ω is positively
invariant. Notice that in this controller, MPC is applied only in the first
stage of the dual-mode operation, achieving finite-time convergence to an in-
variant set. Then, in the second mode, a local controller is directly assumed
to attain asymptotic stability to the origin. A similar idea is presented in [4],
where a positively invariant set (that is also contractive) is used as target. In
this strategy, the stage cost, which includes a specific term related to the in-
put, becomes null in this set and a terminal constraint imposes that the final
predicted state must belong to it. Then, these conditions are employed to
prove finite-time convergence (but not ultimate boundedness) to the target
set.

Beyond implicit control limitations related to the use of invariant sets,
such as the reduction of the domain of attraction of the controller, these sets
are in general difficult to obtain and hard to handle, even for simple linear sys-
tems, when they are polyhedra with, typically, a high number of faces. These
limitations have motivated the development of stabilizing MPC schemes that
do not impose terminal constraints in their formulations. For example, in [13]
a receding horizon control strategy with a stage cost reflecting economic cri-
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teria instead of distance to a reference is proposed and, by means of certain
verifiable conditions, convergence to a neighborhood of the optimal steady
state is proven. Another approach, presented in [22, 23], characterizes a re-
gion for which the terminal constraint of the optimization problem can be
removed without losing asymptotic stability. It is then proven that, by ap-
propriately weighting the terminal cost, this region can be enlarged so that
the domain of attraction of the MPC with the terminal constraint can be
practically reached. There exists also the contractive MPC idea [10] which
uses a constraint on the state to be “contracted”, in terms of some norm, at
the end of the prediction horizon in relation to the state at the beginning.
[2, 3] extend this scheme avoiding stability-related terminal constraints and
using a time-varying cost function with a performance related term weighted
by a controller internal state and another term associated with stability that
is scaled and assumed to satisfy a contraction constraint. Convergence of the
closed-loop system is proven with this strategy.

Despite the latter works, the use of invariant sets for the design of MPC
strategies may nowadays be considered standard—its ultimate form is known
as set-based MPC [4, 26]. However due to the difficulties to compute and to
handle these sets, their applications are limited.

To address this problem, we propose here an alternative set-based MPC
scheme in which the invariant terminal set is replaced by two simpler sets,
one containing the other. It will be shown that more classical formulations
involving invariant sets can be retrieved as a particular case when these inner
and outer sets are equal to each other. Practical stability of the closed-loop
system is established even though these sets only satisfy a weaker condition
than invariance. Moreover, it will be shown that by means of:

• a constraint for the predicted state trajectory to have at least one point
of intersection with the inner set (a “passing” condition at any time,
not as a terminal constraint), and

• a modification of the stage cost function to account for the set mem-
bership of the state to the outer set,

recursive feasibility of the optimization problem, convergence and ultimate
boundedness to the latter set can be guaranteed.

The ideas involved in the set-based MPC design presented in this work
bring along two independent contributions:
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(C1) the replacement of the invariant set by a pair of simpler inner-outer
sets that, nevertheless, keep the practical stability property of the con-
troller, with finite-time convergence and ultimate boundedness to the
target set, and

(C2) the possibility to continue controlling inside the target region without
knowing nor switching to another local controller.

Contribution (C1) is particularly important when considering challenging
systems with nonlinearities, switching modes, finite input sets, etc. Gener-
ally, in these cases it is not feasible in practice to compute or to use invariant
sets, which means that stability properties of MPC strategies cannot be guar-
anteed in this way. Contribution (C2) is a notable difference with respect to
the previously mentioned dual-mode MPC [29], which requires a local con-
troller (with certain specific properties) for the invariant target region. The
example presented in this work, based on a third-order nonlinear model of
an inverted pendulum, attempts to illustrate these contributions.

The remainder of this paper is organized as follows. First, in Section 2
the problem is described and some assumptions are made. Then, the pro-
posed MPC scheme is presented in Section 3. Section 4 contains the stability
analysis of the closed-loop system. Section 5 presents a procedure for de-
signing a controller based on our formulation. The results are discussed in
Section 6. Section 7 presents the aforementioned simulation example and
finally, conclusions are given in Section 8.

Notation
Let R and R≥0 denote the real and non-negative real numbers. N denotes

the set of natural numbers {1, 2, 3, . . .}, Z, the set of integer numbers and
ZN :M , the set of integers in the interval [N,M ]. The ceiling of b ∈ R is defined
by ⌈b⌉ ≜ min{z ∈ Z : z ≥ b}. For a sequence {a1, . . . , an} with n ∈ N and
a set A, the notation {a1, . . . , an} ∈ An means that every element of that
sequence belongs to A. Given a system with control input uk, possible future
values of the input at time k + i assumed at the kth sample are denoted by
uk+i|k. Similarly, predictions of the system state, xk, at time k + i, based on
knowledge up to sampling instant k and considering future values of inputs
up to k + i − 1, are indicated as xk+i|k. An open ball with radius ϵ > 0

centered at x ∈ Rn is denoted by B(x, ϵ) ≜ {y ∈ Rn : |x− y| < ϵ}. When
this ball is centered at the origin, notation is simplified to Bϵ.
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2. Problem Description

Consider the discrete-time nonlinear system given by:

xk+1 = f(xk, uk), (1)

where xk ∈ X ⊆ Rn and uk ∈ U ⊆ Rm are the state and input vectors at
time k, respectively, and X, U are closed sets which define the corresponding
constraints. The problem is to design an MPC controller, with a horizon
length N ∈ N, which ensures that state trajectories converge to and remain
in a compact target set ΩO ⊂ X whilst satisfying state and control constraints
at all times.

The results presented are based on the existence of an inner set ΩI ⊆ ΩO

satisfying the following assumption:

Assumption 1 (Existence of an N -steps Control Inner Set ΩI). Given the
system of Eq. (1), the horizon length N and the compact target set ΩO, a
compact N -steps control inner set ΩI ⊆ ΩO exists with the following prop-
erty: if xk ∈ ΩI , then a sequence of control inputs {uk, . . . , uk+i−1} ∈ U i for
some i ∈ Z1:N exists such that xk+i ∈ ΩI and {xk, . . . , xk+i−1} ∈ Ωi

O.

In plain words, an N -steps control inner set has the property that, if the
system state “visits” the set at some time k, then, it is feasible for the system
to revisit the set, given the available control authority, in at most N steps
without leaving ΩO at any time.

Our MPC problem will be solved for initial states xk belonging to the
up-to-N-steps controllable set to the inner set ΩI , defined as follows:

Definition 1 (Up-to-N -steps Controllable Set XΩI
N ). Given the system of

Eq. (1), the horizon length N and the inner set ΩI , we say that XΩI
N ⊆ X is

the up-to-N -steps controllable set to ΩI provided that if xk ∈ XΩI
N , then there

exists a sequence of control inputs {uk, . . . , uk+i−1} ∈ U i for some i ∈ Z1:N

for which xk+i ∈ ΩI and {xk, . . . , xk+i−1} ∈ X i.

Notice that by Assumption 1 and Definition 1, it follows that ΩI ⊂ XΩI
N , a

condition that can be linked to a sort of controllability assumption. However,
since XΩI

N depends exclusively on ΩI and given that ΩO is a predefined set,
the condition ΩO ⊂ XΩI

N may not be accomplished.
The control goals of finite-time convergence and ultimate boundedness to

ΩO imply that the closed-loop system with our controller achieves uniform
practical asymptotic stability of a ball containing ΩO, from initial states in
XΩI

N . This stability property is usually defined in the following way:
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Definition 2 (Uniform Practical Asymptotic Stability). Given ϵ > 0, a ball
Bϵ is said to be Uniformly Practically Asymptotically Stable for (1) in a set
A if there exists a KL-function β(s, t) such that the solution of (1) from any
initial state x0 ∈ A satisfies

|xk| ≤ β(|x0| , k) + ϵ, ∀k ≥ 0.

Taking into account the relationship between uniform practical asymp-
totic stability, and finite-time convergence and ultimate boundedness, and
considering space and readability reasons, we shall refer to these properties
simply as practical stability.
Remark 1. It is common in applications for the target set to be taken as a con-
trol invariant region where the system can remain indefinitely. Assumption 1
relaxes this requirement by allowing ΩO to be an arbitrary set containing an
N -steps control inner set ΩI that does not need to be invariant. While it
can be proven that the existence of ΩI implies the existence of at least one
control invariant set inside ΩO, this invariant set needs neither be computed
nor be explicitly used. Obviously, in case a control invariant set inside the
target set ΩO is already known, one could take ΩI to be this control invariant
set and retrieve the classical MPC formulations.
Remark 2. The concepts of weak p-invariance [21, 30, 31] and (k, λ)-
contractiveness [5, 18] are related to Assumption 1 in the sense that these
concepts also require the state to return to a certain set after some time.
However, a significant difference with those ideas is that here the state is
expected not to leave the target region ΩO rather than the constraint set X.
In general, when properties like p-invariance or (k, λ)-contractiveness hold,
nothing can be said about how far from the target set the state can go.

3. Proposed MPC Scheme

Our MPC scheme is designed starting from a preliminary stage cost func-
tion given by L̃ : Rn × Rm → R≥0. From this original function, we define

L̃max ≜ sup
x∈ΩO,u∈U

L̃(x, u), (2)

L̃min ≜ inf
x∈X\ΩO,u∈U

L̃(x, u). (3)

We shall assume that L̃(x, u) and sets ΩO and U are such that L̃max is finite,
and L̃min > 0.
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In order to ensure the convergence of the state from the region XΩI
N to

ΩO, we change the original stage cost function such that it becomes smaller
inside ΩO and, outside ΩO, it becomes larger for predicted states further
in the future. This is achieved by using two constants c and r, to yield a
modified index-dependent stage cost function L : Rn × Rm × N → R≥0, as
follows:

L(x, u, i) ≜

{
cL̃(x, u) if x ∈ ΩO

(1 + (i− 1)r)L̃(x, u) if x ̸∈ ΩO

, (4)

where c ≥ 0 and r ∈ [0, 1) are such that

cNL̃max ≤ rL̃min, (5)

and where i ∈ Z1:N is the stage index, i.e., the number of samples from the
beginning of the prediction horizon.

The idea behind the usage of c in Eq. (4), with a value that satisfies
the condition stated in Eq. (5), is to favor having all the predicted states
inside the target region ΩO over having a single predicted state outside ΩO.
In addition, the term (i − 1)r results in a predicted state having a reduced
stage cost when it approaches the beginning of the prediction horizon. That
way, if the tail of the optimal input trajectory at time k is applied from time
k + 1, then the stage costs of the predicted states outside the target region
are reduced from time k to time k+1. As it will become clear from the proof
of Theorem 1, provided that this reduction is larger than the stage cost of
the predicted states inside the target region, a condition that is related to
Eq. (5), then the MPC cost function is reduced from time k to time k + 1.

Given a feasible input sequence uk = {uk|k, . . . , uk+N−1|k} and a predicted
state sequence xk = {xk|k, . . . , xk+N |k} computed as

xk|k = xk, (6)
xk+i+1|k = f(xk+i|k, uk+i|k) (7)

for all i ∈ Z0:N−1, we define the MPC cost function as1

V (xk,uk) ≜
N∑
i=1

L(xk+i|k, uk+i−1|k, i). (8)

1This form of the cost function differs from other formulations in that the initial state
xk|k = xk is not taken into account (since it is the same for all possible predicted state
evolutions). However, notice that by redefining L(x, u, i), it is general and could include
commonly used terms like a terminal cost.
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Now, for a state xk ∈ XΩI
N , consider the following optimal control prob-

lem:
P (xk) : V ∗(xk) ≜ min

uk∈UN (xk)
V (xk,uk), (9)

subject to Eqs. (6) and (7) and where UN(xk) denotes the set of feasible
control input sequences uk that satisfy

uk+i|k ∈ U, ∀i ∈ Z0:N−1, (10)
xk+i|k ∈ X, ∀i ∈ Z1:N , (11)
xk+i|k ∈ ΩI , for some i ∈ Z1:N . (12)

Note that the usual terminal constraint is replaced by the less restrictive
condition (12) of “passing through” the set ΩI at some step over the prediction
horizon.

We shall assume that the optimal control problem (9) at each sampling
time k has at least one solution2 given by the optimal input sequence u∗

k ≜
{u∗

k|k, . . . , u
∗
k+N−1|k}, that has associated an optimal state sequence x∗

k ≜
{x∗

k|k, . . . , x
∗
k+N |k} computed as

x∗
k+i+1|k = f(x∗

k+i|k, u
∗
k+i|k). (13)

Finally, following a receding horizon scheme, the first element of u∗
k is

applied to the system while the rest is discarded. The control law is then
given by κMPC(x) ≜ u∗

k|k and, under closed-loop operation, the system is
described as

xk+1 = f(xk, u
∗
k|k) = f(xk, κMPC(xk)).

Remark 3. Even though the proposed stage cost given by Eq. (4) is index-
dependent, the MPC cost function defined in Eq. (8) is not time-varying.
The time argument of L(x, u, i) is the stage index so, from the perspective
of the MPC cost function, it is fixed and always goes from 1 to N .
Remark 4. There are different (and independent) sufficient conditions under
which the optimization problem has at least one solution, i.e., it is not ill-
posed. The following are two examples of these conditions:

• Finite control input set. In this case there is always at least an input
sequence with the minimum cost.

2The results derived in Section 4 also hold when the solution is not unique.
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• Original stage cost L̃(x, u) and function f(x, u) continuous, with compact
U . In this case, even though continuity of the stage cost L(x, u, i) is lost
on the boundary of the target set ΩO, lower semicontinuity is kept because
L(x, u, i) is lower in the closed part of the target region. Then, it can be
proven that the MPC cost function itself is lower semicontinuous (on a
compact set) and that guarantees (see [6], Theorem 3 from Section 6 in
Chapter 4), that the minimization problem has at least one solution.

Remark 5. Regarding the numerical implementation of the strategy, espe-
cially considering the constraint (12), a first approach could be to solve N
optimization problems with independent constraints for the state to belong
to the inner set at all possible times over the prediction horizon. Then, the
control sequence to be chosen would be the one that achieves the lowest cost
among the N problems. Notice that a parallel implementation should not
involve much more time for any reasonable horizon length. Furthermore,
even though this may seem to require a much higher computational burden,
it should be recalled that checking set membership constraints in our for-
mulation would be less expensive given the simplicity of the inner and outer
sets.

4. Stability Analysis

The following lemma is a preliminary result linking the bound cNL̃max on
the MPC cost function with the fact that all the predicted states are inside
the target set ΩO.

Lemma 1. Consider a state xk ∈ XΩI
N and a feasible input sequence uk.

Then, the cost function of Eq. (8) verifies V (xk,uk) ≤ cNL̃max if and only
if xk+j|k ∈ ΩO, ∀j ∈ Z1:N .

Proof. Suppose that for certain j ∈ Z1:N it results xk+j|k /∈ ΩO. Then, from
Eq. (4) the stage cost of that state would be

Lk+j,k = (1 + (j − 1)r)L̃k+j,k ≥ L̃min > 0 (14)

where we used, for simplicity, the notation

Lk+j,k ≜ L(xk+j|k, uk+j−1|k, j), (15)

L̃k+j,k ≜ L̃(xk+j|k, uk+j−1|k). (16)
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Then, using Eq. (5), we have for r ∈ (0, 1) that

Lk+j,k ≥ L̃min ≥ cNL̃max

r
> cNL̃max

contradicting that V (xk,uk) ≤ cNL̃max.
In case r = 0, according to Eq. (5) it results cNL̃max = 0 and then

Eq. (14) also contradicts that V (xk,uk) ≤ cNL̃max.
Finally, from Eqs. (2), (4) and (8) it becomes straightforward that xk+j|k ∈

ΩO, ∀j ∈ Z1:N implies that V (xk,uk) ≤ cNL̃max completing the proof.

The following corollary to Lemma 1 establishes that when the optimal
cost corresponding to a given state is smaller than the bound cNL̃max, then
the next state lies inside ΩO.

Corollary 1. Given the MPC formulation of Eq. (9) with xk ∈ XΩI
N , the

condition V ∗(xk) ≤ cNL̃max implies xk+1 ∈ ΩO.

Proof. Lemma 1 with uk = u∗
k establishes that the condition V ∗(xk) ≤

cNL̃max implies that x∗
k+1|k ∈ ΩO. The result then follows from the fact that

xk+1 = x∗
k+1|k.

The next theorem shows that when the optimal MPC cost function has
a value that exceeds cNL̃max at time k + 1 (i.e., the optimal predicted state
sequence has at least one entry outside the target set ΩO), then the optimal
value is smaller than the cost at time k, by a certain amount which admits
a positive lower bound.

Theorem 1. Consider the MPC formulation given by (9). Then, for any
xk ∈ XΩI

N the condition V ∗(xk+1) > cNL̃max implies

V ∗(xk)− V ∗(xk+1) ≥ ϵ ≜
rL̃min

N
. (17)

In case ΩI = ΩO, or provided that x∗
k+1|k /∈ ΩO, it is also verified that

V ∗(xk)− V ∗(xk+1) ≥ ϵ̃ ≜ (1− r
N − 1

N
)L̃min. (18)

The proof of this result, given below, is based on the following idea.
After applying the first element of the optimal input sequence u∗

k at time k, a
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feasible strategy for the next step is to apply the same optimal input sequence
(removing the first element u∗

k|k) until the state enters ΩI and then use any
input sequence that keeps the state inside ΩO. Thus, the states outside ΩO

of the resulting predicted state sequence xk+1 will be already present in the
previous optimal sequence x∗

k. However the stage cost of those states outside
ΩO predicted at time k + 1, will be smaller than the one of the same states
outside ΩO predicted at instant k, due to the factor r in Eq. (4). We suggest
to consult [8] for further explanations and some illustrative examples.

Proof. Let x∗
k = {x∗

k|k, . . . , x
∗
k+N |k} be the optimal state sequence predicted

at time k, computed according to Eq. (13).
Notice first that given the constraint of Eq. (12) there is at least one

predicted state in ΩI . Then, let m ∈ N denote the minimum time such that
x∗
k+m|k ∈ ΩI .

Let xk+1 = f(xk, u
∗
k|k) be the state after applying the input uk = u∗

k|k and
consider the following predicted state sequence:

xk+i+1|k+1 = f(xk+i|k+1, uk+i|k+1)

with xk+1|k+1 = xk+1 and where the sequence uk+1 verifies uk+i|k+1 = u∗
k+i|k

for all i ∈ Z1:m−1 and uk+i|k+1 for all i ∈ Zm:N is such that xk+i+1|k+1 ∈ ΩO

(which is feasible by Assumption 1, i.e., after passing through ΩI , there
exists a feasible input sequence that brings the state back to it keeping the
trajectory inside ΩO). Notice that with this control input sequence, it follows
that xk+i|k+1 = x∗

k+i|k for all i ∈ Z1:m and this means that xk+m|k+1 ∈ ΩI .
On the other hand, if m < N , the predicted states xk+i|k+1 for i ∈ Zm+1:N

are in general different from x∗
k+i|k.

According to Eq. (8), the expression for V ∗(xk) is

V ∗(xk) =
N∑
i=1

L(x∗
k+i|k, u

∗
k+i−1|k, i) (19)

while the cost associated to the sequence xk+1 is

V (xk+1,uk+1) =
N∑
i=1

L(xk+i+1|k+1, uk+i|k+1, i). (20)

Notice that, by optimality, V (xk+1,uk+1) ≥ V ∗(xk+1). Thus, the condition
V ∗(xk+1) > cNL̃max implies that V (xk+1,uk+1) > cNL̃max.

12



Then, according to Lemma 1 there exists j ≥ 2 such that xk+j|k+1 /∈ ΩO.
Moreover, since uk+1 was computed so that xk+i|k+1 ∈ ΩO for all i ≥ m, it
results that j < m (which also implies that m > 2). Since the predictions
x∗
k+i|k and xk+i|k+1 coincide up to i = m, it results

xk+j|k+1 = x∗
k+j|k /∈ ΩO (21)

for some j < m.
Consider next the following sets of indices:

• Dk = {i ∈ Z2:m | x∗
k+i|k ̸∈ ΩO} and

• Dk = Z2:m \Dk.

Then, V ∗(xk) in Eq. (19) can be rewritten as:

V ∗(xk) = L∗
k+1,k +

∑
i∈Dk

(1 + (i− 1)r)L̃∗
k+i,k

+
∑
i∈Dk

cL̃∗
k+i,k +

N∑
i=m+1

L∗
k+i,k (22)

with the last term being null in case m = N and where we used notations
like those from Eqs. (15) and (16) but for optimal sequences x∗

k and u∗
k.

Similarly, V (xk+1,uk+1) in Eq. (20) can be rewritten as:

V (xk+1,uk+1) =
∑
i∈Dk

(1 + (i− 2)r)L̃k+i,k+1

+
∑
i∈Dk

cL̃k+i,k+1 +
N+1∑

i=m+1

Lk+i,k+1. (23)

Then, taking into account that x∗
k+j+1|k = xk+j+1|k+1 and u∗

k+j|k = uk+j|k+1

for all j ∈ Z1:m−1, it results that L̃∗
k+j,k = L̃k+j,k+1, and subtracting Eq. (23)

from Eq. (22) we obtain

V ∗(xk)− V (xk+1,uk+1) = L∗
k+1,k +

∑
i∈Dk

rL̃∗
k+i,k

+
N∑

i=m+1

L∗
k+i,k −

N+1∑
i=m+1

Lk+i,k+1. (24)
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Recalling that at least one state x∗
k+i|k /∈ ΩO with i < m and since r < 1,

then,
L∗
k+1,k +

∑
i∈Dk

rL̃∗
k+i,k ≥ rL̃min. (25)

The term
∑N

i=m+1 L
∗
k+i,k is non-negative and, considering that xk+i|k+1 ∈ ΩO

for all i > m, it follows that

N+1∑
i=m+1

Lk+i,k+1 ≤ (N − 1)cL̃max. (26)

Then, from Eqs. (24), (25) and (26), it results that

V ∗(xk)− V (xk+1,uk+1) ≥ rL̃min − (N − 1)cL̃max

≥ N − 1

N
(rL̃min −NcL̃max) +

rL̃min

N
.

From Eq. (5), we have NcL̃max ≤ rL̃min and then, recalling that
V (xk+1,uk+1) ≥ V ∗(xk+1), we obtain

V ∗(xk)− V ∗(xk+1) ≥
rL̃min

N
,

showing that Eq. (17) holds.
In case ΩI = ΩO, the fact that m > 1 implies that x∗

k+1|k /∈ ΩI which
implies that x∗

k+1|k /∈ ΩO. Then, in this case and whenever x∗
k+1|k /∈ ΩO

Eq. (25) can be replaced by

L∗
k+1,k +

∑
i∈Dk

rL̃∗
k+i,k ≥ L̃min, (27)

and following the same procedure as before, from Eqs. (26) and (27) we
conclude that Eq. (18) holds completing the proof.

Remark 6. In the proof of Theorem 1, before Eq. (21), it is stated that the
condition V ∗(xk+1) > cNL̃max requires m > 2 implying that the horizon
length is N > 2. This does not invalidate the conclusions of the theorem for
N = 1 or N = 2, it only implies that the condition V ∗(xk+1) > cNL̃max given
in the statement is only possible for N > 2 (i.e. for N = 1 or N = 2 the cost
at k+1 is always less than cNL̃max). Thus, the results that are derived next
based on this theorem also hold for any N ≥ 1.
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The following corollary shows that when the optimal cost becomes smaller
than the value cNL̃max, it remains forever bounded by that value.

Corollary 2. Consider the MPC formulation given by (9). If xk ∈ XΩI
N and

V ∗(xk) ≤ cNL̃max, then V ∗(xj) ≤ cNL̃max, ∀j ≥ k.

Proof. From Theorem 1 we know that either V ∗(xk+1) ≤ cNL̃max or the cost
reduction of Eq. (17) holds. In both possible cases, the condition V ∗(xk) ≤
cNL̃max implies that V ∗(xk+1) ≤ cNL̃max.

That way, V ∗(xk) ≤ cNL̃max implies V ∗(xk+1) ≤ cNL̃max and using in-
duction it implies that V ∗(xj) ≤ cNL̃max for all j ≥ k.

An immediate consequence of Corollaries 1 and 2 is that when the optimal
cost is smaller than certain bound, the state remains forever in ΩO.

Corollary 3. Consider the MPC formulation given by (9). If xk ∈ XΩI
N and

V ∗(xk) ≤ cNL̃max, then xj ∈ ΩO, ∀j > k.

Finally, the next corollary shows that the state arrives in finite-time at
the target set.

Corollary 4. Consider the MPC formulation given by (9) with ΩO = ΩI or
r > 0. If xk ∈ XΩI

N and V ∗(xk) > cNL̃max, then xk+i ∈ ΩO for all i > M ,
where

M ≜

⌈
V ∗(xk)− cNL̃max

α

⌉
(28)

with α = ϵ̃ (Eq. (18)) provided that ΩI = ΩO, even if r = 0, or α = ϵ
(Eq. (17)) in any other case with r > 0.

Proof. Suppose that V ∗(xk+M) > cNL̃max. Then, according to Corollary 2,
V ∗(xk+i) > cNL̃max for all i ∈ Z0:M−1. From Theorem 1, the condition
V ∗(xk+i+1) > cNL̃max implies

V ∗(xk+i)− V ∗(xk+i+1) ≥ α.

Summing up left and right-hand sides of this last inequality for i = 0, . . . ,M−
1, we obtain that

V ∗(xk)− V ∗(xk+M) ≥ Mα ≥ V ∗(xk)− cNL̃max
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which implies that
V ∗(xk+M) ≤ cNL̃max,

contradicting the initial assumption and showing that V ∗(xk+M) ≤ cNL̃max.
Then, according to Corollary 3 this condition implies that xk+i ∈ ΩO for all
i > M concluding the proof.

To summarize the results, we have first given in Lemma 1 an equivalent
condition between the MPC cost function being lower than or equal to certain
bound and the fact that all predicted states are in the target set. Then
Theorem 1 establishes that when the MPC cost function is greater than
such bound, a cost reduction with a positive lower bound is always achieved.
Finally, Corollaries 2 and 3 show that the state of the closed-loop system is
ultimately bounded to the target region if it arrives there and in Corollary 4
it is proven the finite-time convergence to ΩO.

5. Controller Design

The aim of this section is to provide a procedure that allows us to effec-
tively design a controller based on the proposed strategy. While it may be
possible to jointly define different elements that compose our formulation,
we present a possible sequence of sorted steps to do so in Algorithm 1. It is
assumed that the target set ΩO has already been defined according to some
prespecified control goals and that an N -steps control inner set ΩI is known
as well as the corresponding N .

Algorithm 1. Sequential procedure to design the controller.

1. Define an arbitrary stage cost function L̃(x, u) ≥ 0 according to the
particular control problem to address.

2. Find L̃max finite and L̃min > 0 considering Eqs. (2) and (3).

3. Choose a value for r in the interval [0, 1).

4. Select c = rL̃min

NL̃max
in accordance with Eq. (5), or any non-negative value

lower than that.

While many types of functions for L̃(x, u) may be useful, a quadratic one
with its minimum for some state inside ΩO is an intuitive option that will
always be appropriate for our scheme. For these functions, the existence of
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solution to (9) can be guaranteed (see Remark 4) and the values of L̃max and
L̃min can be easily found with standard tools to solve quadratic program-
ming problems. Furthermore, a quadratic function L̃(x, u) would allow these
constants to satisfy the required conditions of being L̃max finite and L̃min > 0.

6. Discussion

In this section, we comment on certain aspects and make observations
regarding the ideas proposed in this work.

1. Region of attraction: Since it is desirable for XΩI
N (and so ΩI) to be as large

as possible (it is the region from which convergence is ensured) with the
target region ΩO as small as possible, the best case occurs when ΩO = ΩI

which implies that ΩI is a control invariant set. If it is not possible to find
that set (or it is too complex to be used in practice), having ΩI close to
the given target region ΩO ensures a larger region of attraction.

2. Relation to invariant sets: Properties of the inner sets presented in As-
sumption 1 imply an equivalence between the existence of control invariant
and inner sets in ΩO. In fact, ΩI is always inside a control invariant set
contained in the target region. However, the computation of such invari-
ant set is not required. It suffices with the knowledge of ΩO and ΩI such
that the assumption is verified. It is important to emphasize that the
manipulation of these sets is easier than that of invariant sets. This is
more evident for nonlinear systems (for which invariant sets are in general
excessively complex), but even for the linear case, sets ΩO and ΩI can be
simpler (especially when closeness between ΩO and ΩI can be relaxed).

3. Maximal inner set: Given certain target region, the corresponding maxi-
mal inner set, i.e. the union of all inner sets in there, is the 1-step control
inner set that coincides with the maximal control invariant set within that
target set. This may be useful if it is needed to estimate the size of some
ΩI .

4. Regarding r: Constant r is arbitrary. A larger value (close to 1) ensures
a faster convergence but it distorts the original stage cost function. Yet,
a small value of r according to Eq. (5) may enforce to use a small value
for constant c.
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5. Regarding c: It is always possible to use c = 0. However, using a larger
value allows keeping the system under control even inside the target region,
to bring the state as close as possible to the one with the smallest cost.
Moreover, the closer this parameter is to one, the more equally states are
considered in the cost function regardless of whether or not they are in the
target set. Notice that, independently of what has been said here and in
the previous item, whenever Eq. (5) with r ∈ [0, 1) and c ≥ 0 is satisfied,
stability related properties claimed for the proposed scheme will hold.

6. Prediction horizon: It has been assumed that the length of the prediction
horizon is N while the inner set is an N -steps Control Inner Set. Taking
into account that an N -steps Control Inner Set is also an H-steps Control
Inner Set, for any H ∈ N such that H > N , the prediction horizon in
the optimal control problem (9) could be defined as H, i.e. longer than
N . Clearly, H should be considered in the entire formulation (for Eq. (5),
constraints (10), (11) and (12), etc.) which means a higher computational
load but, assuming that an N -steps Control Inner Set is already known,
this may be useful to enlarge the domain of attraction. A possibility to
limit the numerical burden increase would be to use H in the formulation
until the state arrives at the up-to-N -steps controllable set to ΩI . From
that time onwards, we could change the prediction horizon to N .

7. Relation and differences with [29]: Using c = r = 0 with ΩI = ΩO being a
control invariant set, finite-time convergence is ensured in a scheme similar
to that of [29] until the trajectory enters the invariant region. The only
difference under this set up would be that our “passing through” condition
is a relaxation of the terminal constraint of [29]. Once the state is in
the target set our controller will keep it there without any modification
(even if c = r = 0) while for [29] it is necessary to change the control
law for another one under which the target region is control invariant.
As a difference, then, our strategy releases us from designing this other
controller and moreover, if c and r are not zero, it will not only maintain
the state in the target set but will also make it be as close as possible to
the one with the least cost. In spite of this, we do not ensure asymptotic
stability to any state inside ΩO. [29] does ensure it but because it assumes
that the local controller is able to do so. Finally, going beyond the case
with ΩI = ΩO, the most important difference between our formulation
and [29] is that we do not require an invariant set but a less restrictive
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pair of inner and outer sets satisfying Assumption 1.

8. Relation and differences with [4]: Even with c = r = 0 and ΩI = ΩO being
a control invariant set, our proposed scheme considerably differs with [4].
Under these conditions both controllers have zero stage cost in the target
region; however, in [4] this is not achieved with scaling as in our case but
directly defining the stage cost by means of Euclidean distances to sets
(considered zero within those sets). In addition, [4] requires the target
region to be contractive and not just invariant and it imposes a terminal
constraint on the state to belong to it which is more restrictive than
our “passing through” condition. Another difference is that our controller
keeps the state inside the target region (solutions are ultimately bounded)
while the strategy of [4] may not, because it does not change the control
law as in [29] but continues using the same MPC scheme with zero stage
cost in the target set.

9. Contributions: To explain why the contributions presented in Section 1
are independent we begin by considering only (C1). If we use the pair
of inner-outer sets (none of them being invariant) with zero cost in the
target region (c = 0 but r > 0 because of the hypothesis of Corollary 4),
we keep practical stability without using invariant sets but the ability to
control the state once it arrives at the outer set is lost. On the other hand
and considering (C2), if ΩO = ΩI which means they are an invariant set,
and the cost is reduced but not nulled there (c > 0), the MPC scheme
continues controlling in the target region and it still maintains practical
stability but it is necessary to deal with (compute and handle) invariant
sets.

7. Simulation Example

In this section we present an example that illustrates the proposed design
methodology and its advantages. The chosen system is a nonlinear discrete-
time model of an inverted pendulum given by the difference equations

θk+1 = θk + a1 ωk

ωk+1 = a2 sin θk + a3 ωk + a4 τk

τk+1 = τk + a5 uk

, (29)
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where in the state xk = [θk ωk τk]
T ∈ X ⊆ R3, θk is the angle with respect

to the vertical axis, ωk represents the angular speed and τk is the applied
torque. The input uk ∈ U = {−1, 0, 1} defines the change in τk and belongs
to a finite set that is limited to keep the applied torque or to modify it by
a fixed amount (±a5) after each sampling period. Parameters are a1 = 0.01,
a2 = 0.4, a3 = 9.99 · 10−1, a4 = 1.2 and a5 = 5 · 10−3.

Figure 1: Sets ΩI , ΩO and Xf for the example.

The goal of the controller is to ensure convergence to the target set ΩO =
{x ∈ X : |θ| ≤ 0.1, |ω| ≤ 0.14, |τ | ≤ 0.066} which is shown in Figure 1. With
this aim, a classical ingredient to consider for a stabilizing MPC formulation
would be a terminal constraint to an invariant set in ΩO. However, the
nonlinearity of the system and its finite control set make the computation of
this invariant set not only difficult but practically useless in the sense that
even if it could be obtained, its representation complexity would make it not
suitable for the online computation of set membership conditions involved
in MPC. To illustrate this situation, Figure 1 also depicts the invariant set
Xf obtained by [14] for the linearization of system (29) with a continuous
input set given by [−1, 1]. Beyond the fact that it can be verified Xf is not
invariant for the nonlinear system with finite-alphabet input, this set has 70
faces which even under these simplifications implies an extremely complex
mathematical description.
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On the other hand, a considerably simpler control inner set can be rep-
resented by just eight faces as it is also shown in Figure 1. This polyhedral
set is given by ΩI = {x ∈ X : Fx ≤ g} with

F =



95.99 37.59 265.9
−95.99 −37.59 −265.9
10.19 91.69 0
−10.19 −91.69 0
100.6 13.66 24.52
−100.6 −13.66 −24.52
5.765 1.094 9.294
−5.765 −1.094 −9.294


, g =



6.772
6.772
8.151
8.151
7.445
7.445
0.386
0.386


.

It can be computationally verified that Assumption 1 holds for ΩO and ΩI ,
being ΩI a 9-steps control inner set. Taking this into account, we shall define
N = 9 as the horizon length of our MPC strategy.

The numerical verification was done using a dense cloud of points in ΩI

and checking that, for each of those states, there exists an input sequence, of
length less or equal than N , that drives it to Ω′

I without leaving Ω′
O, where

these sets are reduced versions of ΩI and ΩO, respectively. We adopted a
minimum distance ϵ between their boundaries such that Ω′

I ⊕ Bϵ ⊆ ΩI and
Ω′

O ⊕ Bϵ ⊆ ΩO, where ⊕ is the Minkowski set addition. Then, we verified
that any point in ΩI has its closest point in the cloud at a distance less
than ϵ/KL, with KL being an upper bound on the Lipschitz constants of the
up to N compositions of the system function f(x, u) for each possible input
sequence. That way, the fact that all the points of the cloud can be driven
to Ω′

I without leaving Ω′
O implies that all the points in ΩI can be driven to

ΩI without leaving ΩO.
In order to design the controller, we follow the procedure given in Algo-

rithm 1. We shall suppose that the original stage cost function to minimize
was L̃(x) = L̃([θ ω τ ]T ) = θ2 + 10−4 ω2 + 1.44 · 10−4 τ 2, which mainly penal-
izes the error in θ. Then, according to Eqs. (2) and (3) it can be obtained,
by solving two quadratic programming problems, that L̃min = 6.28 · 10−7

and L̃max = 10−2. To finish defining all the elements of the stage cost func-
tion (4) (and the optimization problem (9)) we select r = 0.1 and obtain
c ≤ 6.98 · 10−7 from Eq. (5).

To verify that our MPC formulation works as expected, we simulated
the system from initial conditions xa

0 = [0.068 −0.36 −7.3 · 10−3]T and
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xb
0 = [−0.073 0.59 −0.043]T , with two different values of the parameter c: 0

and 6 · 10−7. The trajectories obtained are depicted in Figure 2.

(a) State trajectories with c = 0.

(b) State trajectories with c = 6 · 10−7.

Figure 2: Application of our MPC formulation.
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It can be seen that all state evolutions converge in finite-time to the
target region ΩO remaining thereafter in its interior. As shown in Figure 2a,
when c = 0 the proposed controller guarantees this behavior without the
need for ΩO to be invariant. Notice that it is neither required to switch
to another controller inside this region. These two features are significant
differences with respect to dual-mode MPC approaches. Another aspect to
comment on is that, interestingly for this case, the trajectories of the closed-
loop system do not keep effectively passing through ΩI although the optimal
control sequences computed at each sampling instant guarantee that it is
feasible in N = 9 or less steps. Finally, it is also important to mention here
that having more than one solution to the optimization problem (9) does not
affect practical stability. It can be inferred from the proofs given in Section 4
that any solution would keep this property and that is exemplified with these
numerical simulations when c = 0.

The case with c = 6 · 10−7 > 0 corresponding to Figure 2b shows how
scaling the cost inside the target region allows the scheme to also control the
system inside the target region. This means that the trajectories not only
enter ΩO but are also driven closer to the origin whenever this is possible.

8. Conclusions

We have presented a simple procedure to modify the cost function of an
MPC scheme such that practical stability, with finite-time convergence and
ultimate boundedness to a target set, is ensured. Given a stage cost function
L̃(x, u) and some target region ΩO with an N -steps control inner set ΩI

in it, the proposed MPC formulation uses a modified stage cost function
that considers whether the predicted states are in ΩO or not. The optimal
control problem is then constrained by a condition that the predicted state
“passes through” ΩI at some step in the prediction horizon. This condition
is less restrictive than the usual state terminal restriction to belong to a
control invariant set, required by most stabilizing MPC strategies. With this
formulation we have given a theoretical upper bound for the convergence time
to the target set and we have proved that the state is ultimately bounded
there.

Being the assumptions mild, the presented results are general and hold
for systems of general classes and also for non-convex sets. Furthermore,
the fact that neither computing nor handling complicated invariant sets is
needed for the proposed methodology makes it particularly interesting for
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switched and nonlinear systems. To illustrate this fact, a simulation example
of a nonlinear model with a finite input set was presented. There, it was also
shown how the MPC scheme can keep the system controlled when the state
is in the target region without changing to a different control strategy.

Current work is aimed at developing systematic procedures to find in-
ner sets ΩI verifying Assumption 1 for a given target set ΩO and a horizon
length N , and at finding efficient solutions to the MPC optimization prob-
lem for specific types of systems and constraints. Future work includes the
implementation of the proposed strategy for different applications, including
autonomous navigation and switched systems.
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