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Abstract—We present a new deterministic discrete time compartmental model of COVID-19 that
explicitly takes into account relevant delays related to the stages of the disease, its diagnosis
and report system, allowing to represent the presence of imported cases. In addition to
developing the model equations we describe an automatic parameter fitting mechanism using
official data on the spread of the virus in Argentina. The result consistently reflects the
behaviour of the disease with respect to characteristic times: latency, infectious period, report of
cases (confirmed and dead) and allows for detecting automatically changes in the reproductive
number and in the mortality factor. We also analyse the model’s prediction capability and present
simulation results assuming different future scenarios. We include a usage of the model in a
closed loop control scheme, where the explicit presence of delays plays a key role in projecting
more realistic dynamics than that of classic continuous time models.
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THE OUTBREAK of the coronavirus disease
2019 (COVID-19) as of late December in the
city of Wuhan, mainland China, took eventually
three months to be classified as a pandemic
[1] by the World Health Organization. About
the same date, on March 3rd., the first case
of Severe Acute Respiratory Syndrome Coron-
avirus 2 (SARS-CoV-2) was officially reported
in Argentina by the Ministry of Health [2]. The
Argentine national administration was very early
in taking quick measures to curb the spread of
the virus. Throughout the first three weeks of
March several public activities were progressively
banned, ending up in a nationwide mandatory
lockdown (so called Mandatory Preventive Social
Isolation (or ASPO for its initials in Spanish)
as of March 19th. The compliance with the new
regulations was exemplary during approximately
three weeks, followed by a mixture of relaxation
of controls combined with a loss of commitment
by some social sectors. This resulted in a very
particular slow but sustained exponential growth
of cases. As of the time of writing, more than
650,000 positive cases have been confirmed, more
than 500,000 have recovered and around 15,000
died.

During the early weeks of the epidemic in
the country, several health-related systems were
stressed at unprecedented levels, including the
information systems meant to monitor and track
the status of the epidemic nationwide. After 5
months of operation the result converged into a
publicly available subset of information updated
twice a day. The dataset bears several peculiarities
in the informed dates, which are a consequence of
several factors such as people reporting symptoms
very late, varying delays in the testing system,
slow processing and data entry of new cases and
test results, etc.

This situation impacts directly on data-driven
approaches that try to model, simulate and fore-
cast the evolution of the disease relying on the
official datasets as primary sources of informa-
tion.

The primary application of simulation models
during an on-going, previously unknown, and
highly infectious disease is to assist health policy
makers with tools to assess the impact of potential
interventions within pressing time horizons. With-

out the possibility of waiting for enhanced data
sources, and with delayed decisions potentially
costing lives, it becomes highly relevant to apply
modeling techniques that are robust to available
data inaccuracies.

In this work, we present an approach that
relies on discrete time difference equations with
explicit delays, tailored to best assimilate the
daily data updates reported for Argentina. The use
of explicit delays has the advantage of improving
the model fitting using short data series, which
occurs not also at the beginning of the outbreak
but also after non pharmaceutical interventions
(like strict lockdown). Additionally, it permits
using more instantaneous type of data (e.g. daily
reported cases) in a more reliable way. The use
of this type of noisy data avoids the need to
wait for the stabilization of the time series of
cases (typically resorting to the date of symptom
onset) which imposes a lag in the order of 1 to 2
weeks in the analysis. Another advantage of the
approach is that it yields an explicit and straight-
forward representation of the model parameters.
The combination of these facts with the discrete
time formulation results in a model that can be
easily understood by non expert policy makers.

We will compare this approach with a clas-
sic continuous time differential equation-based
model without delays, and discuss the relevance
of both approaches.

Models of infectious diseases and previous
work on models for COVID-19 in Argentina

Modeling the spread of contagious diseases
is a broad field [3], [4], [5], with approaches in-
cluding both deterministic or stochastic dynamics,
discrete time or continuous time, compartmental
or agent-based, with or without explicit georefer-
encing, to name a few. A widely adopted classifi-
cation for epidemiological models is to state the
possible stages through which an agent can evolve
in the population model [4]. This way, the agents
are conceptualized as belonging to mutually ex-
clusive compartments, originating the category
of compartmental models. The most common
compartments are the Susceptible, Infected and
Recovered (the SIR model) while finer grained
classifications include stages such as Exposed
(infected but not yet contagious), Asymptomatic,
Quarantined, Hospitalized and Dead (obtaining
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for instance a SEIRDH type of model).
There is already a number of published efforts

to model the COVID-19 evolution for the Argen-
tinian case. In [6] the authors propose an agent-
based, spatially explicit, and age-structured SIRD
model exploring intervention scenarios reflected
by demographic, medical, social and institutional
parameters. In [7] a connection is established
between short-time time series statistical forecasts
and structural parameters of a continuous time
SIRD model, with special attention on the occur-
rence of epidemic waves and focusing on the City
of Buenos Aires. In [8] the authors developed
a continuous time, stochastic SEIARQ model
including age structure, a distinction according
to the severity infected cases and focusing on
the Metropolitan Area of Buenos Aires. Differ-
ent interventions are studied considering varied
percentages of the population going quarantined.
In [9] the spread of the disease is modeled with
a SEIHRD structure that is used as the target
of a predictive closed-loop control strategy based
on a proportional controller. The control goal is
to avoid the collapse of the health system while
reducing economic impact. In [10] the authors
chaperon the reader in a guided walk-through
of modeling experiences, sharing their lessons
learned from studying the evolution of COVID-
19 in Argentina. They span varied types of
SEIR models (homogeneous and inhomogeneous,
stochastic and deterministic, spatially lumped and
distributed, continuous and discrete time) and also
include a valuable study to estimate mobility
within and between districts from cell phone data.

An adequate choice of a combination of
model type and represented disease stages de-
pends largely on the questions to be answered
by the model, and consequently by the spatio-
temporal scale at which answers are expected to
hold valid.

In the most abstract type of model structure,
the compartments in a compartmental model rep-
resent the whole population for a given spatial
scale (neighbor, city, country). This approach
involves the least amount of parameters, but
ignores potentially relevant dynamics at smaller
scales. Such populations can in turn be subdi-
vided into ”classes” (e.g. age cohorts, essential vs.
non-essential personnel, etc.) obtaining so-called
”metapopulation” models. This subdivision into n

classes comes usually at the expense of multiply-
ing the number of required parameters by a factor
between n and n2 (depending on the interaction
structure among classes). The aforementioned
structures can in turn be made more spatially
explicit, for instance considering networked pop-
ulations (e.g. interconnected cities) or continuous
regions where adjacent patches influence each
other according to their neighboring context (e.g.
cellular automata models). This model structure
can provide more fine grained answers regarding
the spread of the spatial density of the disease, but
requires a thorough understanding of population
mobility (which is a challenging data process-
ing task even when reliable, non-biased data is
available) and are in general much more difficult
to validate. The degree of detail can be taken a
step further by considering agent-based models
where individuals in a population are modeled
with autonomous behavior. Here, the macroscopic
indicators of the disease in the population emerge
from the interactions among said agents, each
of them undergoing the typical stages of the
disease. Agents can be either fixed or mobile.
In the first case, the underlying (usually random)
connectivity graph determines the possibilities of
contact between each pair of persons, while in
the second case agents move in space according
to given rules and the opportunities for interaction
(e.g. contagious encounters) emerge from the
aggregated pattern of mobility. Finally, stochastic
dynamics can be factored in within all types of
models, to cope with the inherent uncertainties
found in most model parameters (e.g. incubation
period, recovery delay, effective transmission rate,
etc.). Models with stochastic behavior provide
more information on the statistical distribution of
relevant variables (such as daily new infections,
recoveries, deaths) besides their averaged values.
In many cases, and particularly in the presence
of unprecedented system dynamics as in the case
of COVID-19, reliable statistical descriptions of
model parameters are not available. In this con-
text, a reasonable approach is to conduct scenario
studies, i.e. testing for the robustness of the
simulated results by considering plausible sets
of perturbed values for model parameters. We
refer the reader to [11] where the authors provide
a very illustrative overview and discussion of
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model types in the context of a vector-host virus
transmission (including the possibility of adopt-
ing simultaneously different model structures for
the vector and the host).

A Discrete time model with explicit delays
Compartmental models are most typically for-

mulated in continuous time, in the form of sets of
ordinary differential equations, with fewer efforts
devoted to discrete time variants. For the partic-
ular case of the COVID-19, examples of works
that fit continuous models to data can be found
in [12], [13], [14] while approaches relying on
discrete time models can be found in [15], [16].

A salient feature of the COVID-19 virus is
its long incubation time that delays both the
start of the infection period and then the time
of detection. For this reason, it seems appropriate
to model explicitly the presence of such delays.
Moreover, in the case of an unprecedented pan-
demic outbreak, during early spreading stages in
a given country imported cases are very frequent
and strongly influential. This was particularly true
in Argentina, where more than a month after the
confirmation of the first case half of the cumula-
tive detected cases were still imported ones.

The incorporation of explicit delays and im-
ported cases complicates the approach based on
differential equations, as it implies using delayed
differential equations, whose numerical resolution
can be challenging [17].

Therefore, we propose a discrete time model
with a one-day time step that, unlike traditional
discrete time models [5], takes explicitly into
account time delays (e.g. incubation, detection,
recovery and death intervals since the instant of
exposure to the virus). In addition, we incorporate
imported cases as a forcing input signal.

We later fit the parameters of this model to
publicly available data provided by the Ministry
of Health of Argentina. As it will be seen, the
parameters that minimize the mean square error
between data and the simulated trajectories are
consistent with known information about COVID-
19 in our country (incubation time, infectious
period, recovery times, death, detection and re-
porting).

The origin of the structure of compartmental
models goes back to the work of Kermack and
McKendrick in 1927 [18] and consists of classi-

fying the population into three different groups
(or compartments):

• S(t): Population susceptible to the virus in
time t. (Individuals who are not infected, nor
have immunity to the virus).

• I(t): Population infected in time t. (Individuals
who are infected and can spread the virus to
those who are susceptible).

• R(t): Population removed in time t. (Individ-
uals who have already been removed from the
dynamics, either because they have recovered
by acquiring immunity to the virus, or have
died).

Each individual in the population belongs to
only one of these three groups and can evolve
from one to the other. One of the hypotheses
is that the recovered individuals acquire lifelong
immunity to the virus, so the allowed evolutions
are: a) an individual of S can become infected
by entering in contact with one of the I group
(becoming part of this group), b) an individual
of the I group ends up passing to the R group
when they recover or die. The total number of
individuals in the population is assumed to be
constant with S(t) + I(t) +R(t) = N .

There are other mathematical models based on
the SIR model, to which other compartments or
additional characteristics are added: In the SEIR
model, the population category E (exposed) is
added to model individuals that are incubating the
virus but do not yet have the capacity to infect.
Similarly, the SEIRD model adds the category D
corresponding to the dead population due to the
epidemic.

Continuous time models In large popula-
tions the variables can be taken as continuous and
the relationship between the three groups can be
represented with a system of ordinary differential
equations:

dS

dt
= −β · S · I

dI

dt
= β · S · I − γ · I

dR

dt
= γ · I

Where β and γ are parameters that repre-
sent the infection and recovery rates respectively.
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From the relation of these parameters a funda-
mental indicator arises: R0, the basic reproduc-
tion number. This factor indicates, on average,
how many people get infected by a previously
infected person.

Discrete time models with delay Discrete
time models [19], [5] support the incorporation
of explicit delays to model behaviors that occur
after a known period of time [5]. An example
could be the ’latency time’ of a disease, i.e. the
time since the individual’s first exposure to the
virus until he or she starts being infective.

With respect to the incorporation of delays,
there is an antecedent in [20] where a SEIR
structure is proposed but a small distinction is
made in the compartments. Here, the compart-
ment I represents all infected (both detected and
undetected) who are already contagious, but do
not yet have symptoms. In addition, R represents
those infected who have been detected (the R is
for ’reported’) and U represents those infected
but not yet detected.

In this work, two different options are pro-
posed to represent latency periods. On the one
hand, using rates to represent the flows between
compartments, and on the other by means of
explicit delays obtaining Delay Difference Equa-
tions.

Model description
In this section, we first introduce the proposed

model SEIRD and then we compare it with a
classic continuous time SEIR model.

Model Equations
Following the idea of classic SEIRD models,

we use the following state variables:

• S(t): Susceptible population
• E(t): Exposed population
• I(t): Infectious population
• R(t): Removed population
• D(t): Dead population

Note that the Dead population (D) is part of
the Removed population (R). In order to explicitly
consider the effect of delays, we also use as state
variables the number of Daily Exposed people in
the last T days: NE(t), NE(t− 1), . . . , NE(t−
T ), where T is the maximum delay in the model.

In addition, in order to account for imported
cases, we consider a signal U(t) that represents
the number of imported cases that were exposed
at time t while they were abroad and were later
detected in the population. This signal is assumed
to be known. The model parameters, that will be
later fitted to the available data, are the following:

• R0(t): Basic Reproductive Number. Average
number of individuals exposed to the virus by
a single infectious person.

• τI : Latent Time: The time elapsed since an in-
dividual is exposed until becoming infectious.

• τR: Removal Time. The time elapsed since an
individual is exposed until he or she no longer
infects others. Notice that τR − τI = τInf
is the duration of the infectious period. This
time depends not only on the time it takes to
reduce the virus load, but also on the policies
applied to isolate individuals after detecting or
suspecting the possibility of infection.

• df : Diagnostic Factor. The fraction of positive
cases that are eventually diagnosed. Notice that
this value depends on testing and diagnosis
policies.

• cfr(t): Case Fatality Rate: The fraction of
confirmed cases that eventually die. We assume
that cfr may change over time.

• τD: Diagnosis Time: Time elapsed since ex-
posure until diagnosis. This delay depends not
only on biological features (such as symptoms
onset) but also on testing and reporting poli-
cies.

• τM :Time of Death: Time elapsed since expo-
sure until death.

We shall also compute the average number of
individuals exposed by a single infected person
per day as β(t) = R0(t)/(τR − τI).

With these state variables and parameters, the
model has the following dynamics:

NE(t+ 1) =β(t) · I(t) · S(t) + U(t+ 1)/df

S(t+ 1) =S(t)− β(t) · I(t) · S(t)
E(t+ 1) =E(t) +NE(t+ 1)

−NE(t+ 1− τI)
I(t+ 1) =I(t) +NE(t+ 1− τI)

−NE(t+ 1− τR)
R(t+ 1) =R(t) +NE(t+ 1− τR)

May/June 2020 5



Department Head

In order to fit parameters and perform projections,
the model computes the following signals corre-
sponding to reported data:

D(t+ 1) = D(t) + (cfr · df) ·NE(t+ 1− τM)

ID(t+ 1) = ID(t) + df ·NE(t+ 1− τD)

representing the number of accumulated deaths
and diagnosed cases, respectively.

The model relies on the following assump-
tions:

• The daily number of exposed people is propor-
tional to the number of infectious people and to
the fraction of susceptible population (without
taking into account the number exposed from
abroad).

• The fraction of diagnosed cases df is the same
for both local and imported cases, and it does
not change over time.

Notice that when the susceptible population
remains nearly constant, the model is almost
linear. Moreover, assuming also null initial con-
ditions such that the dynamics is first started by
the inflow of imported cases, it turns out that
the evolution of the observed signals ID(t) and
D(t) is independent on the detection factor df .
This factor appears dividing the input U(t) and
multiplying the outputs ID(t) and D(t). This
feature implies that the dynamics can be inferred
without actually knowing the detection factor df .

Parameter fitting
In order to fit the parameters we implemented

the model described before in Octave. We used
as input the data of imported cases in Argentina.
The initial time was set to t = 0 on 20/2/2020,
since the first reported cases (and the first death)
date from the beginning of March (thus bringing
the first exposure event back to around February
20th.)

We take as the output of the model the number
of deaths D(t) and the number of total cases
detected ID(t). These numbers were compared
with the corresponding reported data (of deaths
and case reports) from 20/2/2020 to 25/4/2020
using the Case Report Date (CRD). All data
were obtained from the daily reports of the Min-
istry of Health at https://www.argentina.gob.ar/
coronavirus/informe-diario.

For each set of integer values of the delays
τI , τD, τM , τR, the values of R0(t) (reproductive
number) and cfr(t) (case fatality rate, i.e. fraction
of deaths per detected and reported case) were
adjusted by least squares, and then it was sought
which set of delay values minimized the resulting
cost. For the least-squares adjustment the built-in
leasqr Octave function was used, attempting to
minimize the difference between the accumulated
reported cases and deaths in the dataset and those
computed by the model. In order to minimize the
norm of the relative error, the leasqr function
was invoked using a weighting matrix that is
inversely proportional to the square root of each
data point.

Denoting with ydata(t) ,
[Ddata(t), IdataD (t)]T and ysim,p(t) ,
[Dsim,p(t), Isim,p

D (t)]T to the output data and
the simulated outputs for the set of parameters
p, respectively, the leasqr function tries to
find the set of parameters p∗ that minimizes the
following error:

e =

tf∑
t=0

(ydata(t)− ysim,p(t))2

|ydata(t)|

The set of parameters p contains an array of
values of R0(t) and cfr(t) at different times. In
this case, we allowed both trajectories to change
twice, so p was formed by 3 values of each
parameter. The instants of change for those pa-
rameters were the ones that allowed to minimize
the error after the optimization procedure. As a
result, we obtained the following expressions for
the reproduction and mortality rates:

R0(t) =


2.267 t < 17/3

0.886 17/3 ≤ t < 3/4

1.104 t ≥ 3/4

cfr(t) =


0.054 t < 17/3

0.061 17/3 ≤ t < 3/4

0.072 t ≥ 3/4

In all cases the least squares algorithm was
executed with initial parameter guess R0(t) = 1
and cfr(t) = 0.05, which are values within the
order of magnitude of what is known about the
virus. Convergence to this minimum was also
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verified for varied initial guess values. These pa-
rameters were obtained using the delays τI = 5,
τD = 11, τR = 12, and τM = 17, which
minimize the quadratic cost, and are also con-
sistent with what is known about the virus: 5
days until the patient becomes contagious, 11
days until detection and report, 12 days for the
effective contagious period (considering that upon
detection the person is isolated) and 17 days
until recovery or death [20], [10], [21]. As it
was already mentioned, the time until detection,
report and isolation are strongly dependant on the
local health system in charge of processing swab
tests. Likewise, it is highlighted that the time t1
that is obtained for minimizing errors is almost
coincident with the enforcement of the first strict
lockdown (t1 corresponds to March 17th., while
the lockdown was enforced on March 19th.). The
obtained time t2 corresponds to April 3rd., when
the population began to relax its commitment to
strict confinements.

The relative mean error between measured
and simulated data is ‖xdata − xsim‖/‖xdata‖ =
0.0613 (6.13%). Figures 1-2 compare the simu-
lation results with the data corresponding to the
number of deaths and the number of detected
cases.

20/0224/0228/0203/0307/0311/0315/0319/0323/0327/0331/0304/0408/0412/0416/0420/0424/04

0

50

100

150

Total Deaths.Period: 20/02 - 24/05

model

data

Figure 1: Total number of deaths (data and model)

Experiments and Results
In this section, we show first that the devel-

oped model can be used to analyze the past evolu-
tion of the contagion figures and to project future
scenarios. Then, we demonstrate its usefulness in

20/0224/0228/0203/0307/0311/0315/0319/0323/0327/0331/0304/0408/0412/0416/0420/0424/04
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1000
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3000

Total Detected Cases.Period: 20/02 - 24/05

model

data

Figure 2: Total number of detected cases (data
and model)

evaluating non pharmacological interventions and
finally we cross-check the model by comparing it
against a classic continuous time SEIR model.

Analysis and Projections
We show next the use of the model developed

to analyze the evolution of factors of contagion
and mortality in the past, on the one hand, and
also to project the evolution of the curves in the
short and medium term.

We will fit the parameters R0(t) and cfr(t)
over a longer period, using data from 20/2 to
04/6. We will consider that these parameters
can change every 14 days. The main reason for
choosing this period between changes is that the
Argentine government updated the policies once
every two weeks. A more precise adjustment
can be obtained by allowing weekly or even
daily changes, but optimizing on a large set of
parameters would eventually lead to over-fitting.
Keeping the delay parameters of the previous
experiment (τI = 5, τD = 11, τR = 12 and
τM = 17) we get then the following paths for
R0(t) and cfr(t):

R0(t) =



2.396 t < 16/3

0.898 16/3 ≤ t < 29/3

1.051 30/3 ≤ t < 12/4

1.078 13/4 ≤ t < 26/4

2.042 27/4 ≤ t < 10/5

1.523 t ≥ 11/5

(1)
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cfr(t) =



0.054 t < 16/3

0.061 16/3 ≤ t < 29/3

0.064 30/3 ≤ t < 12/4

0.068 13/4 ≤ t < 26/4

0.031 27/4 ≤ t < 10/5

0.018 t ≥ 11/5

(2)

The relative mean error between mea-
sured and simulated data results in ‖xdata −
xsim‖/‖xdata‖ = 0.015 (1.5%).

Figures 3-6 compare the simulation results
with data corresponding to the number of deaths,
number of detected cases accumulated and per
day. In this case, we extended the final simulation
time to project beyond the data used to adjust the
model. We initially consider that since 12/5 the
parameters R0(t) and cfr(t) remain constant and
equal to the last adjusted value. We also include
two scenarios considering a ±10% variation of
these parameters from 25/5 onwards (i.e. a period
not observed from data due to the delays). These
scenarios allow for considering small changes in
the social contact and/or in the death rate, as well
as some inaccuracies in the parameter adjustment.
Due to the unstable nature of the model when
R0 > 1, those small changes in the parameter
values imply a large difference in the trajectories
as time evolves (see Figure 6 where those small
changes imply that the number of daily cases is
modified by a factor of 3 after six weeks).

20/02 01/03 11/03 21/03 31/03 10/04 20/04 30/04 10/05 20/05 30/05 09/06 19/06 29/06 09/07 19/07
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Total Deaths. Scene: R0 changes on:25-May-2020
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model R0+10%

model R0-10%

Fitting Projection

Figure 3: Total number of deaths (data and model)

It can be seen that the fitted model allows us
first to draw conclusions about the curve from
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Figure 4: Daily number of deaths (data and
model)
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Figure 5: Total number of detected cases (data
and model)

past data. Equations (1)-(2) show the evolution
of the factor of contagion and the effects of a
quarantine and its subsequent relaxation, as well
as the decrease in mortality per case that reflects
the greater spread of the virus among the younger
population.

On the other hand, the projections from June
4 (final date of the data used for the adjustment)
show first the possibility of using the model to
estimate the future the spread of the virus under
different scenarios. On the other hand, it allows
to analyze the potential effect of the increase or
decrease of the social distancing reflected in the
factor R0.

The coincidence between the projections
made at the beginning of June with the subse-
quent data up to 6 weeks later reflects not only the
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Figure 6: Daily number of detected cases (data
and model)

correctness of the model and the accuracy in its
estimated parameters, but also the lack of change
in the social behavior. We have used the model
in different large cities of Argentina (Buenos
Aires and Rosario, for instance) where the initial
projections were accomplished for more than 10
weeks.

Applying continuous and discrete models for
non-pharmaceutical interventions.

In this section we will address a comparison
between a classic Continuous-time SEIR Model
(CM) and the Discrete-time SEIRD Model (DM)
presented in this work.

Different approaches were proposed to con-
tain the spread of COVID-19 in the absence of
a vaccine, resorting to public-health measures
known as non-pharmaceutical interventions [22].
We present here a Controlled Intermittent Lock-
downs (CIL) strategy combining periods of sup-
pression (R0 < 1) and mitigation (R0 > 1).
The control policy is parameterized by a threshold
(maxCases) which defines when to switch be-
tween strict lockdowns and relaxed phases. Next,
we will compare the results of applying this
control technique using the discrete (DM) and
continuous (CM) models. We shall explore the
effects of setting maxCases = 50 cases.

Figure 7 illustrates the result of applying a
CIL strategy in Buenos Aires City. The CM is
fitted to detected cases from February 23rd to
August 15th. We considered cases aggregated by
their Symptoms Onset Date (SOD), as the usage

of cases grouped according to Case Report Date
(CRD) may lead to inconsistent estimates. Using
SOD requires cutting out the time series over
the last ten days, as this is the typical time it
takes to collect all the notifications of cases that
share the same SOD in the past. In the CM
we considered a population proportional to the
number of symptomatic cases using the detection
factor df = 10%

Figure 7 illustrates the result of applying
the CIL control to Buenos Aires City. Next, in
Figure 9 we repeat the experiment but using the
DM instead. Comparing both figures, we can
notice that for the DM the trajectory of daily
cases moves away from the threshold swhitching
between phases with a period of about one month.
Conversely, the corresponding trajectory for the
CM remains close to its threshold switching un-
realistically fast between phases. This difference
in closed-loop behaviour can be explained by
noting that in the DM there is a delay between the
instant when the daily cases cross the threshold
and the moment this crossing is detected. For a
fair comparison, Figure 8 illustrates the result of
applying the CIL control to Buenos Aires City but
incorporating a 11-days delay between threshold
crossing and control action. It’s worth noticing
that the results in Figure 8 and 9 have a high
degree of similarity.

The advantage of the DM here is that it does
not require any modification to reflect the actual
closed loop behavior, while the CM requires to
add an additional delay that transforms the model
into a set of Delay Differential Equations. In ad-
dition, the DM exhibits an interesting phenomena
after each lockdown: some days after the sudden
change in R0 the number of cases has a rebound
(notice it around May 15 in Figure 9). This phe-
nomena can be explained by taking into account
that the number of infectious people continues
growing for some days after the lockdown (the
reduction in R0 only reduces the new exposed
individuals), and that growth is reflected back in
the number of new exposed, which depends on
the number of infectious people.

It is worth mentioning that the DM parameters
of this experiment were fitted without considering
imported cases, as they were not available in
the dataset for the city of Buenos Aires. Instead,
we considered as imported all the cases detected
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(a) Daily Cases

(b) Total Cases

Figure 7: Controlled Intermittent Lockdowns
(CIL) for Buenos Aires City using CM.

prior to certain date (April 20th.) so they acted
as initial conditions for the state variables NE(t),
E(t), and I(t) starting on that date. The param-
eter adjustment procedure detected that R0 was
null before April 9 (11 days before the initial
date), and obtained valid values for R0 after that.
The actual fraction of imported cases detected
in Argentina after April 20th. was negligible, so
we considered that U(t) was null from then on
without introducing further relevant errors.

The same procedure was used in different ex-
periments with datasets of different cities and re-
gions of Argentina using only data from detected
daily cases without distinguishing between im-
ported and local cases. The idea can be straight-
forwardly applied to any city, region or country
provided that there is a daily record of detected
cases and deaths.

(a) Daily Cases

(b) Total Cases

Figure 8: Controlled Intermittent Lockdowns
(CIL) for Buenos Aires City using CM with an
11-day measuring delay.

Discrete and Continuous Model Comparison
In order to cross-check the model with a

classic continuous time SEIR model, we adjusted
the parameters in order to fit both models using
the diagnosis dates for the DM and the symptoms
onset dates for the CM. In both cases, we used
the official data series at national level.

Simulation results and official data series are
compared in Figure 10, with both approaches
achieving a high degree of similarity. In both
cases, we measured the relative mean square error
between the real and the simulated trajectories
for the total number of cases, obtaining values of
1.04% and 1.08% for the CM and DM, respec-
tively. It is worth mentioning that the diagnosis
date data series has a much higher dispersion
than the symptom onset data series (it can be
easily appreciated in Figure 10a), so the fact that
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(a) Daily Cases

(b) Total Cases

Figure 9: Controlled Intermittent Lockdowns
(CIL) for Buenos Aires City using the DM.

both approaches have a very similar error exhibits
in fact a further advantage of the discrete time
model.

Conclusions
A simple discrete model of COVID-19 prop-

agation based on first principles was presented,
which does not require complex hypotheses, de-
velopments or interpretations. Its parameters are
transparent and explicitly represent the essential
characteristics of the underlying phenomena. In
addition, the model distinguishes imported cases,
which eliminates the overestimation of the in-
fection rate at the early stages of the pandemic
outbreak.

Another salient aspect of the methodology is
that there are no assumed values for the param-
eters; they are instead obtained by fitting proce-
dures with respect to the actual measurements.

(a) Daily Cases

(b) Total Cases

Figure 10: Model fitting for Argentina using DM
and CM.

That is, using only the data reported on the
number of cases and deaths, the model allows for
inferring biological, social, and even administra-
tive dynamics (by means of the parameters) that
influence the evolution and spread of the virus.

Having explicit and directly interpretable pa-
rameters, it is possible to study scenarios through
their modification that are otherwise cumbersome
to represent in classic models of continuous time.
For instance, the effect of a strategy of tracing
and isolating close contacts of confirmed cases
(during the N days prior to detection) can be
captured simply by reducing the parameter τR.

Likewise, in terms of control strategies (non-
pharmacological interventions), having a model
with explicit delays between action and measure-
ment is essential to be able to study closed-loop
performance.

The current work can be extended in several
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directions. Firstly, multi population models based
on age and/or geographical features can be easily
represented with this methodology, using differ-
ent delay parameters for each population. We are
also exploring the possibility of adding available
statistical information. For instance, instead of
considering a single delay between detection and
death, we might use a weighted sum of delayed
signals.

A simple variant of this model can be also
used for studying vaccination policies where the
explicit delays can be used to represent the de-
layed effectiveness of a vaccine. Similarly, if
reinfection is likely after a certain period of
time, a SEIRDS variant of this model can be
straightforwardly proposed.
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