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Subspace State-Space System IDentificationSSubspace ubspace SStatetate--SSpace pace SSystem ystem IDIDentificationentification

They combine tools of System TheorySystem Theory, Numerical Linear AlgebraNumerical Linear Algebra and 
GeometryGeometry (projections).

They have their origin in Realization TheoryRealization Theory as developed in the 60/70s 
(Ho & Kalman, 1966).

They provide reliable state-space models of multivariablemultivariable LTI systems 
directlydirectly from input-output data.

They don’t require iterative optimization procedures no problems with 
local minima, convergence and initialization.

4SID  Methods4SID  Methods

PropertiesProperties
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They don’t require a particular (canonical) state-space realization 
numerical conditioning improves.

They require a modest computational load in comparison to tradi-
tional identification methods like PEM. 

The algorithms can be (they have been) efficiently implemented in 
software like MatlabMatlab.

Main computational tools are QR and SVD.

All subspace methods compute at some stage the subspacesubspace spanned 
by the columns of the extended observability matrix.

The various algorithms (e.g., N4SID, MOESP, CVA) differ in the 
way the extended observability matrix is estimated and also in the way 
it is used to compute the system matrices. 
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The system modelThe system model
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The identification problemThe identification problem
To estimate the system matrices (A, B, C, D) and K , and the model 
order n, from an (N+α-1)-point data set of input and output 
measurements
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RealizationRealization--based 4SID Methodsbased 4SID Methods
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For a LTI system, a minimalminimal state-space realization (A, B, C, D)
completely defines the input-output properties of the system through

where the impulse response coefficients          are related to the system 
matrices by

convolution sumconvolution sum
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Impulse ResponseImpulse Response
HankelHankel MatrixMatrix

jiijH CΓ=

An estimate of the extended observability matrix can be computed by a 
full rankfull rank factorization of the impulse response Hankel matrix. This 
factorization is provided by the SVD of matrix Hij.

ExtendedExtended
ObservabilityObservability

MatrixMatrix
((i>n)i>n)

ExtendedExtended
ControlabilityControlability

MatrixMatrix
(j>n)(j>n)
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Ĉ

1
2

1

1

ˆ

2
1

11111
2

1

2

1
21 0

0





Σ




 Σ=Σ≈
















Σ

Σ
=

Γ

In the absence of noise, Hij will be a rank n matrix, and Σ1 will contain 
the n non-zero singular values   →→ model order is computed. model order is computed. In the 
presence of noise, Hij will have full rank and a rank reduction stage will 
be required for the model order determination.

rank reductionrank reduction

Problems:Problems: it is necessary to measure or to estimate (for example, via 
correlation analysis)  the impulse response of the system →→ not goodnot good
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Direct 4SID MethodsDirect 4SID Methods
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Output blockOutput block HankelHankel matrixmatrix

(In a similar way are defined the 
Input block Hankel matrix Uα and 
the Noise block Hankel matrix Nα.)
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State Sequence MatrixState Sequence Matrix

(1)fundamental equationfundamental equation
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Lower triangular blockLower triangular block
ToeplitzToeplitz matrix of impulse matrix of impulse 
responsesresponses (unknown).

The main idea of Direct 4SID methodsThe main idea of Direct 4SID methods
In the absence of noise (Nα = 0), eq. (1) becomes

and the part of the output which does not emanate from the state can 
be removed by multiplying (from the right) both sides of eq. (2) by the 
orthogonal projection onto the null space of Uα, i.e. by 

αααα UXY H+Γ= (2)
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This yields

⊥⊥ Γ= αααα XUUY

Note Note that the matrix on the left depends exclusively on the input-output 
data. Then, a full rank factorizationfull rank factorization of this matrix will provide an 
estimate      of the extended observability matrix. Estimates of the 
corresponding system matrices can be obtained by resorting to the shift shift 
invariance property invariance property of the extended observability matrix, and by solving 
a system of linear equations in the least squares sense.

(3)

αΓ̂

such that
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The factorization is provided by the SVD of the matrix on the left side
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rank reductionrank reduction
(model order estimation)(model order estimation)

(In the absence of noise Σ2 = 0)

Weighting MatricesWeighting Matrices
Row and column weighting matrices can be introduced in (4) before 
performing the SVD of the matrix in the left hand side. Any choice of 
positive-definite weighting matrices Wr and Wc will result in consistent 
estimates of the extended observability matrix.

(4)
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change of coordinates in statechange of coordinates in state--spacespace

Existing algorithms employ the following choices for matrices Wr and Wc ,

• MOESP (Verhaegen, 1994):  

• CVA (Larimore, 1990):

• N4SID (Van Overschee and de Moor, 1994):
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Computation of the system matricesComputation of the system matrices

Given an estimate          of the extended observability matrix, estimates 
of the system matrices can be computed as: 

αΓ̂

• : first row block of

• : solving in the least squares sense 

Ĉ αΓ̂

Â

Âαα Γ=Γ shiftshift--invariance propertyinvariance property

• solving a system of linear equations :ˆ   and  ˆ DB
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In the presence of noise

ααααα NUXY ++Γ= H

⊥⊥ +Γ= ααααα UNXUY
and

noise term needs to be noise term needs to be 
removedremoved

The noise term can be removed by correlating it awaycorrelating it away with a suitable 
matrix. This can be interpreted as an oblique projection.oblique projection.

Presence of noisePresence of noise


