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4SID Methods

Q Properties

U They combine tools of System Theory, Numerical Linear Algebra and
Geometry (projections).

O They have their origin in Realization Theory as developed in the 60/70s
(Ho & Kalman, 1966).

O They provide reliable state-space models of multivariable LTI systems
directly from input-output data.

0 They don’t require iterative optimization procedures = no problems with
local minima, convergence and initialization.
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O They don’t require a particular (canonical) state-space realization =
numerical conditioning improves.

0 They require a modest computational load in comparison to tradi-
tional identification methods like PEM.

O The algorithms can be (they have been) efficiently implemented in
software like Matlab.

O Main computational tools are QR and SVD.

O All subspace methods compute at some stage the subspace spanned
by the columns of the extended observability matrix.

Q The various algorithms (e.g., N4SID, MOESP, CVA) differ in the
way the extended observability matrix is estimated and also in the way
it 1s used to compute the system matrices.
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O The system model

Xpy = Ax, + Buy + Ke, State-space model in

Y, = ka + Duk +e, innovation form

O The identification problem

To estimate the system matrices (4, B, C, D) and K , and the model
order n, from an (N+a-I)-point data set of input and output

measurements
{ }N +a—1
uk b y k )k=1
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O Realization-based 4SID Methods

For a LTI system, a minimal state-space realization (4, B, C, D)
completely defines the input-output properties of the system through

o0
Vi = Zhguk_g convolution sum
/=0

where the impulse response coefficients h, are related to the system
matrices by

D , /=0
h, = -1
CA~ B , />0
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An estimate of the extended observability matrix can be computed by a
full rank factorization of the impulse response Hankel matrix. This
factorization is provided by the SVD of matrix H,;.
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Observability Controlability



> 0|y’
Hij = [Ul Uz] 1 1T ~ UllelT = (UIZI%)(ZI%I/IT)
0 2, |7, \ A /

J
rank reduction

In the absence of noise, H;; will be a rank » matrix, and 2; will contain
the n non-zero singular values — model order is computed. In the
presence of noise, H,; will have full rank and a rank reduction stage will
be required for the model order determination.

Problems: it is necessary to measure or to estimate (for example, via
correlation analysis) the impulse response of the system — not good
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O Direct 4SID Methods

Ya = FaX + H aUa + Na fundamental equation (1)

| DA 5 T 6% | QOutput block Hankel matrix
Y, = y,z Ji3 y]\f *l (In a similar way are defined the
' - : Input block Hankel matrix U, and
| Vo Vo 0 YNsaol the Noise block Hankel matrix N,,.)
o
o X =[x,%,, -, xy]
r =| . Extended (o > n)
: Observability Matrix State Sequence Matrix
CA*
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D 0 0
CB D 0
H, =| CAB CB

CA“*B CA“*B CA“ B

D

Lower triangular block
Toeplitz matrix of impulse
responses (unknown).

O The main idea of Direct 4SID methods

In the absence of noise (/V, = 0), eq. (1) becomes
Y = X+H,U, @)

and the part of the output which does not emanate from the state can
be removed by multiplying (from the right) both sides of eq. (2) by the
orthogonal projection onto the null space of U, i.e. by
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I, 27U (u,u’)'u, 2u

This yields

L
a

orthogonal projection

such that Uan =1

Y U, =T XU, 3)

Note that the matrix on the left depends exclusively on the input-output
data. Then, a full rank factorization of this matrix will provide an
estimate I, of the extended observability matrix. Estimates of the
corresponding system matrices can be obtained by resorting to the shift
invariance property of the extended observability matrix, and by solving
a system of linear equations in the least squares sense.
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The factorization is provided by the SVD of the matrix on the left side

> 0|V
Yanx_ = [Ul Uz{ 01 > }{Vlr:| ~ UIZIVIT = (U121%)(21%V1Tj 4)
2 2 T \ﬁ’—J
F&

rank reduction
(model order estimation)

(In the absence of noise %, = 0)

U Weighting Matrices

Row and column weighting matrices can be introduced in (4) before
performing the SVD of the matrix in the left hand side. Any choice of
positive-definite weighting matrices W, and W, will result in consistent
estimates of the extended observability matrix.
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> 0|V
pnsgou oy T st obe
2
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L,

change of coordinates in state-space

Existing algorithms employ the following choices for matrices W,.and W,

-1
- MOESP (Verhacgen, 1994): W =1, W,:(icpnaqﬂ) oI,
r C N Ua Ua

r aUDT[a

. 1 K ! K
« CVA (Larimore, 1990): w :(WY I,y Tj , W :(FCI)Hl @T)

» N4SID (Van Overschee and de Moor, 1994):
-1
w.=I1, W, :(—cbnl cDTj @
N
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 Computation of the system matrices

Given an estimate I, of the extended observability matrix, estimates
of the system matrices can be computed as:

N

- first row block of I’

a

C
. A

: solving in the least squares sense

Fa = Fa A shift-invariance property

N

« B and D': solving a system of linear equations
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[ Presence of noise

In the presence of noise

Y = X+H U, +N,
and

1 i
Y Ul =T X+N_ U’
noise term needs to be

removed

The noise term can be removed by correlating it away with a suitable
matrix. This can be interpreted as an oblique projection.
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