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Resumen: Recently, a Model Predictive Control (MPC) scheme suitable for closed-
loop re-identification was proposed which solves, in a non-conservative form, the
potential conflict between the persistent excitation of the system and the stabilization.
The scheme uses the concept of probabilistic invariance to define the target set,
exploiting in that way the knowledge of the probabilistic distribution of the excitation
signal to design a non-competitive two-objective MPC formulation. In this work,
we prove some theoretical properties of the scheme that have fundamental practical
consequences, including the finite-time convergence to the target set and a lower
probability bound about the period of time the state remains in that set for
the identification procedure. We also include new simulation results comparing
the performance of the proposed approach with those of a previous deterministic
formulation.

Palabras Claves: Model predictive control, closed-loop identification, probabilistic

invariant set, finite-time convergence.

1. INTRODUCTION

Model predictive control (MPC) is a popular
control technique that based on a simplified model
of the system under control, solves an on-line
optimization problem to determine the current
control action. As the system conditions change,
the model requires an update (re-identification)
that usually must be performed in a closed loop
fashion in order. One problem of the closed-
loop re-identification is that the control objective
is opposite to those of exciting the system for
identification: while the controller is devoted to
maintain the system at a given equilibrium most

of time, the excitation procedure agitates the
system around it, with the objective of producing
output-input data with enough dynamic informa-
tion.

In the MPC framework, several strategies were
developed to perform closed-loop re-identification.
An early strategy, consisting in the addition of an
excitation constraint, was presented in (Genceli
and Nikolaou, 1996). In (Zacekova et al., 2013)
a two-stage controller approach is presented.
Recently, a study of several MPC re-identification
methods is made in (Potts et al., 2014), empha-
sizing the so-called MPC Relevant Identification
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(MRI). In (Patwardhan and Gopaluni, 2014),
the generation of a persistent excitation (PE)
signal by means of the maximization (instead of
the minimization) of the MPC cost function is
proposed. This way, the variance (variability) of
the signal is maximized while the process variables
fulfill the constraints.

The main theoretical drawback of all these schemes

is that the formal feasibility and attractivity /stability

properties are lost. In (Gonzélez et al., 2014),
a MPC scheme suitable for re-identification is
proposed, which ensures recursive feasibility and
stability of a proposed invariant set, performing a
safe closed-loop re-identification once the system
reaches the set. However, the computation of the
target invariant set is made according to the max-
imum value that the excitation signals, without
exploiting the knowledge of their probabilistic
distribution. This results in large target regions
that conservatively contains the excited system
evolution.

Recently, based on the concept of Probabilistic
Invariant Sets (PIS) introduced in (Kofman et al.,
2012), a significant reduction of the conservative-
ness of the strategy was obtained in (Anderson
et al., 2016). The idea in this approach is to
replace the target (robust) invariant sets by their
probabilistic counterparts. So, once the excitation
procedure starts, the state trajectories remain in
the set with high probability (close to 1 for most
practical problems), and if a state leaves the set,
the control is resumed and the excitation aborted.

In this work, we prove some fundamental theoret-
ical properties of the aforementioned strategy. In
particular, we show that the target set is reached
in finite time. Additionally, we prove that, with
certain probability, the state remains inside the
target set during a period of time that is long
enough to ensure the correct re-identification of
the model. We also extend the robustness analysis
of (Anderson et al., 2016) to ensure that the
different properties are accomplished by a more
general family of models. Finally, we included
simulation results that compare the performance
of this approach with a previous one based on
deterministic sets.

2. PROBLEM STATEMENT AND BASIC
DEFINITIONS

Consider a discrete time system described by a
linear time-invariant model

x(k+1) = Az(k) + Bu(k), z(0)=xz0 (1)

where z(k) € X C R” is the system state at
the k—th sample time, x¢ is the initial state, and
u(k) € U C R™ is the current control input.
All along this work it is assumed that matrix

A € R™™ has all its eigenvalues strictly inside
the unit circle, the pair (A, B) is controllable, the
set X is convex and closed, the set U is convex
and compact and both contain the origin in their
interior.

The goal in this work is to develop a MPC strategy
that accounts for the closed-loop re-identification
of such a system.

2.1 Invariant sets and control

Next, some definitions and properties that will be
used later to derive the main results of the work,
are recalled.

Definition 1. (y-Control Invariant Set, v-CIS)
Given v € [0,1], a set Q C X is y-control invariant
for system (1) associated with set U, if z(k) € Q
implies that z(k 4+ 1) € ¥Q for some u(k) € U.

Definition 2. (Controllable Set) Given the set
Q C X, the one step controllable set to §2, Q(£2),
associated to the input set U, is the set of all
x € X for which there exists u € U such that
Ax + Bu € Q.

Definition 3. (N—Steps Controllable Set) Given
the set Q C X, the N steps controllable set to 2,
On(£2), associated to the input set U, is defined
by On(2) £ Q(Qn-1()) with Q1() = Q(Q).

Definition 4. (Strict Interior Set) Given a set
Oy C R™, a set Qo C € is a strict interior set of
Qq, if there exists € > 0 such that for any x € Q5
the ball B.(z) ={y : ||y — z|| < e} C Q.

Next, a property relating the ~-CIS and its
corresponding controllable set is presented:

Lemma 1. Let © C R™ be a closed and convex
~-CIS, with v < 1, for system (1). Then, © is a
strict interior set of Q(€2).

Proof: Let the state x € (2, and consider

e=inf{lly -z :y €09, z €9}, (2)

Taking into account that 2 is convex and v < 1, it
results € > 0. Given that Q is a y-CIS for system
(1), there exists u € U such that x+ = Az + Bu €
~vQ. Let T be any point such that ||z — Z|| < ¢ and
define z+ £ AZ + Bu. Then,

2" — a2t = |A@ - )l < ||All |z — 2| <,

where the last inequality follows from the fact that
A is Hurwitz (i.e, ||A]| < 1). Taking into account
that € is closed, and recalling the definition of ¢ in
Eq.(2), the fact that ||zT — 2T || < € implies that
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ZT € €, and then, by definition of controllable
set, T € Q(Q).

Then, the ball B.(z) = {z : ||z — x| < e} C 9Q(Q),
for all x € 2, which means that  is a strict
interior set of Q(Q). [ |

3. PROBABILISTIC INVARIANT SETS

The concept of probabilistic invariant set associ-
ated to the excitation requirements necessary to
perform suitable identifications is central in this
work. So, we first define the excitation signal,
according to the identification requirements.

Definition 5. (Bounded White Noise) Given
a compact non empty set V. C R™, we say
that a stationary process v N —- Vi a
bounded white noise if it satisfies Ev(k)] = 0 and
covlv(k)] > 0 for all kK € N, and, additionally v(k)
is uncorrelated with v(j), for k # j.

Notice that the fact that v(k) is bounded white
noise implies that it is also a persistent excitation
of any order (Ljung, 1999).

Probabilistic Invariant Sets (Kofman et al., 2012)
ensure that the state trajectories remain inside
them for all future time, with certain probability.
However, in the context of the MPC scheme that
will be proposed, it will suffice with ensuring that
the trajectories remain in the set at the following
step. For this reason, the concept of One Step
Probabilistic Invariant Sets (OSPIS) is introduced
next.

Definition 6. (y—OSPIS) Let p € (0,1] and v €
(0,1]. A set S C X is a v—One Step Probabilistic
Invariant Set with probability p of system (1) with
u(k) being a bounded white noise on V' C U, if and
only if Pr[z(k+ 1) € vS | z(k) € S| > p.

When v = 1 a v—OSPIS is simply an OSPIS.
Furthermore, when p = 1 a «-OSPIS is a ~-ISI
set, as the one defined in Gonzélez et al. (2014).

The following property relates the probability p of
remaining in an OSPIS after one step with that
of remaining longer inside that set. This property
will play an important role to ensure the feasibility
of the re-identification procedure.

Lemma 2. Let p € (0,1]. Let S be an OSPIS with
probability p for System (1) with u(k) being a
bounded white noise on V' C U. Then, provided
that (k) € S, it results that Priz(k+1) € S A
x(k+2)eSA---Nx(k+q) eS| >pl.

Proof: The fact that u(k) is bounded white noise
implies that xz(k) has a Markov property, i.e.,

given x(k), the value of z(k + 1) does not depend
on past values of the state prior to time k. That
way, the OSPIS property that Prlz(k + 2) €
Slz(k+1) € S] > pis accomplished independently
on the fact that z(k) € S. Thus, Prlz(k + 2) €
Stlz(k+1) € SAx(k) € S] > p.

Then, subject to x(k) € S, it results that

Priz(k+2) e SAz(k+1) €S|
=Prlz(k+2) € Slz(k+1) € S]- Prlz(k+1) € 5]
> p?

and the proof concludes by the recursive use of
this reasoning. [ |

4. MAIN RESULT

In this Section, the MPC formulation that uses
OSPIS as target sets is presented.

4.1 Proposed Scheme

The basic idea consists in using a control law
that drives the trajectories to a target set. Once
the state enters the target set, the scheme should
introduce a bounded input white noise signal that
allows to perform the re-identification procedure.
For that goal, the cost function is defined as
follows:

Let upe(k) € U' be a bounded white noise signal
for which S* is an OSPIS with probability p for
System (1). Then, being k the current sample
time, the cost function is given by:

Vi (z, S, Upe (k); 1)
N—1
=1 —p(@) Y lads (x(j)) + Bdye (u(j))]
=0

+ p(2)[[u(0) — upe(R)),

where p(z) = 1 if z € S and p(z) = 0
otherwise. Here, dst (2(j)) and dy¢ (u(j)) represent
the distance between the set and the point, o and
(£ are positive real numbers and N € N is the
control horizon.

For any initial state z in Xy = Qn(S?), the

optimization problem Py (z,S", up(k), k), to be
solved at each time instant k, is given by:

Problem Py (z,8% upe(k), k)

min V(2,8 upe (k); 1)
u

s.t.
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Notice that p(z) is a discontinuous function
necessary to cancel the persistent excitation in
case the state leaves St. This could occur due to
the presence of an external disturbance or even,
with a small probability, lesss than (1 —p), due to
the persistent excitation itself.

The control law resulting from the application of
the receding horizon policy is given by a function
kn(z,8Y) = u°(0;2), where u®(0;z) is the first
element of the (optimal) solution sequence u®(z).
This way, the closed-loop system under the MPC
law is described as z(j) = ¢y (j; 2, SY) = Alz +
S AT By (x, SY).

In (Anderson et al., 2016), the asymptotic con-
vergence of the closed loop trajectories to the
target set S of the scheme was proved. However,
it is also important to ensure convergence in
finite time, as the identification procedure has to
be applied inside that set. The following results
establish that property

Lemma 3. Let St C X be an OSPIS with
probability p € (0,1] for system (1) with wu(k)
being a bounded white noise signal on U?. Let
2(0) = x € Xy, where A} is the one-step
controllable set to St (i.e., X; = Q(8")). Then, the
target set S* is reached in one step for the closed-
loop system x(j) = ¢ (j;2,SY), with j € N.

Proof: We need to consider the case when z(0) ¢
St then p(z) = 0. Notice that the fact that 2(0) =
x € X implies that a control action u(0) € U*
exists such that z(1) € S, and then successive
control actions exist for which z(j) remain in S*
(from the invariance of that set). Then, the use
of that control sequence has null cost, while any
control action that leaves z(1) outside S* has a
positive cost. Thus, the MPC will drive the state
to the target set in one step. ® Now, from

Lemmas 1 and 3, the following result regarding
the convergence on finite time to the target set St
is established.

Theorem 1. Let 8¢ C X be a y—OSPIS with
probability p € (0,1] and v < 1 for system (1)
with u(k) being a bounded white noise signal
on U'. Then, S* is reached in finite time for
the closed-loop system z(j) = ¢, (j; 2, S*), with
2(0) =z € Xy and j € N.

Proof: In (Anderson et al., 2016) it was proved
that S? is also a y—CIS. Then, by Lemma 1, S¢
is in the interior of X; = Q(S"). Since we now
also by (Anderson et al., 2016) that z(j) tends to
St as j goes to oo, then, a finite time K there
exists such that 2(K) € X;. Then, by Lemma 3,

the state z(K + 1) = ¢, (1;2(k),S") will be in
St, which concludes the proof. [ |

From the re-identification point of view, it is
important to ensure that the trajectory is kept
inside the target set S! long enough to apply
the identification procedure. Let us suppose that
T;,q € N is the length of the data necessary to
perform a suitable identification of the system of
Eq. (1). Taking into account Lemma 2, whenever
the trajectory enters set S¢, it will remain inside it
during T;4 units of time with a probability greater
than pTie. That way, if p is chosen to be sufficiently
large, it can be ensured that the re-identification
procedure can be frequently performed.

5. ROBUSTNESS ANALYSIS

The MPC scheme proposed above uses a target set
St computed as an OSPIS for the system under
certain input noise signal. The problem is that S*
depends on the model parameters (A and B), and
we cannot assume that they are accurately known
(and that is the reason why the re-identification
procedure is needed).

In (Anderson et al., 2016), it was shown that when
the set St was computed as a y-OSPIS, then it
results an OSPIS for a family of models around
the nominal one, and the properties derived about
stability and convergence are still valid. However,
the mentioned family of models corresponded to
an affine parametrization by a scalar parameter
around the nominal model. Here, we extend
that result to a wider family under a generic
parametrization.

Let W C RP be a proper C-set, and consider that
matrices A and B in the nominal system of Eq.(1)
are parametrized by w € W.

z(k+1) = A(w)z(k) + Bw)u(k), (4)

where A(w) and B(w) are Lipschitz functions on
W satisfying A(0) = A, and B(0) = B. Then, the
following theorem can be established

Theorem 2. Let St C X be a y-OSPIS with
probability p € (0,1] and v € [0,1) for system
(1), with u(k) being a bounded white noise signal
on U'. Then, there exists a proper C-set W™ C W
such that for any w € W" the set St is an OSPIS
with probability p for system (4) under the same
bounded white noise signal.

Proof: Let z(k) € S'. Compute z(k + 1) =
Az(k) + Bu(k), and z(k + 1) = A(w)z(k) +
B(w)u(k). Then, substracting both future values
of the state we obtain

E(k+1)—2(k+1) = [A(w)— Ala(k)+[B(w)—Blu(k)
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applying norms and triangular inequality, it re-
sults that

1Z(k +1) —x(k + 1)l = |[A(w) — Alz(k)

+ [B(w) — Blu(k)||

< [ A(w) = Al - [|=(k) |

+ [1B(w) = B - [[u(k)]]

SLa-[lwll - lz(F)]]

+Lp - wl]l - [lu(k)]]
where L4 and Lp are the Lipschitz constants of
A(w) and B(w) in W. Then,
[2(k+1)—z(k+1)|| < (LarotLpry) |w] = a'||5w||
where 1, = max,cg: ||z] and r, = max, gyt Hu(||)
Let d = infygstdysi(z), ie., the minimum

distance from the border of S to set vS*. Then,
consider the set

d
Wr={weW:|u] <~}

Thus, w € W" implies that o||w| < d, and, from
Eq.(5), we have

weW = |2k +1) —a(k+1)|| < d

Taking into account that d is the minimum
distance from the border of 8t to the set vS?, the
later condition establishes that z(k + 1) € vS* =
Z(k +1)S'. Then,

Priz(k+1) €S> Priz(k+1) €~S"] > p

what proves that S¢ is an OSPIS for the system
of Eq.(4). [ |

6. EXAMPLE

The idea now is to test the proposed MPC scheme
in an uncertainty scenario. We consider the second
order stable system introduced in (Gonzilez et
al., 2014), given by Eq.(4), with w € W =
[-0.22,0.22] C R and

Alw) = 0.42 —0.28 —-06 04
1002 0.6 —0.6 —0.85 |’

0.3 -0.2
Blw)= [0.4] w [0.4] !
The unknown real model is given by A(w,) and
B(w,) with w, = —0.2. The constraints of the

system are given by X = {z € R?: |z| <17}
andU ={ueR: |ul| <1}

The EIS set has been selected to be U! =
{u € R : |Jull, <0.8}. The Bounded White Noise
signal upe(k) is assumed to have a truncated
normal distribution, and lies within ¢/¢, with mean
1 =0 and standard deviation o = 0.4.

6.1 Simulating the Re-identification Control and
Ezciting modes

Two indexes are defined to evaluate the benefits
of having a reduced target set for identification,
S, from the control point of view. The first
one, denoted as I, is defined by the cumulative
distance from the states to the target equilibrium
set X, which represents the objective target for

the Control Operation Mode (i.e., when no re-
identification is needed):

Tsim

I = Z dxe (2(i)) + duye, (u(i)),

where Ty, is the simulation time, 7T, is the
objective set of the MPC cost function (i.e., an
invariant set in the Re-identification Operation
Mode; an equilibrium set in the Control Operation
Mode) and = = z(0) is the initial state. In
fact, this index is directly given by the MPC
cost proposed for the Control Operation Mode in
(Gonzélez et al., 2014).

The second index, denoted as I, simply gives the
quantity of states in open-loop:

Iy = Tgim —
#{x(i) : 2(i) = o(is 2, Tar),

The idea behind these indexes is that the less time
the system is in open-loop for the identification
procedure (provided that a proper excitation is
performed), the better for safety control purposes.
In this context, the ideal scenario is given when
the Control Operation Mode is implemented, in
which case, the system is never in open-loop, and
so Iy = If™ (minimum value) and I, = I§™ = 0.
In order to standardize the indexes we define:

1= la 7T91’m}

Il—Ilcm I;td: .[2

std __
7" = T :
1 sim

which are values between 0 and 1, being the
smallest values that represent the best scenario,
in both cases.

The simulation scenario, devoted to show how
the proposed MPC works in the Re-identification
Operation Mode, consists in a sequence of distur-
bances that enters the system while the excitation
procedure is being performed. The simulation
starts at an initial state inside the target set
S, which corresponds to the Re-identification
Exciting Mode. Then, three disturbances takes
the system states outside S?, which makes that
the controller automatically switch to the Re-
identification Control Mode, to steers the state
back to S*, and once it occurs, to switch again
to the Re-identification Exciting Mode, to resume
the exciting procedure.
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Fig. 1. The Re-identification Operation Mode simulation
with the OSPIS S? as target set of the MPC cost
function.

Controlled states

Excited states

Fig. 2. The Re-identification Operation Mode simulation
with the ISI X! as target set of the MPC cost
function.

Table 1 show the indexes for both criterion of re-

identification process using the minimal invariant

set (ISI): (Gonzélez et al., 2014) and the prob-
abilistic invariant set (OSPIS), respectively, also
in contrast to the ideal case (Control Operation

Mode) when no re-identification process is done.

As it can be seen, the proposed strategy shows a

significant improvement in both indexes, which is

due to the use of a smaller target set.

[ Target Set | Eq set X, [ OSPIS &* | IST A |

Index 1 0 0.38 0.45
Index 2 0 0.88 0.98
Tabla 1. Both indexes for the control opera-
tion mode with the equilibrium objective set
Xl,: First column. The same indexes for the
re-identification operation mode with the
objective sets St and X*: Second and third
column, respectively.

7. CONCLUSION

In this work, we proved some fundamental the-
oretical properties of a novel MPC scheme that
allows closed-loop re-identification making use of
probabilistic invatiant sets. We showed that, using
the proposed scheme, the state reaches the target
set in finite time, and then the state remains
in that target set during the time necessary to
perform the re-identification procedure with a

given probability. We also extended the robustness
analysis to ensure that the scheme can properly
work in a wider family of models around the
nominal one.

Additionally, we included new simulation results
that show the advantages of the methodology
with respect to a previous approach that used
deterministic target sets.
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