
Efficient Simulation of Hybrid Renewable Energy

Systems

G. Migonia,b, P. Rulloa, F. Bergeroa, E. Kofmana,b

aFrench- Argentine International Center for Information and Systems Sciences
(CIFASIS–CONICET), 27 de Febrero 210 bis, S2000EZP, Rosario, Argentine. Phone:

+54-341-4237248-304. Fax: +54-341-482-1772
bFacultad de Ciencias Exactas, Ingeniera y Agrimensura - Universidad Nacional de

Rosario, Argentina

Abstract

This article explores the usage of novel tools for realistic modeling and effi-
cient simulation of Hybrid Renewable Energy Systems (HRES). Using the ob-
ject oriented Modelica language, a new library providing component models
such as photovoltaic (PV) cells, proton exchange membrane (PEM) fuel cells,
electrolyzers, hydrogen storage tanks, batteries and electronic converters is
developed and used to build different HRES models. Since the components
are represented under realistic assumptions, the resulting models exhibit fre-
quent discontinuities, strong non-linearities and combinations of slow and
fast dynamics (i.e. stiffness). As these features impose severe limitations to
classic numerical simulation solvers, we analyze the use of a new family of
numerical algorithms called Quantized State Systems (QSS) that overcome
most of those difficulties. The results obtained show that these algorithms
applied to realistic HRES are more than one order of magnitude faster than
the most efficient classic solvers, allowing to simulate these systems in rea-
sonable times.

Keywords: Hybrid renewable energy systems, Modelica, Quantized State
System Simulation

Email addresses: migoni@cifasis-conicet.gov.ar (G. Migoni),
rullo@cifasis-conicet.gov.ar (P. Rullo), bergero@cifasis-conicet.gov.ar (F.
Bergero), kofman@cifasis-conicet.gov.ar (E. Kofman)

Preprint submitted to International Journal of Hydrogen Energy April 28, 2016

1. Introduction

Standard HRES consist of arrays of photovoltaic panels and/or wind gen-
erators powering AC, DC or mixed loads [1]. Since energy supplied by re-
newable sources depend mainly on environmental conditions, it is necessary
to use energy storage systems to reduce the consequent power variations. For
this reason, batteries are usually a necessary component of HRES [2], that
can be complemented by fuel cell (FC)–electrolizer systems [3].

The design of some of the control units, particularly those that act on
the switching power supplies that connect the different elements, strongly
affect the efficient operation of these systems. Due to the complexity of the
resulting mathematical models, it is necessary to use numerical simulations
for dimensioning the different components, and for designing and tuning the
controllers.

The presence of switching elements in the DC–DC converters operating
at high frequencies impose several difficulties to classic numerical integration
methods. The reason is that, in order to obtain decent results, the algorithms
must perform several calculations to compute the time of each discontinuity
[4], restarting the simulation after the occurrence of each event. Moreover,
realistic representation of the switching elements (diodes and transistors)
may results in stiff models (i.e., with simultaneous slow and fast dynamics)
requiring the use of implicit numerical solvers that perform expensive itera-
tions and matrix inversions. Consequently, the simulation of a few minutes
of a realistic HRES can take several hours of CPU time even in modern
powerful computers.

To overcome this problem, switching converters are usually represented
by time–averaged models [5, 6, 7]. This simplification, which is adequate to
solve many problems, is limited to particular operating conditions and hide
some real phenomenons such as transient discontinuous conduction in the
converters, the harmonic content they introduce, the presence of failures in
some switching components, etc. Thus, in cases where these phenomenons
are relevant, the replacement of power electronic converters by their time–
averaged models is not possible and the simulation with conventional nu-
merical solvers experiences the aforementioned problems. In order to make
simulations suitable, only a few seconds of the system evolution is actually
simulated [8]

However, there is a new family of numerical integration algorithms called
Quantized State System (QSS) [4]. These methods replace the time dis-

2

cretization of classic solvers by the quantization of the state variables. A
remarkable feature of QSS methods is that they are very efficient in the
simulation of ordinary differential equations (ODEs) with frequent discon-
tinuities. There are also Linearly Implicit QSS (LIQSS) methods that are
very efficient to simulate some stiff systems [9]. Thus, it can be expected
that LIQSS algorithms can efficiently simulate HRES without making use of
time–averaged models. In fact, it has been already shown that LIQSS algo-
rithms are very efficient to simulate different topologies of DC-DC converters
[10], which constitute a critical component of HRES as well as smart–grid
models [11].

A limitation of the QSS methods was that its implementation required
the use of specific software tools that were unfriendly to describe complex
models such as HRES. However, an autonomous QSS solver [12] was recently
developed that can simulate models previously translated from Modelica rep-
resentations making use of a novel compiler [13]. Modelica [14], is a standard
object oriented modeling language where models can be easily defined and
composed to form complex systems making use of different available graphi-
cal user interfaces and existing multi-domain component libraries. That way,
a DC-DC converter, for instance, can be easily modeled by connecting the
corresponding electrical components from the existing Modelica electrical li-
brary and then it can be used as part of the HRES model. Making use of the
mentioned Modelica compiler, the resulting model can be then automatically
simulated by the QSS solver.

In this work we first developed a Modelica library of realistic HRES com-
ponents, including models of PEM fuel cells, electrolyzers, hydrogen storage
tanks, batteries, converter controllers and switched models of most typical
DC-DC converters. Then, we used the library to build different configura-
tions of HRES and simulated the models using classic solvers and LIQSS
methods. The analysis of the simulation results shows that LIQSS can sim-
ulate these complex systems in reasonable CPU times (near to real–time, in
fact), speeding up more than 10 times the results of classic ODE solvers.

The paper is organized as follows: Section 2 introduces the modeling and
simulation tools used along the rest of the work, then Section 3 describes the
HRES, their components and the corresponding Modelica library. Section 4
shows and discusses the simulation results, and finally, Section 5 concludes
the article.

3

2. Modeling and Simulation Tools

In this section we introduce the tools used along the article. We first de-
scribe the Modelica language used to define the libraries and models. Then,
we recall the main features of classic ODE solvers and their difficulties to
simulate HRES models and we introduce the QSS family of numerical algo-
rithms. Finally, we present a tool chain that allows to simulate Modelica
models using the QSS methods.

2.1. Modelica

Modelica [14] is an open object–oriented declarative modeling language
that allows the combination of models coming from different technical do-
mains in a unified way. In Modelica, elementary mathematical relationships
between variables are described by non–causal equations to form basic sub-
systems, that are then connected together to compose more complex systems.
Then, for simulation purposes, the resulting models are processed by Mod-
elica compilers in order to produce the simulation code.

For instance, an electrical connector can be defined by the following Mod-
elica class:

connector pin

Real v; //potential

flow Real i; //current

end pin;

Here, pin is a class of type connector characterized by two real variables
representing the potential and current. This new class can be used to define
a generic one–port element composed by two pins as follows:

model oneport

pin p; //positive pin

pin n; //negative pin

Real v; //element voltage

Real i; //element current

equation

i=p.i;

p.i+n.i=0;

v=p.v-n.v;

end oneport;

This generic one–port model can be used to derive specific elements like
resistors, inductors, etc:

model resistor

extends oneport;

parameter Real R=1;

equation

v-R*i=0; //Ohms law

4

end resistor;

model inductor

extends oneport;

parameter Real L=1;

equation

L*der(i)=v; //Faraday law

end inductor;

An RL circuit can be then constructed as follows:

model RL_Circuit

resistor R;

inductor L;

equation

connect(R.p,L.p);

connect(R.n,L.n);

end RL_circuit

This last stage of the modeling task consisting in connecting together the
components is usually done with the help of Modelica graphical user inter-
faces, where the modeling practitioner only has to drag and drop the elements
and connect them. Figure 1, for instance, shows a Boost converter circuit
built in a Modelica software tool called Dymola [15] using components like
those described above.

L=15e-3

inductor idealDiodepin_input

pin_ground

pin_output

G
a
te

id
e
a
lC
lo
s
in
g
S
w
itc
h

Figure 1: DC-DC Boost converter

The non–causal formulation of the model equations together with the
object–oriented paradigm enable the reuse of code and has been used to
develop the Modelica Standard Library (MSL), a repository of model com-
ponents from different technical domains (mechanical, electrical, electronic,
hydraulic, thermal, etc.) that can be used to build models by dragging, drop-
ping and connecting them. The MSL is an open library maintained by the
Modelica Association, a non–profit organization in charge of developing the

5

language. Besides the MSL there are several other libraries (both, free and
proprietary) comprising many technical domains and industrial applications.

Regarding renewable energy models, there are some previous works re-
porting the use of Modelica to the field [16, 17, 18, 19, 20] showing that the
language is appropriate for modeling these systems.

Once a model like the RL_circuit is built, it can be simulated. For that
goal, a Modelica compiler collects all the equations involved in the model
obtaining a set of Differential–Algebraic Equations (DAEs) that are then
sorted and processed to form a set of ODEs which is simulated by an ODE
solver.

Currently, there are various available Modelica compilers, both commer-
cial (like Dymola [15] and Wolfram SystemModeler) and open source (Open-
Modelica [21], JModelica [22]). Most of them have also graphical user inter-
faces allowing to build models in a drag and drop fashion.

2.2. Classic ODE Solvers and HRES Simulation

Given an ODE of the form

ẋ(t) = f(x(t), t) (1)

where x(t) is the vector of state variables, classic numerical integration algo-
rithm solve this equation based on time discretization. That is, they compute
an approximate solution at certain time points t0, t1, · · · , tN . These time
points can be equidistant (fixed step methods) or they can be adjusted to
fulfill error tolerance settings (variable step methods).

The approximation performed by a numerical algorithm coincides with
the Taylor series expression of the solution of Eq.(1) up to certain power
defining the order of the algorithm. Higher order solvers usually require
more calculations at each time step, but they can perform longer steps with-
out increasing the numerical error. In most engineering applications such as
HRES, the optimal balance between computational load and numerical accu-
racy is given by algorithms of order between 3 and 5 [4]. For this reason, the
fifth order algorithms of DOPRI [23] and DASSL [24] are the most efficient
and popular solvers for this type of problems.

DOPRI is an explicit fifth–order variable step Runge-Kutta algorithm,
while DASSL is an implicit variable step Backward Difference Formulae
(BDF) method. Due to stability reasons, DOPRI (as any other explicit al-
gorithm) cannot efficiently integrate stiff systems, i.e., systems with simulta-
neous slow and fast dynamics. Since stiffness is a very common phenomenon

6

in multi–domain applications, DASSL is a priori the preferred solver of Mod-
elica tools. Implicit solvers like DASSL have advantages regarding stability
which are essential to simulate stiff systems, but they add an extra computa-
tional load as they must invert the Jacobian matrix of the system and iterate
at each step.

Besides stiffness, realistic HRES models also exhibit frequent discontinu-
ities produced by the switched power converters. Since numerical algorithms
cannot integrate across discontinuities without provoking unacceptable er-
rors, the solvers must detect their occurrence finding the exact time point
restarting the simulation after each event. The process of event detection
and discontinuity handling usually requires iterations and, together with the
stiffness issues, imply that the simulation of realistic HRES models becomes
very inefficient.

2.3. Quantized State System Methods

Given the ODE of Eq.(1) the first order Quantized State System method
(QSS1) [25] approximates it by

ẋ(t) = f(q(t), t) (2)

Here, q is the quantized state vector. Its entries are component-wise related
with those of the state vector x by the hysteretic quantization function, so
that the components qj(t) only change when they differ from xj(t) in a quan-
tity ∆Qj called quantum.

The QSS1 method has the following features:

• The quantized states qj(t) follow piecewise constant trajectories, and
the state variables xj(t) follow piecewise linear trajectories.

• The state and quantized variables never differ more than the quantum
∆Qj . This fact ensures stability and global error bound properties
[25, 4].

• Each step is local to a state variable xj (the one which reaches the quan-
tum change), and it only provokes calculations on the state derivatives
that explicitly depend on it.

• The fact that the state variables follow piecewise linear trajectories
makes very easy to detect discontinuities. Moreover, after a disconti-
nuity is detected, its effects are not different to those of a normal step.
Thus, QSS1 is very efficient to simulate discontinuous systems [4].

7

However, QSS1 has some limitations as it only performs a first order approx-
imation, and it is not suitable to simulate stiff systems. The first limitation
was solved with the introduction of higher order QSS methods like the sec-
ond order accurate QSS2, where the quantized state follow piecewise linear
trajectories.

Regarding stiff systems, a family of Linearly Implicit QSS (LIQSS) meth-
ods of order 1 to 3 was proposed in [9]. LIQSS methods have the same
advantages of QSS methods, and they are able to efficiently integrate many
stiff systems, provided that the stiffness is due to the presence of large en-
tries in the main diagonal of the Jacobian matrix. Unlike classic stiff solvers,
LIQSS methods are explicit algorithms

In the context of realistic HRES simulation, the explicit treatment of
stiff systems and the efficient handling of discontinuities constitute the main
advantages of the QSS methods.

2.4. QSS Stand Alone Solver

The first implementations of QSS methods were based on the DEVS for-
malism [4]. Recently, the complete family of QSS methods was implemented
in a stand–alone QSS solver [12] that improves DEVS–based simulation times
in more than one order the magnitude. In addition, the QSS Solver imple-
ments very efficient versions of DASSL and DOPRI.

The stand–alone QSS solver requires that the models are described in a
subset of the Modelica language called µ-Modelica [12], where the equations
are given in its ODE form.

2.5. QSS Simulation of Modelica Models

In spite of some preliminary attempts to include QSS methods in Open-
Modelica [26], none of the popular Modelica software tools allow to simulate
using these algorithms.

Recently, the group developed ModelicaCC [13], a Modelica compiler
which has some unique features (vectorized flattening and equation sorting)
and generates code specially targeted for the QSS Solver, i.e., it translates a
generic Modelica model into µ-Modelica.

3. HRES Modelica Library

In this section we describe the HRES components that constitute the new
Modelica library. We first present a possible HRES configuration and then

8

we introduce the models corresponding to the different sub–systems. Finally,
using this library, we built a complete HRES model.

3.1. HRES Scheme

HRES are composed by various types of power sources and energy storing
devices that are able to supply a load. Primary power sources are generally
photovoltaic (PV) modules and/or wind power generators, while the combi-
nation PEM fuel cells, electrolyzer, hydrogen storage tanks and batteries are
used as backup and storage systems. All these elements are usually connected
to a direct-current bus through power converters.

Figure 2 shows a possible HRES configuration.

Figure 2: HRES scheme

3.2. DC-DC Converters

DC-DC converters are electronic devices that allow to isolate the voltage
changes produced in the power sources from the constant bus voltage. The
voltage conversion is made by high frequency switching components imple-
mented with transistors or diodes. There exist multiple converters topologies,
the most typical are the Buck or reducer, Boost or elevator and Buck-Boost
or reducer-elevator.

The Modelica HRES library contains models of the different converter
topologies, built using electrical components of the Modelica Standard Li-
brary (inductors, diodes, switches, etc). Figure 1 shows the Boost converter

9

(used to control the unidirectional power flow of the PV arrays, electrolyzer
and PEM fuel cell) and Figure 3 shows the bidirectional Buck-Boost converter
used to control the power flow that charges and discharges the batteries.

L=15e-3

inductor

id
e
a
lD
io
d
e

idealDiode1

idealClosin...

id
e
a
lC
lo
s
in
g
S
w
itc
h

pin_input pin_output

pin_ground

S
w
1

S
w
2

Figure 3: DC–DC Buck–Boost bidirectional converter

The converter models include realistic features that take into account
the possibility of entering in Discontinuous Conduction Mode, an undesir-
able situation that usually occurs at start–up or during transient evolutions.
Typical time–averaged models cannot represent this situation.

3.3. Photovoltaic Arrays

PV cells have voltage-current and power-current nonlinear characteristics
strongly dependent on insolation and temperature. According to [27], a
possible expression for the output current Ipv(t) of a PV cell is given by:

Ipv(t) = Iph(t)− Irs(t)

(

exp

(

q (Vpv(t) + Ipv(t)Rs)

AcKT (t)

)

− 1

)

(3)

where Iph(t) is the generated current under a given insolation, Irs is the cell
reverse saturation current, Vpv is the voltage level on the PV cell terminals,
q is the charge of an electron, Rs is the intrinsic cell resistance, Ac is the
cell deviation from the ideal p-n junction characteristic, K is the Boltzman
constant, and T is the cell temperature. Iph(t) depends on the insolation and
temperature according to the following expression:

Iph(t) = (Isc +Kl(T (t)− Tr))λ(t)/100, (4)

where Isc is the short-circuit cell current at the reference temperature and
insolation, Kl is the short-circuit current temperature coefficient and λ is the
insolation measured in mW cm−2.

10

The reverse saturation current depends on temperature according to the
following expression:

Irs(t) = Ior

(

T (t)

Tref

)3

exp

(

qEgo(1/Tr − 1/T (t))

KAc

)

, (5)

where Ior is the reverse saturation current at the reference temperature Tref

and Ego is the band-gap energy of the semiconductor used in the cell.
PV cells are connected in serial-parallel configurations forming modules,

which are the typical commercial units. In order to reach appropriate voltage
and power levels, modules can be arranged with a similar architecture on
arrays [28]. Solar power systems are composed of a PV array connected to
the DC bus through a DC/DC power converter. Thus, the available current
for a PV module can be expressed as follows:

IavPV (t) = npIph(t)− npIrs(t)

(

exp

(

q (VPV (t) + Ipv(t)Rs)

nsAcKT (t)

)

− 1

)

, (6)

where VPV is the voltage level in the PV module terminals, np is the number
of parallel strings and ns is the number of serial connected cells per string.

With Equations (3)–(6), a PV module can be modeled in Modelica as a
one–port circuit component, with an additional input port that receives the
insolation signal:

model PV_module

extends Modelica.Electrical.Analog.Interfaces.OnePort;

parameter Real q=1.6e-19; //[C]

parameter Real Ac=1.6;

parameter Real K=1.3805e-23;//[Nm/K]

parameter Real K1=5.532e-3;//[A/oC]

parameter Real Ior=1.0647e-6;// [A]

parameter Real Tref=303;// [K]

parameter Real Eg=1.1;// [V]

parameter Real Isc=8.51;// [A]

parameter Real Rspv=0.01;

parameter Real Tpv=273+25;

parameter Real Irs=Ior*(Tpv/Tref)^3

*exp(q*Eg*(1/Tref-1/Tpv)/K/Ac);

parameter Integer Np=1;

parameter Integer Ns=60;

Real Iph; //insolation current

Real exponent;

Real Ipv;

Real Vpv;

Real lambdaph;

Modelica.Blocks.Interfaces.RealInput u

equation

11

lambdaph=u; //insolation

Iph=(Isc+K1*(Tpv-Tref))*lambdaph/100;

Ipv+i=0;

Vpv=v;

Ipv-Np*Iph+Np*Irs*(exp(exponent)-1)=0;

exponent=q*(Vpv/Ns+Ipv*Rspv/Np)/(K*Ac*Tpv);

end PV_Module;

3.4. MPPT algorithm

In a PV module, the generated power depends on the solar radiation,
the temperature, and the module voltage. Given the values of insolation
and temperature, there is an optimal voltage at which the maximum power
is obtained. There are algorithms, called maximum power point tracking
(MPPT), that are capable of computing this optimal voltage. In our HRES
Library, the MPPT IncCond algorithm presented in [29] was implemented
as a Modelica model:

model mppt

Modelica.Blocks.Interfaces.RealInput i;

Modelica.Blocks.Interfaces.RealInput u;

Modelica.Blocks.Interfaces.RealOutput y;

Real pot;

Real potActFiltrada;

discrete Real potact;

discrete Real potprev;

discrete Real prevu;

discrete Real actu;

discrete Real deltau;

discrete Real deltap;

discrete Real vref(start=30);

parameter Real Ts=0.1;

parameter Real deltaVpvRefPanel=0.5;

equation

pot=u*i;

der(potActFiltrada)=(pot-potActFiltrada)*100;

y=pre(vref);

algorithm

when sample(0,Ts) then

potprev:=potact;

potact:=potActFiltrada;

prevu:=actu;

actu:=u;

deltau:=actu-prevu;

deltap:=potact-potprev;

if abs(deltau)>0.1*deltaVpvRefPanel then

if abs(deltap)>0.2 then

if deltap/deltau>0 then

vref:=vref+deltaVpvRefPanel;

end if;

if deltap/deltau<0 then

12

vref:=vref-deltaVpvRefPanel;

end if;

end if;

end if;

end when;

end mppt;

3.5. PEM fuel cell

In this paper, a static isothermal model of the PEM fuel cell is used. The
internal potential is given by the Nernst Equation [30]:

Ecell(t) = E0,cell(t) +
RT

2F
log(pH2(t)

√

pO2(t)) (7)

where E0,cell is the reference potential, R is the gas constant (8.3143J/molK),
T is the fuel cell temperature, F is the Faraday constant (96, 487C/mol), pH2

is the hydrogen pressure and pO2(t) is the oxygen pressure. The reference
potential E0,cell(t) depends on the temperature according to

E0,cell = E0,cello − kE(T − 298) (8)

where E0,cello is the reference potential at standard conditions (1.229 V at
25◦C and 1 atm) and kE is a constant (8.5e−4V/K).

The output voltage of the fuel cell is less than the internal voltage Ecell

due to the presence of the activation voltage drop, the ohmic voltage drop,
and the concentration voltage drop.

The activation voltage losses can be approximated by the following ex-
pression

Vact(t) = η0 + (T − 298) · a+ Vact2(t) +Ract(t)Ifc(t) (9)

with η0, a, and b being empirical constants whereas Ract(t) depends on the
current and temperature according to a polynomial approximation.

The ohmic voltage drop is expressed by:

Vohm(t) = Rohm(t)Ifc(t) = (Rohm0 +Rohm1(t) +Rohm2)Ifc(t) (10)

where Rohm0 is an empirical constant, whereas Rohm1(t) depends on the cur-
rent and Rohm2 depends on the temperature.

The concentration voltage drop is given by:

Vconc(t) = −

RT

αηF
log

(

1−
Ifc(t)

Ilimit

)

(11)

13

where Ilimit is the fuel cell current limit.
The stack potential is the result of the sum of the nfc cell potentials

(Estack = nfcEcell). And the voltage at the fuel cell terminals is:

Vfc,out(t) = Estack − Vact(t)− Vohm(t)− Vconc(t) (12)

In this work a Nexa 1.2 kW PEMFC system is adopted and the param-
eter identification procedure developed in [31] is used, where a polynomial
expression approximates Vact + Vohm.

Finally the hydrogen consumption rate (η̇H2,fc) is a function of the fuel
cell current:

η̇H2,fc(t) =
nfcIfc(t)

2F
(13)

Based on Eqs.(7)–(13), we built the following Modelica representation of
the PEM fuel cell:

model FuelCell

extends Modelica.Electrical.Analog.Interfaces.OnePort;

Modelica.Blocks.Interfaces.RealInput Pref_FC;

Modelica.Blocks.Interfaces.RealOutput fH2_FC;

Real Estack;

Real Vohm;

Real Vconc;

Real E0_cell_std; //Standard reference potential

Real E0_cell; //Reference potential

Real E_cell; //Nernst Equation (Ideal)

Real Vact;

Real React0;

Real React1;

Real React2;

Real IFC;

Real UFC;

parameter Real p_H2 = 0.3; //pressure of hydrogen [atm]

parameter Real p_O2 = 1; //pressure of oxygen [atm]

parameter Real Nc = 47; //number of series cell

parameter Real R = 8.3143; //Gas constant [J/mol*K]

parameter Real F = 96487; //Faraday constant [C/mol]

parameter Real ke = 8.5e-4; //Constant [V/K]

parameter Real deltaG = - 237153.66; //Gibbs free energy per mole of reaction [J/mol]

parameter Real ne = 2; //number of electrons in reaction

parameter Real nu_0 = 26.5230; //[V]

parameter Real a = 8.9224e-2;

parameter Real I_limit = 75; // Fuel cell current limit [A]

parameter Real T=298;

parameter Real MH2=2.016e-3; //[Kg/mol] Molar mass of oxygen

equation

Pref_FC=i*u;

E0_cell_std = -deltaG/(ne*F);

E0_cell=E0_cell_std - ke*(T-298);

E_cell = E0_cell + (R*T/(2*F))*Modelica.Math.log(p_H2*p_O2^(0.5));

14

Estack = E_cell*Nc;

React0 = -1.0526;

React1 = (6.945e-11)*IFC^6 - (1.7272e-8)*IFC^5 + (1.7772e-6)*IFC^4 -

(9.8133e-5)*IFC^3 + (3.1430e-3)*IFC^2 - (3.5320e-2)*IFC;

React2 = (1.3899e-3)* (T - 298);

Vact=nu_0 - (T - 298)*a+(React0 + React1 + React2)*IFC;

Vohm = IFC*(1.7941-(2.3081e-2)*IFC-(2.0060e-3)*(T - 298));

Vconc = - (R*T/(ne*F))*Modelica.Math.log(1-(IFC/I_limit));

IFC=Pref_FC/UFC;

UFC = Estack - Vact - Vohm - Vconc;

fH2_FC=MH2*Nc*IFC/2/F;

end FuelCell;

3.6. Electrolyzer

The voltage–current relation of a PEM electrolyzer can be modeled by
the following temperature dependent equation proposed by Ulleberg [32]:

Vcell,ez(t) = Vrev,ez+
r1 + r2T

Aez

Iez(t)+(s1+s2T+s3T
2) log

(

t1 +
t2
T
+ t3

T 2

Aez

Iez(t) + 1

)

(14)
where Vcell,ez is the cell voltage, Vrev,ez is the reversible voltage, Iez is the
electrolyzer current, Aez is the area of electrode, and T is the temperature.
ri, si, and ti are empirical parameters.

The electrolyzer power Pez can be then computed as

Pez(t) = ncVcell,ez(t)Iez(t) (15)

where nc is the number of cells in serial connection. This power allows to
compute the hydrogen production rate η̇H2,ez according to Faraday’s Law:

η̇H2,ez(t) = ηf
Pez(t)

Vcell,ez(t) · 2 · F
(16)

where ηf is the Faraday efficiency (usually between 80–90%) and F the Fara-
day constant.

Using Eqs.(14)–(16) the following Modelica model can be built:

model electrolyzer

extends Modelica.Electrical.Analog.Interfaces.OnePort;

parameter Real F = 96485; //[C mol^-1]

parameter Real Urev = 1.229; //[V]

parameter Real r1 = 7.331e-5;//[ohm m^2]

parameter Real r2 = -1.107e-7;//[ohm m^2 C-1]

parameter Real r3 = 0;

parameter Real s1 = 1.586e-1;//[V]

parameter Real s2 = 1.378e-3;//[V C-1]

parameter Real s3 = -1.606e-5;//[V C-2]

15

parameter Real t1 = 1.599e-2;//[m^2 A^-1]

parameter Real t2 = -1.302;//[m^2 A^-1 C-1]

parameter Real t3 = 4.213e2; //[m^2 A^-1 C-2]

parameter Real A = 0.25; //[m^2]

parameter Real nf=1 //Faraday efficiency

parameter Real nc = 1; //number of serial cells

parameter Real T = 40;

Real PotRef;

Real fH2;

Real Ucell;

Modelica.Blocks.Interfaces.RealOutput y;

Modelica.Blocks.Interfaces.RealInput u1;

equation

Ucell=u;

PotRef=u1;

Ucell = Urev + ((r1+r2*T)*(PotRef/(Ucell*nc))/A) +

(s1+s2*T+s3*T*T)*Modelica.Math.log10(((t1+t2/T+t3/T/T)*(PotRef/(Ucell*nc))/A)+1);

PotRef=i*u;

fH2 = nf*PotRef / (Ucell*2*F);

y=fH2;

end electrolyzer;

3.7. Hydrogen Storage

Hydrogen is usually stored in pressurized tanks. The hydrogen pressure
inside the tank can be modeled using the ideal gas equation:

pH2(t) =
RTnH2(t)

Vt
=

RT
∫

(η̇H2,ez(t) − η̇H2,fc(t)) dt

Vt
(17)

where nH2 is the number of moles of hydrogen in the tank, R is the specific
gas constant, T is the temperature and Vt is the volume of the tank. Based
on this equation, the following Modelica model represents a pressurized tank:

model Tank

Modelica.Blocks.Interfaces.RealOutput p_tank_bar;

Modelica.Blocks.Interfaces.RealInput FH2_elect;

Modelica.Blocks.Interfaces.RealInput FH2_fuelCell;

parameter Real R=8.314;

parameter Real T=273+40;

parameter Real V=0.1;

Real p_tank(start=8e5); // pressure in [Pa]

equation

der(p_tank)=R*T/V*(FH2_elect-FH2_fuelCell); //tank presure [Pa]

p_tank_bar=1e-5*p_tank; //tank presure [Bar]

end Tank;

3.8. Compressor

The work needed to store the hydrogen in the pressurized tank is done by
a compressor. The expression of the isoentropic compression power required

16

to elevate the electrolyzer exit pressure to the tank pressure is given by [33]:

Pco(t) =
1

ηisoenηm
η̇H2,ez(t)RT

k

k − 1

(

pH2(t)
k/k−1

pez
− 1

)

(18)

where Pco(t) is the electric power consumed by the compressor), ηisoen = 0.8 is
the isoentropic efficiency of the compressor, ηm = 0.9 is the lumped efficiency
of the electric motor that drives the compressor, k ≈ 1.4 is the adiabatic index
and pez is the output pressure of the electrolyzer (in this case, the atmospheric
pressure). The compressor can be then modeled by the following Modelica
class:

model Compressor

Modelica.Blocks.Interfaces.RealInput FH2_electrolizer;

Modelica.Blocks.Interfaces.RealInput p_tank;

Modelica.Blocks.Interfaces.RealOutput Consumed_Pow;

parameter Real R=8.314;

parameter Real k=1.4;

parameter Real nu_iso=0.9;

parameter Real nu_m=0.8;

parameter Real T=273+40;

parameter Real p_elect=1;

equation

Consumed_Pow=FH2_electrolizer*((p_tank/p_elect)^(1-1/k)-1)*T*R*k/(k-1)/(nu_iso*nu_m);

end Compressor;

3.9. Energy storage system

The Energy Storage System is composed of a bank of Lead-Acid Batter-
ies. Each battery is modelled as a controlled voltage source with a serial
resistance [34]. The open circuit source voltage is calculated by a non linear
equation dependent on the actual charge of the battery (

∫

ibdt):

Eb = E0 −K
Q

Q−

∫

ibdt
+ Ae(−B

∫
ibdt), (19)

where E is the open source voltage, E0 is a constant voltage, K is the polar-
ization voltage, Q is the nominal capacity of the battery, A is the amplitude
of the exponential zone, and B is the inverse of the time constant of the
exponential zone. This model assumes a constant resistance value during the
charge and discharge process. The State of charge of the battery (SoCB) is
defined as:

SoCB = 100

(

1−

∫

ibdt

Q

)

(20)

Based on Eqs.(19)–(20), the Battery was represented by the following Mod-
elica model:

17

model Battery

extends Modelica.Electrical.Analog.Interfaces.OnePort;

parameter Real E0=12.6463;

parameter Real Q=0.65;

parameter Real A=0.66;

parameter Real B=2884.61;

parameter Real K=0.33;

parameter Real R=0.25;

parameter Real SoC0=90;

Real Qt;

Real SoC;

Real E;

Modelica.Blocks.Interfaces.RealOutput y;

initial equation

Qt=(1-SoC0/100)*Q;

equation

der(Qt)=-i/3600;

E=E0-K*Q/(Q-Qt)+A*exp(-B*Qt);

u=E+R*i;

SoC=(1-Qt/Q)*100;

y=SoC;

end Battery;

3.10. Energy management strategy and bus voltage control

The net power (Pnet(t)) is defined as the difference between the power
generated by the PV array and the power consumed in the load. When
Pnet(t) is positive, this power can be used to charge the battery or to produce
hydrogen via electrolysis. Otherwise, when Pnet(t) is negative, the missing
power must be supplied by the batteries or the PEM fuel cell. The decision
among the different choices (producing hydrogen or charging the battery
in the first case, using the battery or consuming hydrogen in the second
situation) is taken by an energy management strategy (EMS).

The EMS, based on the knowledge about the battery state and the power
balance, is in charge of computing the electrolyzer and fuel cell power refer-
ence signals. Then, a closed loop control layer manipulates the duty cycle of
the DC-DC converters in order to follow these reference signals.

In a similar way, the bus voltage is regulated by the battery through a
closed loop control.

EMS uses hysteresis loops to regulate the energy flows [35] in order to
prevent frequent on–off switch commutations. The electrolyzer as well as the
fuel cell work in variable power mode to improve system efficiency [36].

The EMS strategy was also implemented as a Modelica model that re-
ceives the battery state of charge and the power consumption and generation

18

signals and computes the power reference signals for the fuel cell and the
electrolyzer.

3.11. A Complete HRES Model

Making use of the new Modelica library, and following the configuration
of Fig.2, we built the HRES model depicted in Figure 4. There, in order to
improve the full diagram visualization, some sub–systems of the library were
grouped together, forming more complex sub–systems.

ground

lambda2

k=80

C
=
5
e
-3

c
a
p
a
c
ito

...

P

P

LoadTable

offset=0

lambda1

k=70

P.cons. P.ref.elect.

Energy management strategy

P.gen. P.ref.FCSOC

Photovoltaic Panel

DC-DC Conv.

MPPT Algorithm

Photovoltaic Panel

DC-DC Conv.

MPPT Algorithm V
a
ria

b
le

 re
s
is

to
r

PGen_Sensor

P
C

o
n

s
_
S

e
n
s
o
r

FuellCell

H2 Tank
Electrolizer
Compressor

Battery

DC-DC Conv.

Figure 4: Modelica model of a HRES

For instance, the model labeled as Fuel Cell / H2 Tank / Electrolyzer
Compressor comprises the models of the PEM Fuel cell, the hydrogen tank
and the Electrolyzer as shown in Figure 5.

The set of parameters used in the different sub–systems are listed in
Table 1.

19

H2 Tank

_ ectr

_ C

pin_p

pin_n

E�������l���

C����essor
&

F	��� C�ll

��

�

��
�lect

p

P.���

Figure 5: Fuel Cell and Electrolyzer subsystem

4. Simulation Results

In this section, we simulate the previously described HRES model under
various conditions comparing the performance of different ODE solvers.

4.1. Experimental Setup

We simulated the complete HRES model of Figure 4 using the set of
parameters listed in Figure 1. We also introduced some modifications to the
model to evaluate the performance of the ODE solvers under the appearance
of different phenomenons: first, we added a small inductance to the originally
purely resistive load, what provokes that the system becomes stiff. Then, we
added more PV modules to the model what increases the size of the problem.

In all cases, the simulations were performed under the following conditions

• The models were first processed by the ModelicaCC compiler, convert-
ing them into µ–Modelica language.

• The resulting µ–Modelica models were then simulated using DASSL,
DOPRI and LIQSS2 algorithms implemented in the Stand Alone QSS
Solver.

• Dymola and OpenModelica implementations of DASSL were also tested,
but the simulation times obtained were greater than those of the QSS-
Solver, so only the results obtained by the later tool are reported.

20

Parameter Value
DC-DC converters

Inductor (L) 15e−3 Hy
Switching frequency (fs) 10 kHz
PV Panel
Electron charge (q) 1.6e-19 C
Constant of p-n junction characteristc (Ac) 1.6
Boltzmann constant (K) 1.3805e-23 Nm/K
Short circuit coefficient (Kl) 5.532e-3 A/K
Reverse saturation current (Ior) 1.0647e-6 A
Reference temperature (Tref) 303 K
Band-gap energy (Eg) 1.1 V
Short circuit current (Isc) 8.51 A
Intrinsic cell resistance (Rs) 0.01 Ω
Reference temperature (Tref) 303 K
Number of parallel strings (np) 1
Number of serial cells per string (ns) 60
PEM Fuel Cell - Nexa 1.2 kW
Pressure of hydrogen (pH2

) 0.3 atm

Pressure of oxygen (pO2
) 1 atm

Number of series cell (nfc) 47
Gas constant (R) 8.3143 J/mol.K
Faraday constant (F) 96487 C/mol

Fuel Cell constant (F) 8.5e−4 V/K
Reference potential (E

0,cell0
) 1.229 V

Number of electrons in reaction (η) 2
Constant η0 26.5230 V
Constant a 8.9224e-2

Activation equivalent resistance polynomial (Ract) −1.0526 + 6.945e−11
· I6 − 1.7272e−8

· I5

+1.7772e−6
· I4 − 9.8133e−5

· I3

+3.1430e−3
· I2 − 3.5320e−2

· I

+1.3899e−3
· (T − 298)

Ohmic resistance constant (Rohm0) 1.7941

Ohmic current dependent resistance (Rohm1) −2.3081e−2
· I

Ohmic temperature dependent resistance (Rohm2) −2.0060e−3(T − 298)
Fuel cell current limit (Ilimit) 75 A
Number of cells in the stack (nfc) 47

Electrolyzer
Reversible voltage (Vrev,ez) 1.229 V

Parameter r1 7.331e−5 Ω m2

Parameter r2 −1.107e−7 Ω m2 C−1

Parameter r3 0

Parameter s1 1.586e−1 V

Parameter s2 1.378e−3 V C−1

Parameter s3 −1.606e−5 V C−2

Parameter t1 1.599e−2 m2 A−1

Parameter t2 −1.302 m2 A−1 C−1

Parameter t3 4.213e2 m2 A−1 C−2

Area of electrode (Aez) 0.25 m2

Number of serial cells (nc) 21
Pressurized tank

Volume (Vt) 10 m3

Energy Storage System - Battery
Constant voltage (E0) 12.6463 V
Polarization voltage (K) 0.33 V
Nominal capacity (Q) 0.65 Ah
Amplitude of exponential zone (A) 0.66 V

Inverse of exponential zone time constant (B) 2884.61 Ah−1

Table 1: Models parameters

21

• We made simulations under three different tolerance settings: the typi-
cal relative tolerance of 10−3 and more stringent tolerances of 10−4 and
10−5.

• The final simulation time was 3000 seconds.

• The simulations were performed on a PC with Ubuntu OS and Intel
(R) Core (TM) i7-3770 CPU @ 3.40GHz processor.

• Errors were measured comparing the trajectories of the different simu-
lations against reference trajectories using the formula

err =

√

√

√

√

√

∑

(

iLbat
[k]− îLbat

[k]
)2

∑

î2Lbat
[k]

(21)

where iLbat[k], the current in the inductance of the DC-DC converter
that connect the battery to the DC bus, was the variable chosen to
evaluate the relative error. The reference îLbat

[k] used to calculate the
error was obtained by simulating the models using DASSL with a rel-
ative tolerance of 10−8.

4.2. Case 1: A Purely Resistive Load

We first simulated the system of Fig.4 with a purely resistive load. The
radiation was fixed in 800 W ·m−2 and 1000 W ·m−2 for each panel, resulting
through the MPPT algorithm in 400 W of generated power. The load is a
resistor R = 100 Ω, in parallel with a variable resistance representing a
variable power consumption. This variable resistance takes the values Rv(t =
0) = 1005 Ω, Rv(t = 1150) = 10 Ω, Rv(t = 1450) = 5 Ω, and Rv(t = 2500) =
1005 Ω.

Figure 6 shows the evolution of the power generated and consumed at the
different subsystems. It can be seen in the main figure that the power balance
is guaranteed by the EMS. The long simulation time hides fast transient
changes. The upper left sub-figure shows a detail of the power transient
when the fuel cell switches on.

The SoC battery evolution and the working mode of the electrolyzer and
fuel cell is depicted in Figure 7. The double hysteresis EMS behavior can
be understood from this figure. When the SoC level reaches 80%, the elec-
trolyzer switches on and it remains in this state until the SoC level falls to

22

76%. The onoff state of the fuel cell is managed in a similar way when the
SoC level reaches 40% and 44% respectively.

0 500 1000 1500 2000 2500 3000
600

400

200

0

200

400

600

800

1000

Time [sec]

P
o
w

e
r
[W

]

P Cons

P Gen.

P Elect

P F.Cel

P Bat.
2333.65 2333.7 2333.75

0

200

400

600

800

Time [sec]

P
ow

er
 [W

]

P Cons
P Gen.
P Elect
P F.Cel
P Bat.

Figure 6: Power balance

Figure 8 shows the DC bus voltage evolution. It can be seen that the
mean value of this voltage is controlled around 56V, but it exhibits transitory
changes whenever the electrolyzer or the fuel cell state changes or when the
load is modified. A detailed view of the bus voltage evolution during a
transient state can be seen in the upper left side of the Figure. Also, the
upper right corner of the figure shows an even more detailed view of the bus
voltage exhibiting the ripple introduced by the different DC-DC converters.

Fig. 9 shows the trajectory of the inductor current iL(t) at of one of the
DC-DC converters that interconnects a photovoltaic panel with the DC bus.
The Figure shows that the converter operates in discontinuous conduction
during transient evolutions.

While similar trajectories to those of Fig.6–7 can be obtained from simpler
time–average models, the detailed ripple signals of Figs.8–9 require the usage
of realistic models like the ones used in the new library.

Regarding simulation performance, Table 2 compares the CPU time and
the number of scalar function evaluations (i.e. the number of times that each
component of the right hand side of Eq.(1) is invoked by the solver) taken by

23

0 500 1000 1500 2000 2500 3000
35

40

45

50

55

60

65

70

75

80

85

Time [sec.]

B
a

tt
e

ry
 S

O
C

SOC
F.Cell State
Electro. State

F
.C

e
ll a

n
d

 E
le

c
tro

ly
z
e

r s
ta

te
 (O

N
/O

F
F

)

ON

OFF

S
O

C
 h

is
te

re
s
is

Electro.hist.

F.Cell.hist.

Figure 7: Battery SOC

DOPRI and LIQSS2 for different tolerance settings. DASSL results are not
reported because they are more than 10 times slower than LIQSS2 (in this
simulation, the system is not very stiff and the usage of an implicit solver
like DASSL is not actually necessary).

Integration Relative Function (fi) CPU
method error evaluations [min.]

D
O
P
R
I err.tol=10−3 1.16 · 10−4 2.37 · 1010 235.0

err.tol.=10−4 1.07 · 10−5 2.38 · 1010 233.3

err.tol.=10−5 8.15 · 10−7 2.40 · 1010 238.3

L
IQ

S
S
2 err.tol=10−3 5.01 · 10−3 1.25 · 1010 79.0

err.tol=10−4 6.42 · 10−5 1.42 · 1010 106.5

err.tol=10−5 1.41 · 10−5 1.97 · 1010 166.3

Table 2: Simulation Performance of LIQSS and DOPRI (non–stiff case)

It can be seen that both methods fulfill the accuracy requirements al-
though DOPRI errors are much lower than requested. This can be explained
by the fact that the step size is shortened by the presence of discontinuities,
producing a very small error.

For a typical relative error tolerance of 10−3, LIQSS2 is about 3 times

24

0 500 1000 1500 2000 2500 3000
50

55

60

65

Time [sec.]

B
u
s
 V

o
lt
a
g
e
 [
V

]

983.8 983.85 983.9 983.95
51

52

53

54

55

56

Time [sec.]

B
u

s
 V

o
lt
a

g
e

 [
V

]

983.855 983.856 983.857 983.858
56.35

56.4

56.45

56.5

Time [sec.]

B
u

s
 V

o
lt
a

g
e

 [
V

]

56.55

Figure 8: DC bus Voltage

faster than DOPRI. Then, for more stringent tolerance settings, this advan-
tage tends to disappear. This can be explained by the fact that LIQSS is only
second order accurate while DOPRI is 5th order accurate. Thus, obtaining
higher accuracy requires much more steps in LIQSS2.

25

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
−1

0

1

2

3

4

5

6

Time [sec.]

iL
 [
A

]

0 0.5 1 1.5 2 2.5 3

x 10
−3

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

Figure 9: Inductor Current at a Boost Converter

4.3. Case 2: Stiff RL Load

In the previous example, the model was not actually stiff (except during
some short time intervals when the power electronic converters entered in
discontinuous conduction model). More realistic models usually consider the
presence of parasitic inductances and/or capacitors that invariantly lead to
stiffness.

In order to evaluate the performance of the algorithms under these con-
ditions, we modified the load including a small inductance of L = 10−5Hy
connected in series with the fixed resistor of R = 100Ω, and repeated the
experiments of the previous case.

This time, due to stiffness reasons, DOPRI failed to provide results in a
reasonable CPU time. Thus, we only compared the results of DASSL and
LIQSS2 summarized in Table 3.

Now, LIQSS2 is from 15 to 20 times faster than DASSL. The implicit
nature of DASSL implies that it must solve a set of algebraic equations
during each step, paying for that a very high computational cost. Then,
the fact that LIQSS2 is explicit explains the huge difference between both
solvers.

26

Integration Relative Function (fi) CPU
method error evaluations [min.]

D
A
S
S
L err.tol=10−3 9.6 · 10−4 1.16 · 1010 1395.0

err.tol.=10−4 9.5 · 10−4 3.34 · 1011 3050.0

err.tol.=10−5 7.1 · 10−4 5.31 · 1011 3783.3

L
IQ

S
S
2 err.tol=10−3 8.9 · 10−3 1.30 · 1010 96.0

err.tol=10−4 7.2 · 10−5 1.68 · 1010 141.5

err.tol=10−5 3.4 · 10−5 2.23 · 1010 205.0

Table 3: Simulation Performance of LIQSS and DASSL (stiff case)

4.4. Case 3: Several PV modules

Based on the previous model (with the stiff RL load), we studied the
effects of increasing the number of PV modules on the computational load
of each solver.

This time, the final simulation time was reduced to tf = 100 seconds in
order to obtain faster results, and we used an error tolerance of 10−4.

Figure 10 plots the relation between the CPU time and the number of
panels, showing that the computational cost of LIQSS2 grows linearly with
the number of panels while the cost of DASSL grows approximately in a
cubic way. Consequently, LIQSS2 with 8 panels results 65 times faster than
DASSL.

2 3 4 5 6 7 8
10

2

10
3

10
4

10
5

Number of PV

C
P

U
 T

im
e

 [
s
e

c
.]

DASSL

LIQSS

Figure 10: Number of PV Modules vs. CPU Time

27

5. Conclusions

A new Modelica library of realistic HRES components was developed,
modeling energy generation and storage elements as well as power converters
and different controllers. Using this library, a complete HRES model was
built and simulated under different configurations.

Due to the realistic models of DC-DC converters that include switching
circuit components, the resulting HRES models cannot be simulated in rea-
sonable time by standard ODE solvers. The simulations with DASSL (using
Dymola or OpenModelica), for instance, are more than 30 times slower than
the real–time. Thus, simulating an hour of the system evolution takes more
than an entire day.

To overcome this problem, we made use of a novel compiler that auto-
matically translates these Modelica models into µ–Modelica language so that
they can be simulated using the QSS Stand–Alone Solver using LIQSS meth-
ods. Following this approach, the LIQSS2 algorithm simulates the systems
reaching almost real–time performance, improving the classic solvers speed
in more than one order of magnitude on realistic stiff cases.

In order to study the behavior of the solvers when the system becomes
larger and more complex, we modified the models adding more photovoltaic
modules. The study showed that DASSL computational load grows almost
cubically with the size of the problem while LIQSS2 exhibits a linear growth.
That way, with 8 PV modules LIQSS2 is about 65 times faster than DASSL.

The efficient treatment of discontinuities and the explicit resolution of
stiffness are the main reasons that explain the advantages of LIQSS2 over
classic ODE solvers.

Taking into account these remarks, the conclusions of this work can be
summarized as follows:

• The Modelica language allows to easily model complex and realistic
HRES systems.

• Quantized State System solver exhibit noticeable advantages over clas-
sic solvers to simulate these systems.

• The combined usage of the ModelicaCC compiler and the QSS Stand
Alone Solver allows to simulate these realistic HRES models in reason-
able times

28

Regarding future work, one of the goals is to extend the library includ-
ing more components (wind generators, three-phase inverters, more sophis-
ticated controllers etc.) with even more realistic models (including parasitic
elements, current paths, more realistic models of transistors and diodes, etc.)
comparing again the performance of the different solvers in their presence.

We are also working on the development of a hybrid power converters
modeling approach, that uses realistic switching models during transients and
time–averaged model during steady state. With those models, we expect to
combine the accuracy of realistic models with the simulation speed of time–
averaged models.

Software Tools

• The models used in this article can be downloaded from

http://www.fceia.unr.edu.ar/~kofman/files/hres.mo.

• The QSS Solver is an open source project available at

https://sourceforge.net/projects/qssengine/.

• The ModelicaCC compiler is another open source project available at

https://sourceforge.net/projects/modelicacc/

29

http://www.fceia.unr.edu.ar/~kofman/files/hres.mo
https://sourceforge.net/projects/qssengine/
https://sourceforge.net/projects/modelicacc/

[1] P. Garćıa, J. P. Torreglosa, L. M. Fernández, F. Jurado,
Optimal energy management system for stand-alone wind tur-
bine/photovoltaic/hydrogen/battery hybrid system with supervisory
control based on fuzzy logic, International Journal of Hydrogen Energy
38 (33) (2013) 14146–14158.

[2] L. Valverde, F. Rosa, A. del Real, A. Arce, C. Bordons, Modeling, sim-
ulation and experimental set-up of a renewable hydrogen-based domes-
tic microgrid, International Journal of Hydrogen Energy 38 (27) (2013)
11672–11684.

[3] G. Gahleitner, Hydrogen from renewable electricity: An international
review of power-to-gas pilot plants for stationary applications, Interna-
tional Journal of Hydrogen Energy 38 (5) (2013) 2039–2061.

[4] F. E. Cellier, E. Kofman, Continuous System Simulation, Springer-
Verlag, New York, 2006.

[5] S. Cuk, R. Middlebrook, A general unified approach to modelling switch-
ing DC-to-DC converters in discontinuous conduction mode, in: Power
Electronics Specialists Conference, IEEE, 1977, pp. 36–57.

[6] E. Van Dijk, H. J. Spruijt, D. M. O’Sullivan, J. B. Klaassens, PWM-
switch modeling of DC-DC converters, IEEE Transactions on Power
Electronics 10 (6) (1995) 659–665.

[7] M. Castañeda, A. Cano, F. Jurado, H. Sánchez, L. M. Fernández, Sizing
optimization, dynamic modeling and energy management strategies of
a stand-alone pv/hydrogen/battery-based hybrid system, International
Journal of Hydrogen Energy 38 (10) (2013) 3830–3845.

[8] J.-K. Kuo, C.-F. Wang, An integrated simulation model for pem fuel
cell power systems with a buck dc–dc converter, International Journal
of Hydrogen Energy 36 (18) (2011) 11846–11855.

[9] G. Migoni, M. Bortolotto, E. Kofman, F. E. Cellier, Linearly implicit
quantization-based integration methods for stiff ordinary differential
equations , Simulation Modelling Practice and Theory 35 (2013) 118
– 136.

30

[10] G. Migoni, F. Bergero, E. Kofman, J. Fernndez, Quantization-Based
Simulation of Switched Mode Power Supplies., Simulation: Transactions
of the Society for Modeling and Simulation International 91 (4) (2015)
320–336.

[11] X. Floros, F. Bergero, N. Ceriani, F. Casella, E. Kofman, F. E. Cellier,
Simulation of Smart-Grid Models using Quantization-Based Integration
Methods, in: 10th International Modelica Conference, 2014.

[12] J. Fernández, E. Kofman, A stand-alone quantized state system solver
for continuous system simulation, Simulation: Transactions of the Soci-
ety for Modeling and Simulation International 90 (7) (2014) 782–799.

[13] E. C. Federico Bergero, Mariano Botta, E. Kofman, Efficient Compila-
tion of Large Scale Modelica Models, in: 11th International Modelica
Conference, 2015.

[14] P. Fritzson, V. Engelson, Modelica - A unified object-oriented language
for system modeling and simulation, in: ECOOP’98 - Object-Oriented
Programming, Springer, 1998, pp. 67–90.

[15] D. Brück, H. Elmqvist, S. E. Mattsson, H. Olsson, Dymola for multi-
engineering modeling and simulation, in: 2nd International Modelica
Conference, 2002.

[16] S. Baggi, D. Rivola, D. Strepparava, R. Rudel, A Modelica Library
for Simulation of Electrical Energy Storage Coupled with Photovoltaic
Systems, 12. Nationale Photovoltaik Tagung (2014) 10–11.

[17] B. Verbruggen, J. Van Roy, R. De Coninck, R. Baetens, L. Helsen,
J. Driesen, Object-oriented electrical grid and photovoltaic system mod-
elling in Modelica, in: 8th International Modelica Conference, 2011, pp.
730–738.

[18] M. A. Rubio, A. Urquia, L. González, D. Guinea, S. Dormido, FuelCell
Lib - A Modelica library for modeling of fuel cells, in: 4th International
Modelica Conference, 2005, pp. 75–82.

[19] E. Rothuizen, W. Mérida, M. Rokni, M. Wistoft-Ibsen, Optimization of
hydrogen vehicle refueling via dynamic simulation, International Journal
of Hydrogen Energy 38 (11) (2013) 4221–4231.

31

[20] N. Noguer, D. Candusso, R. Kouta, F. Harel, W. Charon, G. Coquery,
A PEMFC multi-physical model to evaluate the consequences of param-
eter uncertainty on the fuel cell performance, International Journal of
Hydrogen Energy 40 (10) (2015) 3968–3980.

[21] P. Fritzson, P. Aronsson, H. Lundvall, K. Nystrom, A. Pop, L. Saldamli,
D. Broman, The OpenModelica Modeling, Simulation, and Develop-
ment Environment., in: 46th Conference on Simulation and Modeling
(SIMS’05), 2005, pp. 83–90.

[22] J. Åkesson, M. Gäfvert, H. Tummescheit, JModelica – an Open Source
Platform for Optimization of Modelica Models, in: 6th Vienna Interna-
tional Conference on Mathematical Modelling, 2009.

[23] J. Dormand, P. Prince, A family of embedded Runge-Kutta formula,
Journal of Computational and Applied Mathematics 6 (1) (1980) 19 –
26.

[24] L. R. Petzold, A description of DASSL - A differential/algebraic system
solver, Scientific computing 1 (1983) 65–68.

[25] E. Kofman, S. Junco, Quantized State Systems. A DEVS Approach for
Continuous System Simulation, Transactions of SCS 18 (3) (2001) 123–
132.

[26] F. Bergero, X. Floros, J. Fernández, E. Kofman, F. E. Cellier, Simulating
Modelica models with a Stand–Alone Quantized State Systems Solver,
in: 9th International Modelica Conference, 2012.

[27] F. Valenciaga, P. Puleston, P. Battaiotto, Power control of a photo-
voltaic array in a hybrid electric generation system using sliding mode
techniques, in: IEEE Proceedings on Control Theory and Applications,
Vol. 148, 2001, pp. 448–455.

[28] H. L. Tsai, Insolation-oriented model of photovoltaic module using mat-
lab/simulink, Solar energy 84 (7) (2010) 1318–1326.

[29] K. Hussein, I. Muta, T. Hoshino, M. Osakada, Maximum photovoltaic
power tracking: an algorithm for rapidly changing atmospheric con-
ditions, Generation, Transmission and Distribution, IEE Proceedings-
142 (1) (1995) 59–64.

32

[30] J. Larminie, A. Dicks, M. S. McDonald, Fuel cell systems explained,
Vol. 2, Wiley New York, 2003.

[31] R. Salim, M. Nabag, H. Noura, A. Fardoun, The parameter identification
of the Nexa 1.2 kW PEMFC’s model using particle swarm optimization,
Renewable Energy 82 (2015) 26–34.

[32] O. Ulleberg, Stand-alone power systems for the future: optimal design,
operation and control of solar-hydrogen energy systems, Ph.D. thesis,
Norwegian Univ. Sci. Technol., Trondheim, Norway, ph.D. dissertation
(1998).

[33] D. Ipsakis, S. Voutetakis, P. Seferlis, F. Stergiopoulos, C. Elmasides,
Power management strategies for a stand-alone power system using re-
newable energy sources and hydrogen storage, International Journal of
Hydrogen Energy 34 (16) (2009) 7081–7095.

[34] O. Tremblay, L.-A. Dessaint, Experimental validation of a battery dy-
namic model for EV applications, World Electric Vehicle Journal 3 (1)
(2009) 1–10.

[35] K. Zhou, J. Ferreira, S. De Haan, Optimal energy management strategy
and system sizing method for stand-alone photovoltaic-hydrogen sys-
tems, International journal of hydrogen energy 33 (2) (2008) 477–489.

[36] Ø. Ulleberg, The importance of control strategies in PV–hydrogen sys-
tems, Solar Energy 76 (1) (2004) 323–329.

33

List of Figures

1 DC-DC Boost converter . 5
2 HRES scheme . 9
3 DC–DC Buck–Boost bidirectional converter 10
4 Modelica model of a HRES . 19
5 Fuel Cell and Electrolyzer subsystem 20
6 Power balance . 23
7 Battery SOC . 24
8 DC bus Voltage . 25
9 Inductor Current at a Boost Converter 26
10 Number of PV Modules vs. CPU Time 27

34

List of Tables

1 Models parameters . 21
2 Simulation Performance of LIQSS and DOPRI (non–stiff case) 24
3 Simulation Performance of LIQSS and DASSL (stiff case) . . . 27

35

	Introduction
	Modeling and Simulation Tools
	Modelica
	Classic ODE Solvers and HRES Simulation
	Quantized State System Methods
	QSS Stand Alone Solver
	QSS Simulation of Modelica Models

	HRES Modelica Library
	HRES Scheme
	DC-DC Converters
	Photovoltaic Arrays
	MPPT algorithm
	PEM fuel cell
	Electrolyzer
	Hydrogen Storage
	Compressor
	Energy storage system
	Energy management strategy and bus voltage control
	A Complete HRES Model

	Simulation Results
	Experimental Setup
	Case 1: A Purely Resistive Load
	Case 2: Stiff RL Load
	Case 3: Several PV modules

	Conclusions

